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Abstract
Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by lipid
accumulation, lipoprotein oxidation, and inflammation. Products of the cyclooxygenase (COX)
pathway participate in acute and chronic inflammation. The inducible form of COX, COX-2,
generates lipid mediators of inflammation that are pro-inflammatory and COX-2-selective inhibitors
are potent anti-inflammatory agents. However, clinical data suggest an increased risk of
cardiovascular side effects in patients using COX-2-selective inhibitors. In this paper, we sought to
determine the affect of COX-2 deficiency on atherosclerosis-related lipoprotein metabolism in mice.
We demonstrate that COX-2 deficiency resulted in i) accumulation of lipids in circulation and liver,
ii) pro-inflammatory properties of HDL as measured by HDL’s increased reactive oxygen species
(ROS) content, decreased paraoxonase 1 (PON1) activity, decreased serum apoA-1, reduced ability
to efflux cholesterol and to prevent LDL oxidizability, and iii) increased TXB2 in circulation.
Moreover, when placed on an atherogenic diet, COX-2 deficiency resulted in i) increased lipid
deposition in the aorta, ii) a further dramatic imbalance in circulating eicosanoids, i.e. decreased
serum PGI2 coupled with increased PGE2 and TXB2, and iii) a marked elevation of pro-inflammatory
cytokines, TNF and IL-6. Our results suggest, for the first time, that COX-2 deficiency contributes
to the pro-atherogenic properties of HDL in mice.
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1. Introduction
Atherosclerosis is the primary mechanism underlying the development of coronary artery
disease, and is characterized by lipoprotein accumulation and oxidation, aberrant lipoprotein
metabolism, and systemic inflammation [1]. High-density lipoprotein (HDL) cholesterol levels
and atherosclerosis are inversely related [2]. In recent years, ‘HDL function’ has emerged as
an effective biomarker for atherosclerosis risk [3–5]. HDL exerts anti-atherogenic function by
promoting reverse cholesterol transport and preventing the oxidation of low density lipoprotein
(LDL) [6,7]. We have previously shown that the anti-inflammatory functions of HDL can be
impaired in humans [5], rabbits [8] and mice [9] during inflammatory processes. During
inflammation HDL is characterized by i) increased reactive oxygen species (ROS)
accumulation [10], ii) decreased levels and activity of anti-inflammatory, anti-oxidant factors
including apolipoprotein A1 (apoA-I) and paraoxonase 1 (PON1) [11], iii) reduced potential
to efflux cholesterol [12] and iv) diminished ability to prevent LDL oxidation [3].

Cyclooxygenase 2 (COX-2) is up-regulated during acute and chronic inflammation and is
involved in stimulus induced prostanoid synthesis [13]. COX-2 is expressed in both human
and mouse atherosclerotic lesions [14–16]. The importance of COX-2 to the development of
atherosclerosis is emphasized by a number of clinical trials that have revealed an increasing
incidence of cardiovascular events - heart attacks and strokes - in response to the use of COX-2-
selective inhibitors [17–19]. While human data suggest a connection between COX-2
inhibition and atherosclerosis, the underlying mechanisms and mediators responsible for the
deleterious cardiovascular effects of COX-2 inhibitors have not been clearly identified.

In the present study we demonstrate using COX-2 knockout mice fed chow and atherogenic
diets that genetic depletion of COX-2 is associated with i) hyperlipidemia, ii) accumulation of
pro-inflammatory HDL, iii) decreased levels of PGI2, and iv) increased production of pro-
inflammatory mediators of inflammation including TXA2, PGE2, IL-6 and tumor necrosis
factor (TNF). We further show that a short-term (10 days) treatment with rofecoxib caused
accumulation of pro-inflammatory HDL in C57BL6/J mice. Our results suggest that COX-2
plays an anti-atherogenic role in mice.

