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Abstract
Opening angles (OAs) are associated with growth and remodeling in arteries. One curiosity has been
the relatively large OAs found in the aortic arch of some animals. Here, we use computational models
to explore the reasons behind this phenomenon. The artery is assumed to contain a smooth muscle/
collagen phase and an elastin phase. In the models, growth and remodeling of smooth muscle/collagen
depends on wall stress and fluid shear stress. Remodeling of elastin, which normally turns over very
slowly, is neglected. The results indicate that OAs generally increase with longitudinal curvature
(torus model), earlier elastin production during development, and decreased wall stiffness.
Correlating these results with available experimental data suggests that all of these effects may
contribute to the large OAs in the aortic arch. The models also suggest that the slow turnover rate of
elastin limits longitudinal growth. These results should promote increased understanding of the
causes of residual stress in arteries.
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1 Introduction
During the last decade, a number of mathematical models have been proposed for growing
arteries (Taber, 1998; Rachev et al., 1998; Taber and Humphrey, 2001; Kuhl et al., 2006).
Taken together, these models successfully capture many of the known characteristics of the
adaptive behavior of arteries following perturbations in pressure and flow, such as changes in
radius, wall thickness, and the opening angle (OA) associated with residual stress. Recently,
some researchers have proposed models that focus on remodeling of the extracellular matrix
(Driessen et al., 2004; Gleason et al., 2004; Hariton et al., 2007; Fonck et al., 2007), and we
have developed a model that includes remodeling of collagen and elastin as well as growth of
smooth muscle (Alford et al., 2007). For realistic distributions of these wall constituents, our
model yields OAs that agree reasonably well with measured variations along the length of the
rat aorta, with one notable exception — the aortic arch, where measured angles are considerably
larger than in other regions (Liu and Fung, 1988).

Here, we extend our prior model for arterial growth and remodeling (G&R) (Alford et al.,
2007) to investigate the reasons for the large OAs in the aortic arch. One obvious possibility
is that they are caused by effects associated with longitudinal curvature, but other structural
differences exist between the arch and the rest of the aorta. In addition, we explore the effects
of longitudinal growth on the G&R behavior of arteries. Experiments have shown that the in
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vivo axial stretch of an artery changes as loading conditions change (Jackson et al., 2002), and
Gleason and Humphrey (2005) showed that this adaptation is likely correlated with axial stress.
However, to our knowledge, the effect of axial growth on residual stress has not yet been
explored.

The results from our models indicate that longitudinal curvature increases OAs, but real aortas
are not curved enough for this phenomenon to have a large effect. On the other hand, the models
suggest that the relatively early elastin production that occurs in the arch during development
(Davidson et al., 1986) can cause considerable increases in OA. Furthermore, a lower modulus
for any of the wall constituents also increases the OA, and recent evidence suggests that elastin
is less stiff in the arch region than it is downstream (Lillie and Gosline, 2007). Hence, it is
likely that a combination of factors causes the relatively large OAs in the aortic arch. In
addition, the models show that longitudinal growth can significantly affect opening angles.
These results provide new understanding of the origins of residual stress in arteries.

2 Models and Assumptions
In this paper, we consider four thick-walled models for the aorta; two are straight cylinders
(C1 and C2) and two are tori (T1 and T2). All models include circumferential and radial growth
of smooth muscle cells, but other details differ. The main characteristics of the models are the
following:

• Model C1: Includes axial growth but not elastin production; used to study the effects
of axial growth and media stiffness under homeostatic conditions at maturity. The
ends of the cylinder are fixed at a specified axial stretch ratio.

• Model C2: Includes axial growth and elastin production; used to simulate arterial
development. Because increasing blood pressure drives expansion of the vascular bed
in the embryo, the ends are assumed to be capped but free to move axially.

• Model T1: Does not include axial growth or elastin production; used to simulate the
arch of the aorta and examine the effects of longitudinal curvature on OAs. Axial
growth is not included because G&R equilibrium cannot be achieved without elastin
present.

• Model T2: Includes axial growth and elastin; used to simulate the arch of the aorta
and study the interaction between elastin stress and smooth muscle growth in a curved
vessel.