2. Materials and Methods
2.1. Mice

COX-1−/−, COX-1+/+, COX-2−/− and COX-2+/+ mice on a mixed 129/C57BL6/J background
were obtained from Taconic (Germantown, NY). Mice were maintained on a 6% fat chow diet.
At age of 10 – 11 weeks, mice were fed chow diet or atherogenic diet containing 15.8% fat,
1.25% cholesterol, and 0.5% cholate (Harlan Teklad, Madison, WI) for 3 weeks. For
experiments with rofecoxib, C57BL6/J female mice at age of 8 – 12 weeks were given
commercially available rofecoxib (Vioxx®, Merck) (30mg/kg/day) by oral gavage for ten days.
Control mice were given vehicle only (0.5% carboxy methylcellulose). Serum samples were
isolated from overnight fasted mice, cryopreserved in 10% sucrose and kept at −80°C until
use.

2.2. Lipid Deposition
Heart and proximal aorta from mice were obtained and embedded in OCT compound. Serial
10 μm-thick cryosections from the middle portion of the ventricle to the aortic arch were
collected and stained with Oil Red O and hematoxylin. The lipid-containing area on each
section was determined in a blinded fashion, using a microscope eyepiece grid. The average
lipid area per aorta, calculated from 25 sections of each aorta, was scored.
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2.3. Serum, Lipoprotein, and Liver Lipids
Serum cholesterol levels were determined by commercially available kits (Thermo, Louisville,
CO). Cholesterol esters were determined by subtracting free cholesterol from total cholesterol.
HDL was isolated from serum by LipiDirect HDL reagent (Polymedco, Cortland Manor, NY)
according to the manufacturer’s protocol. The supernatant containing HDL was assayed for
cholesterol, protein (Promega, Madison, WI) and used for cholesterol efflux within 48 hours
after the isolation. VLDL/LDL cholesterol was determined by subtracting HDL cholesterol
from total cholesterol. For determining the liver cholesterol content, liver homogenates were
lipid extracted with chloroform/methanol (2:1). Lipid extracts were dried under nitrogen gas
and further resuspended in 1% Triton X-100 in PBS, and assayed for cholesterol.

2.4. Lipoprotein Isolation
Lipoprotein samples were isolated from pooled sera by a fast protein liquid chromatography
(FPLC) system consisting of dual Superose 6 columns in series (Amersham Bioscience,
Piscataway, NJ). Serum (0.5 mL) was eluted with PBS at a flow rate of 0.5 mL/min and
fractionated every 1 mL. Each fraction was assayed for cholesterol (Thermo) and protein
(Promega) according to manufacturer’s protocols.

2.5. HDL Characterization
2.5a Reactive oxygen species (ROS)—ROS content in lipoproteins was determined with
2,7,7′dichlorofluorescein diacetate (H2DCFDA) (Invitrogen, Carlsbad, CA) as described
previously [20] with minor modifications. Individual FPLC fractions (50 μL) were incubated
with H2DCFDA (10 μg/mL) in methanol for 30 min at 37°C. The presence of ROS was detected
by measuring fluorescence intensity at 485nm/525nm.

2.5b Paraoxonase 1 (PON1) assay—PON1 activity in individual FPLC fractions was
determined as described previously [8]. Briefly, samples were incubated with paraoxon and
PON1 activity was analyzed by measuring the increase in absorbance at 405 nm due to the
formation of 4-nitrophenol over a period of 12 minutes (20 second intervals). A unit of PON1
activity was defined as the formation of 1 nmol of 4-ntirophenol per minute per milliliter of
sample applied.

2.5c Serum ApoA-1—Serum apoA-1 was determined by direct ELISA according to the
manufacturer’s protocol (Abcam, Cambridge, MA). Briefly, 96-well enzyme EIA plates
(Corning Inc., Corning, NY) were coated with serum samples (20 μg/mL) diluted in PBS
overnight at 4 °C. Following washes with PBS/Tween-20 (0.05 %), the plates were blocked
with 5% non-fat milk, immunoblotted with primary antibody against apoA-1 at 1:5000
(Biodesign, Saco, ME) and HRP-conjugated detection antibody at 1:5000 (GE Healthcare).
HRP was probed with TMB solution (KPL, Gaithersburg, MD) and OD450 was measured.
Recombinant apoA-1 (Biodesign) was used as standard.

2.5d Cholesterol efflux—Cellular cholesterol efflux was performed as described previously
with minor modifications [21]. Mouse macrophage RAW264.7 cells (ATCC, Manassas, VA)
were cultured on 24-well tissue culture plates and grown in DMEM media (GIBCO-BRL,
Grand Island, NY) with 10% FBS overnight. Cells were washed with serum free media and
loaded with 3H-cholesterol (1 μCi/mL) and acetylated LDL (50 μg/mL) in media with 0.2 %
fatty acid free BSA (Sigma, St. Louis, MO) overnight. Labeled cells were washed, resuspended
in DMEM media with 0.2% BSA and incubated with HDL (25 μg/mL) containing supernatant
(Materials and Methods, section 2.3) for 6 hours at 37°C. Radioactivity in the supernatants and
total cell extracts were measured and expressed as the percentage of total radioactive counts
accumulated in the supernatants during the efflux period.
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2.5e Monocyte Chemotaxis Assay—Artery wall cell cocultures were used for the
monocyte chemotaxis assay as described previously [7]. Cocultures of human aortic
endothelial cells and human aortic smooth muscle cells were treated with native human LDL
(250μg/mL) in the presence or absence of HDL for 8 hours. Cells were subsequently washed
and fresh M199 media (GIBCO-BRL, Grand Island, NY) was added for an additional 8 hours.
At the end of the incubation, supernatants were collected, diluted 40-fold, and tested for
monocyte chemotactic activity [7]. Briefly, the supernatant was added to a standard
Neuroprobe chamber (Neuroprobe, Cabin John, MD), with monocytes added to the top. The
chamber was incubated for 60 min at 37°C. After incubation, the chamber was disassembled
and non-migrated monocytes were wiped off. The membrane was then air dried and fixed with
1% glutaraldehyde and stained with 0.1% Crystal Violet dye. The number of migrated
monocytes was determined microscopically and expressed as the mean ± SD of 9 standardized
high power fields.

2.6. Eicosanoids
Serum PGE2, LTB4, TXB2, and 6-keto PGF1α were determined by competitive EIA according
to manufacturer’s protocols (Assay Designs, Ann Arbor, MI, Amersham Biosciences,
Piscataway, NJ).

2.7. Cytokines
All kits, instruments, and software were purchased from BD Biosciences (San Diego, CA).
Serum cytokines were determined by Cytometric Bead Array (CBA) Mouse Inflammation Kit
according to manufacturer’s protocols. A FACSCalibur Analytic Flow Cytometer with
CellQuest software was used for data acquisition. CBA results were analyzed using Flow
Cytometric Analysis Program Array Software.

2.8. Statistics
Statistical significance was determined by Student’s T-test or Mann-Whitney U test
(VassarStats: faculty.vassar.edu/lowry/utest.html). Significance was defined as p<0.05.

3. Results
3.1. COX-2−/− mice are hyperlipidemic

The main goal of the present study was to determine whether COX-2 deficiency affects the
development of atherosclerotic lesions. COX-2+/+ and COX-2−/− mice were placed either on
a chow diet or on an atherogenic diet (n=15 for each group). Surprisingly, the atherogenic diet
was lethal to COX-2−/− mice. 10 out of 15 mice on the atherogenic diet died 4 weeks into the
start of the experiment. In contrast, COX-1−/−, (n=15 per group) placed on an atherogenic diet
sustained the entire 15-week period of the diet protocol and did not show any differences when
compared to wild-type littermates treated similarly (not shown).

Sera and lipoproteins from COX-2−/− and COX-2+/+ mice were analyzed for cholesterol and
cholesterol ester content (Table 1). Cholesterol (total, HDL, VLDL/LDL) and cholesterol esters
were significantly elevated (23%, 14%, 42%, and 22%. respectively) in COX-2−/− mice on
chow diet when compared to wild-type mice on chow. Atherogenic diet caused significant
increases in cholesterol content in sera and lipoproteins from both COX-2+/+ and COX-2−/−

mice (Table 1); however, total cholesterol, HDL cholesterol (HDL-C), VLDL/LDL cholesterol
(VLDL/LDL-C) and cholesterol esters, were all significantly higher in COX-2−/− mice when
compared to COX-2+/+ mice (Table 1). These data suggest that COX-2−/− mice are
hyperlipidemic compared to their wild-type littermates.
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To further examine whether increased cholesterol content in circulation affected tissue lipid
deposits, we analyzed aortas and liver lysates from COX-2+/+ and COX-2−/− mice for neutral
lipid content and cholesterol, respectively. Aortas from COX-2−/− mice on atherogenic diet
after 3 weeks had significantly larger areas of neutral lipid content as measured by Oil Red O
staining (Fig. 1A). COX-2−/− mice on chow diet also had significantly increased cholesterol
content in liver lysates when compared to wild-type mice (Fig. 1B). Atherogenic diet resulted,
as expected, in increased liver cholesterol levels in wild-type mice with no significant
differences when compared to COX-2−/− mice (Fig. 1B).