In the unloaded reference state (before any G&R), all models have circular cross sections.
Reference geometry for the torus models is shown in Fig. 1; the cylinders have similar cross
sections. For convenience, R, Θ, and S represent the radial, circumferential, and longitudinal
coordinates in the reference configuration of all models, while r, θ, and s are the corresponding
coordinates in the intact state at an arbitrary time t. For a torus, the circumferential direction
is defined relative to the cross section. Moreover, we let A and B be the longitudinal radius of
curvature and the radius of the lumen, respectively, in the reference state. At G&R equilibrium,
the cross section also is assumed to be circular, and these radii become a and b, respectively
(Fig. 1).

Our analysis of G&R is based on the fundamental assumption that smooth muscle grows and
collagen remodels, as these constituents strive to maintain their respective stresses at
homeostatic values. However, elastin remodeling is neglected, as it turns over very slowly
(order of years under normal conditions) once it is produced during development (Lefevre and
Rucker, 1980; Davis, 1993). Previously, we have shown that a model based on these criteria
yields OAs that depend on the relative thicknesses of the media and adventitia (Alford et al.,
2007). This paper, however, focuses primarily on the aortic arch, which has a relatively thin
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adventitia. For simplicity, therefore, the present models are composed of a single layer, the
media, which consists of a homogeneous mixture of smooth muscle, collagen, and elastin. In
addition, noting the relatively rapid remodeling of smooth muscle and collagen (order of days
to weeks), we assume that these constituents can effectively regain their homeostatic stresses
on a short time scale compared to the relatively slow process of development. (Acute changes
in loading are not considered here.) Thus, smooth muscle and collagen are lumped together
into a single material (herein simply called “smooth muscle”) with an equivalent homeostatic
stress.1 Hence, the artery wall in our models consists of a mixture of two constituents — smooth
muscle (including collagen) and elastin.

Additional assumptions for the wall constituents include the following:
• Smooth muscle is an incompressible (cylinder models), or nearly incompressible

(torus models), pseudoelastic material growing at a rate that depends on the local
circumferential stress σmθ and axial stress σms in the muscle and the fluid shear stress
τw on the endothelium. Short-term adaptation involving muscle contractility is
ignored.

• Elastin sheets are composed of incompressible pseudoelastic fibers oriented originally
in the circumferential (Θ) and longitudinal (S) directions. Elastin fibers are
synthesized at specified times with the same initial stretch ratio (taken as 1.0 for
simplicity). After production, the fibers do not turn over and are stretched or
compressed by subsequent cell growth.

3 Theoretical Methods
The present formulation includes volumetric growth of smooth muscle according to the growth
theory of Rodriguez et al. (1994) and elastin production adapted from the remodeling theory
of Humphrey and colleagues (Humphrey, 1999; Humphrey and Rajagopal, 2003; Gleason et
al., 2004). These theories are based on the concept of evolving natural (zero-stress)
configurations for each tissue component. Consistent with the above assumptions, the arterial
wall is taken as a mixture of smooth muscle cells, elastin, and water, with the cells assumed to
be a growing scaffold on which elastin is synthesized. During deformation, all constituents are
assumed to undergo the same strain at each point, i.e., the tissue is treated as a constrained
mixture. The total Cauchy stress tensor in the mixture is given by

(1)

where φj is the volume fraction and σj the partial stress of constituent j. The volume fractions
satisfy the relation φm + φe = 1. Water is assumed to be contained entirely within the smooth
muscle/collagen phase.

3.1 Growth and Remodeling
To visualize how G&R is handled, it is helpful to consider a series of virtual configurations in
which smooth muscle and elastin are treated separately (Fig. 2). The initial geometry B at time
t = 0 is chosen as the reference configuration. Configurations also are shown for the current
time t and an intermediate time τ (0 ≤ τ ≤ t).

1This simplification was used because including collagen remodeling in the torus models increased computation time by more than an
order of magnitude. To test the accuracy of this approximation, we ran some simulations with the cylinder models with and without
separate collagen remodeling and found only minor differences for the problems in this paper.