3.2. HDL from COX-2−/− mice is pro-inflammatory
COX-2−/− mice had significantly higher HDL-C levels (Table 1). It is well established that
HDL-C levels are inversely related to risk of atherosclerosis. Recent reports from others and
our own laboratory suggest that ‘HDL function’ as measured by HDL’s i) ROS content, ii)
PON1 activity, iii) apoA-1 level, iv) ability to induce cholesterol efflux, and v) ability to prevent
LDL oxidation, is a better marker for atherosclerosis risk than HDL-C levels, reviewed in [3,
4]. Therefore, we evaluated the inflammatory properties of HDL as a measure of HDL function
in all the experimental groups. Interestingly, we observed that HDL from COX-2−/− mice on
a chow diet as well as C57BL6/J mice on chow treated with the COX-2 specific inhibitor
rofecoxib was pro-inflammatory as indicated by significant accumulation of ROS (Fig. 2B and
2D). HDL from COX-2−/− mice also had decreased PON1 activity (Fig. 3A), decreased apoA-1
expression (Fig. 3B), reduced ability to induce cholesterol efflux (Fig. 3C), and inability to
protect against LDL-induced monocyte chemotaxis (Fig. 3D). Atherogenic diet further
exacerbated the pro-inflammatory properties of HDL from COX-2−/− mice when compared to
wild-type mice (Figs. 2 and 3).

3.3. Absence of COX-2 alters the inflammatory balance of circulating eicosanoids
We next examined whether COX-2 deficiency affected circulating eicosanoid profiles. Serum
samples from COX-2−/− and wild-type mice were assayed for TXB2 (stable metabolite of
TXA2), PGE2, 6-keto PGF1α (stable metabolite of PGI2), and LTB4 (Fig. 4). Serum TXB2 is
significantly increased in COX-2−/− mice on chow compared to wild-type littermates (Fig. 4A).
Interestingly, the concentrations of TXB2 in COX-2−/− mice on chow (474.84 pg/mL) were
comparable to those observed in wild-type mice on atherogenic diet (438.56 pg/mL) (Fig. 4A).
PGE2 levels were found to be elevated in serum samples from COX-2−/− mice. Interestingly,
PGE2 levels were ~1.5-fold higher in COX-2−/− mice on atherogenic diet compared to wild-
type mice (Fig. 4B). In contrast, we observed a 7-fold decrease (Fig. 4C) in 6-keto PGF1α in
COX-2−/− mice on atherogenic diet compared to wild-type mice. In contrast, the leukotriene
pathway as measured by LTB4 levels, appeared to be unaffected in circulation of COX-2
deficient mice (Fig. 4D).

3.5. Absence of COX-2 increases pro-inflammatory cytokines in circulation
We have observed markers for a pro-atherogenic phenotype in COX-2−/− mice including
hyperlipidemia (Table 1 and Fig. 1), formation of pro-inflammatory HDL (Figs. 2 and 3), and
presence of a pro-inflammatory eicosanoid profile (Fig. 4). All these markers are known to be
accompanied by systemic inflammation and are risk factors for atherosclerosis [1,3–5,22–
24]. Thus, we examined whether COX-2 deficiency results in systemic inflammation when
challenged with atherogenic diet. We profiled serum cytokines by a cytometric bead array and
analyzed the levels of IL-6, IL-12, IL-10, TNF, MCP-1, and interferon-γ (IFN-γ) (Fig. 5). In
concordance with previous literature [25–27], atherogenic diet was associated with significant
elevation of MCP-1, TNF, and IFN-γ, in both groups of mice (Fig. 5A–C). Interestingly,
COX-2−/− mice on atherogenic diet showed more systemic inflammation with higher levels of
TNF (Fig. 5B) and IL-6 (Fig. 5D) than wild-type controls. Furthermore, IL-12 was significantly
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increased by atherogenic diet in wild-type controls, while COX-2 depletion completely
abolished this induction (Fig. 5E). Serum IL-10 was not affected by genotype or diet (data not
shown).

4. Discussion
In contrast to COX-1, which has predominantly housekeeping functions, COX-2 is implicated
in a number of inflammatory disorders including arthritis, cancer, and cardiovascular diseases.
Since its discovery in 1991, inhibition of COX-2 activity became a major focus for the
prevention and treatment of inflammatory diseases. Indeed, COX-2-selective inhibitors,
celecoxib and rofecoxib, have been used to treat colon cancer [28,29] and arthritis [30].
However, recent studies have cast doubt on the anti-inflammatory effects of COX-2-selective
inhibitors because of their association with increased risk of cardiovascular events – heart
attacks and strokes – with chronic use [17–19]. While the literature suggests that COX-2
inhibition may have pro-inflammatory effects in cardiovascular physiology, the underlying
mechanisms are poorly understood.

In this paper, we demonstrated that COX-2−/− mice (3 – 4 months of age) harbor pro-
atherogenic conditions that include i) lipid accumulation in the circulation and liver (Table 1
and Fig. 1), ii) accumulation of dysfunctional, pro-inflammatory HDL (Fig. 2 and 3), and iii)
increases in TXB2 levels (Fig. 4), all of which are well-accepted pro-atherogenic factors.
Moreover, upon challenge with an atherogenic diet, COX-2−/− mice developed i) increased
lipid deposition in the aorta (Fig. 1), ii) a further pro-atherogenic imbalance in circulating
eicosanoids, PGI2 vs. TxB2 (Fig. 4) and iii) a marked elevation of pro-inflammatory cytokines,
TNF and IL-6, compared to wild-type mice (Fig. 5). Taken together, these results suggest that
COX-2 deficiency may affect the cardiovascular physiology in mice.

Total cholesterol, VLDL/LDL-C and HDL-C were found to be significantly elevated on a chow
diet, as well as an atherogenic diet (Table 1) in COX-2−/− mice when compared to wild-type
mice. Cholesterol accumulation can promote inflammation by its ability to stimulate the
production of ROS that result in the formation of pro-inflammatory oxidized phospholipids
[31]. Cholesterol accumulation is also associated with increased macrophage foam cell
formation [32], which is a key step in the development of atherosclerotic lesions. Indeed, a
recent study by Chan et al. suggests that COX-2 inhibition alters the expression of cholesterol
efflux proteins and promotes the transformation of THP-1 macrophages into foam cells [33].

The direct relationship of hyperlipidemia and the inverse relationship of HDL-C to the risk of
atherosclerosis is well established [2]. However, it is also well known that a significant number
of patients with normal HDL-C levels develop cardiovascular disease, including
atherosclerosis [3,4]. We previously reported that HDL from a group of patients with high
HDL-C is pro-inflammatory [5]. Unlike normal/anti-inflammatory HDL, pro-inflammatory
HDL is defective in reverse cholesterol transport [12] and has diminished anti-oxidant activity
[3], and thus has a potential to exacerbate atherosclerosis [3,4].

Although COX-2−/− mice had elevated HDL-C, their HDL was pro-inflammatory in every
tested measure, with excessive ROS content, decreased apoA-1 levels, deficient PON1 activity,
decreased cholesterol efflux potential, and inability to prevent LDL-induced monocyte
chemotactic activity (Fig. 2 and 3). The inability of HDL from COX-2 deficient mice to
promote cholesterol efflux correlates with the observed cholesterol accumulation in peripheral
tissues, including liver and aorta, a primary site of atherogenesis in mice. The importance of
COX-2 activity in maintaining normal, anti-inflammatory HDL function is further solidified
by the observation that C57BL6/J mice accumulate pro-inflammatory HDL in a relatively short
time (ten days) of rofecoxib treatment (Fig. 2D). Our results are in agreement with a recent
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study by Metzner et al., which demonstrated that treatment of apoE−/− mice on a chow diet
with COX-2-selective inhibitors, rofecoxib and celecoxib, for 16 weeks, results in increased
atherosclerotic lesions [34]. In the same study, Metzner et al. did not find significant differences
in lesion sizes in apoE−/− mice on a western diet. Since apoE−/− mice on a western diet develop
advanced lesions, the authors concluded that inhibition of COX-2 promotes initiation of
atherogenesis and may not affect the late stages.