Alford and Taber Page 3

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Suppose that the smooth muscle in B is dissociated into infinitesimally small pieces (Bc), e.g.,
individual cells, which then grow for an arbitrary time τ through the total growth tensor G (τ)
to establish the zero-stress state Bg(τ) (Fig. 2). The pieces then are reassembled and external
loads are added, as Bg undergoes elastic deformation  (τ) to form configuration b (τ). These
steps also apply at the current time t, and the total deformation of the smooth muscle at any
time is given by

(2)

The field equations are written in terms of F, but the muscle stress depends of . The
tensor G is determined from growth laws, as given below.

Arteries have three seemingly distinct growth modalities. In response to chronic changes in
hemodynamic flow, arteries grow circumferentially to maintain the homeostatic shear stress
on the endothelium (Langille et al., 1989). In response to chronic pressure changes, arteries
grow radially, presumably to equilibrate wall stress (Matsumoto and Hayashi, 1996). Finally,
in response to increased axial stress, arteries grow longer, possibly to equilibrate the stress
along their axes (Jackson et al., 2002).

With these observations in mind, we set [G] =diag[λgr, λgθ, λgs], where the λgi are growth
stretch ratios, and assume that the growth laws have the form

(3)

where Tθ, Tτ, Tr, and Ts are time constants, hat indicates homeostatic stresses, and dot denotes
time differentiation. At G&R equilibrium, σmθ = σˆmθ, τw = τˆw, and σms = σˆms at all points in
the artery.

Elastin production begins mid gestation, peaks near birth, and ceases in early infancy (Davidson
et al., 1986). In previous work, we assumed that elastin is prestretched when it is created
(Alford et al., 2007). But because elastin does not turn over, subsequent deformation during
development likely overwhelms this initial stretch. For simplicity, therefore, we assume here
that elastin fibers are created stress free at time τ (state Be (τ)) and then undergo elastic
deformation  (τ) to b(t), due external loading as well as growth of the artery. At any time,
the stress born by elastin is given by the integral

(4)

where φ˙e (τ) is the volumetric rate of elastin production at time τ, and J = det F is the volume
ratio.
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3.2 Material Constitutive Laws

Let  be the elastic deformation of constituent j (j = m, e) relative to its zero-stress state (Bg
for smooth muscle and Be for elastin, Fig. 2). For a pseudoelastic material, the constitutive
equations for the partial stresses are

(5)

where  is the strain-energy density function for constituent j, and .

Smooth muscle is taken to be transversely isotropic with circumferentially oriented smooth
muscle fibers. Hence, we take

(6)

where αm, βm, αf and βf are material constants and κ is the bulk modulus. In addition,
 is the modified first strain invariant relative to the stress-free

configuration of the muscle (Bg), and p is a Lagrange multiplier for an incompressible material
(J* → 1, κ → ∞) or a penalty variable for a nearly incompressible material. In the cylinder
models (C1 and C2), smooth muscle is assumed to be incompressible, but, because the finite
element package (COMSOL Multiphysics) requires some compressibility, the torus models
(T1 and T2) are slightly compressible.2 Computed pressure-radius curves based on Eq. (6)
show reasonable agreement with experimental data (results not shown).

Elastin is taken as a matrix of one-dimensional fibers in the local S-Θ plane, attached to the
cells and assumed to be stress free at the time of synthesis. Because the stress-strain response
of elastin is relatively linear at moderate levels of strain, we assume that it behaves as a neo-
Hookean material. Hence, for uniaxial stretch of elastin fibers oriented in both the
circumferential and longitudinal directions, the strain-energy density function is given by

(7)

where  and  are elastic stretch ratios (components of  relative to Be), and αe is a material
constant. Note that  is based on the exact solution for a three-dimensional fiber, rather than
a one-dimensional fiber.