Lack of COX-2 activity also results in an imbalance of prostanoid production, a possible pro-
atherogenic mechanism [35]. COX-2−/− mice on a chow diet showed significantly higher levels
of TXA2 (measured by stable metabolite TXB2) compared to wild-type mice (Fig. 4), and more
interestingly, the levels on a chow diet were as high as those seen in wild-type group on an
atherogenic diet, suggesting that COX-2−/− mice are more prone to aggregation in the
circulation. More interestingly, COX-2−/− mice on an atherogenic diet for three weeks showed
a 7-fold decrease in the anti-inflammatory prostanoid prostacyclin (measured by the stable
metabolite 6-keto PGF1α) coupled with concomitant increase in the pro-thrombotic and pro-
nflammatory eicosanoids TXA2 and PGE2. This aberrant shift in eicosanoid profile may be
due to either augmented or unopposed COX-1 activity in the absence of COX-2 [36,37].
Because of short term feeding we are not certain whether the pro-inflammatory eicosanoid
profile in circulation in the COX-2 deficient mice is sufficient to aggravate atherosclerotic
lesions. However, COX-2 specific regulation of anti-atherogenic prostanoids such as
prostacyclin [22,24] and anti-inflammatory prostaglandins such as 15-deoxy-Δ12,14-PGJ2
[38] suggest that COX-2 activity is required to maintain an anti-inflammatory balance of
eicosanoids. Moreover, in the studies by Metzner et al. [34] discussed above, apoE−/− mice on
a chow diet that were treated with COX-2 selective inhibitors, rofecoxib and celecoxib, showed
a 50% reduction in prostacyclin metabolites in urine, suggesting once again the importance of
COX-2 in the maintenance of anti-atherogenic prostanoid balance.

Based on evidence of hyperlipidemia, pro-inflammatory HDL, and imbalance of prostanoids
in COX-2−/− mice on chow, we suspected an exaggerated systemic inflammatory response in
COX-2−/− mice upon challenge with atherogenic diet. Atherogenic diet resulted in an increase
in MCP-1, TNF, IFN-γ, in both groups and IL-12 in the wild-type group, suggesting that 3-
week feeding of atherogenic diet itself is sufficient to induce inflammation. Although the
absence of COX-2 exacerbated inflammation as evidenced by increased TNF and IL-6 in
circulation (Fig. 5), some of the changes in cytokine profiles on an atherogenic diet, could be,
in part, caused by the intestinal inflammation that COX-2−/− mice develop on an atherogenic
diet (reported in the accompanying manuscript).

In conclusion, we identified a novel anti-atherogenic role for COX-2 by showing that
COX-2−/− mice on a chow diet and wild-type mice on a COX-2 inhibitor accumulate
dysfunctional/pro-inflammatory HDL. In recent years, pro-inflammatory HDL has not only
emerged as a new biomarker for atherosclerosis but has also become an excellent target for
therapeutic intervention of cardiovascular diseases. Future studies based on the findings in this
paper will no doubt provide new insights into the cardiovascular side effects of COX-2 selective
inhibitors.
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Abbreviations
apoA-1  

apolipoprotein A-1

apoE  
apolipoprotein E

BSA  
bovine serum albumin

COX  
cyclooxygenase

ELISA  
enzyme-linked immunosorbent assay

EIA  
enzyme immunoassay

HDL  
high-density lipoprotein

IFN  
interferon

IL  
interleukin

LDL  
low-density lipoprotein

PON  
paraoxonase

ROS  
reactive oxygen species

TNF  
tumor necrosis factor

VLDL  
very low-density lipoprotein
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Fig. 1.
Absence of COX-2 results in increased lipid deposition in aorta and liver. (A) Lipid
accumulation in the aorta (n=5 per group) and (B) liver cholesterol content (n=8–12 per group)
were determined as described in Materials and Methods. Aortic lipid and liver cholesterol
content are represented individually (open circles) and as averages (black bar) of each group.
P-values were calculated by T-test for statistical analysis. WT = COX-2+/+ wild-type mice,
KO = COX-2−/− mice, (C) = chow diet, (A) = atherogenic diet.
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Fig. 2.
ROS accumulation on HDL from COX-2−/− mice and C57BL6/J wild-type mice treated with
rofecoxib. Individual FPLC fractions from pooled serum samples from COX-2+/+, COX-2−/−

mice (A and B) and C57BL6/J mice treated with either vehicle or rofecoxib (C and D) were
assayed for cholesterol (A and C) and ROS (B and D). WT = COX-2+/+ wild-type mice, KO
= COX-2−/− mice, (C) = chow diet, (A) = atherogenic diet.
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Fig. 3.
HDL from COX-2−/− mice is dysfunctional and pro-inflammatory. (A) Individual FPLC
fractions from pooled serum samples from COX-2+/+ and COX-2−/− mice were tested for PON
activity (represented as units/mL). (B) Levels of apoA-1 in serum (20 μg/mL) were determined
by ELISA. Concentrations are represented individually (open circles) and as averages (black
bar) for each group (n=8–12). (C) HDL (25 μg/mL) isolated from COX-2+/+ and COX-2−/−

mice was incubated for 6 hours with RAW cells preloaded with 3H-cholesterol. Percentage
efflux is represented individually (open circles) and as averages (black bar) for each group
(n=8–12). (D) HDL from COX-2+/+ and COX-2−/− mice was used in a monocyte chemotaxis
assay as described in Materials and Methods. Data represented as average with one standard
deviation of number of migrated monocytes in 9 fields for each HDL. Data are representative
of three experiments. P-values were calculated by T-test for statistical analysis. WT =
COX-2+/+ wild-type mice, KO = COX-2−/− mice. (C) = chow diet, (A) = atherogenic diet,
hLDL = human LDL, hHDL = human HDL, none = no addition control.
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Fig. 4.
Absence of COX-2 alters the inflammatory balance of circulating eicosanoids. Concentrations
of TXB2 (A), PGE2 (B), 6-keto PGF1α (C), and LTB4 (D) in serum from COX-2+/+ and
COX-2−/− mice were determined by EIA kits. Eicosanoid levels are represented as individual
concentrations (open circles) and averages (black bar) for each group (n=8–12). P-values were
calculated by T-test for statistical analysis. WT = COX-2+/+ wild-type mice, KO =
COX-2−/− mice, (C) = chow diet, (A) = atherogenic diet.
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Fig. 5.
Absence of COX-2 increases pro-inflammatory cytokines in circulation when challenged with
an atherogenic diet. Concentrations of MCP-1 (A), TNF (B), IFN-γ (C), IL-6 (D), and IL-12
(E) in serum (50 μL) from COX-2+/+ and COX-2−/− mice were determined by cytometric bead
array. Cytokine levels are represented as individual concentrations (open circles) and averages
(black bar) for each group (n=8–12). P-values were calculated by T-test for statistical analysis.
P-value denoted by (*) was determined by Mann-Whitney U test. WT = COX-2+/+ wild-type
mice, KO = COX-2−/− mice, (C) = chow, (A) = atherogenic diet.
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Table 1

Total Cholesterol (mg/dL) HDL cholesterol (mg/dL) VLDL/LDL cholesterol (mg/dL) Cholesterol esters (mg/dL)

WT(C) 81.0 +/−13.8 53.1 +/− 7.0 27.9 +/− 7.2 71.3 +/− 10.9

KO(C) 100.0 +/− 14.5** 60.3 +/− 7.5* 39.7 +/− 8.7** 87.3 +/− 12.0**

WT(A) 178.3 +/− 25.1 49.4 +/− 8.3 130.0 +/− 26.3 147.0 +/− 20.4

KO(A) 226.4 +/− 38.1** 69.4 +/− 14.2** 157.0 +/− 29.9** 172.4 +/− 28.7*

N=8–12,

**
= p<0.01 and

*
= p<0.05, COX-2−/− compared to COX-2+/+ controls on the same diet. WT = COX-2+/+ (wild-type littermates). KO = COX-2−/−, (C) = chow diet,

(A) = Atherogenic diet
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