4 Numerical Methods
4.1 Cylinder Models

The governing equations for G&R of a cylindrical artery are given in the Appendix. With G
= I at t = 0, those equations and the growth and remodeling laws, Eqs. (3) and (4), were

2The bulk modulus κ used in this study is several orders of magnitude greater than the material modulus. So in the compressible model,
J* ≈ 1, and the pressure-radius curves for the cylinder models are nearly identical for the incompressible and slightly compressible cases
(results not shown).
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integrated via finite differences using a MATLAB program. Homeostatic solutions were
obtained by integrating in time until the solution reached steady state. After a solution was
found for the loaded vessel, G was held fixed while plane-stress equations were solved for the
unloaded artery to obtain residual stresses and for the cut artery to obtain opening angles.
Details of the solution procedure are provided in Taber (1998),Taber and Humphrey (2001),
and Alford et al. (2007).

Two types of end conditions are considered. For a mature artery at homeostasis (model C1),
the ends are fixed and the axial stretch ratio λs is specified. For a developing artery (model C2),
the ends are capped but free to move axially. In this case, λs is an additional unknown to be
determined using the axial equilibrium equation (A.4).

For simplicity, the homeostatic model C1 does not include elastin, while model C2 includes
elastin produced during a specified period of development. Davidson et al. (1986) found that
elastin synthesis progresses distally along the porcine aorta, peaking around birth in the arch
region, one to two weeks later in the thoracic aorta, and three weeks later in the abdominal
aorta. At time t = 0, we assume that the aorta is composed entirely of smooth muscle (φm = 1,
φe = 0). Then, consistent with the data of Davidson et al. (1986), we specify elastin production
according to the relation

(8)

where ton and toff are the times at which elastin production begins and ends, respectively. The

peak production time is , and φe max is the total volume fraction of elastin for
t ≥ toff (with φm = 1 − φe). Curves for three simulations are shown in Fig. 7A. Time is normalized
such that t = 0 is the time at which blood pressure begins to develop in the artery and t = 1 is
the time of birth.

Pressure and flow oscillate during the cardiac cycle, but on a much shorter time scale than
G&R. Hence, we assume that G&R depends on average loads. At t = 0, pressure (P) and flow
rate (Q) are both set equal to zero. During development, average pressure and flow increase
with time by

(9)

where Pmax and Qmax are the mature values of pressure and flow rate in the artery and γP and
γQ are constants (see Fig. 7A). We assume that the average blood flow can be approximated
by Poiseuille flow, giving an average endothelial shear stress

(10)

where μ is the viscosity of blood and ri is the deformed lumen radius. Because the value of
τw is small compared to the pressure, the fluid shear stress is used in the growth law, but its
effect on deformation is ignored.
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In the cylinder models, the artery wall is taken as incompressible (κ = ∞) and, unless otherwise
noted, the model parameters are

(11)

where time and the time constants are normalized relative to the time of birth.

4.2 Torus Models
The aortic arch is represented by a nearly incompressible pressurized torus (Fig. 1). The
solution for inflation of a curved tube depends on θ (Kydoniefs and Spencer, 1965;Hill,
1980). For tori with large radii (A ≫ B, a ≫ b), the solution approaches that for a straight tube,
but as the toroidal curvature tightens (A/B decreases), the circumferential stress at the inner
curvature increases while the stress at the outer curvature decreases (Fig. 3). We speculated
that this curvature effect is responsible for the higher OAs seen in the arch of the aorta,
compared to the straighter distal regions. To test this hypothesis, we developed a stress-
dependent growth model for a torus using COMSOL Multiphysics (v 3.3; Comsol, Inc.).

The computation is based on a nonlinear axisymmetric analysis relative to the toroidal axis,
with only the top half of the torus considered and symmetry conditions applied. In COMSOL,
traction boundary conditions must be transformed to follow the surface as it deforms. For an
internal pressure P, Nanson's formula gives the traction vector

(12)

where N is the unit vector normal to the undeformed surface. The outer boundary is traction
free.

The central dogma for arterial lumen maintenance is that arteries grow in response to chronic
alterations in flow to return the endothelial shear stress toward a homeostatic value (Zamir,
1977). Numerical simulations have shown, however, that the fluid shear stress in the aortic
arch is significantly nonuniform (Shahcheraghi et al., 2002; Suo et al., 2007). Nevertheless,
the shape of the pressurized lumen is actually quite circular (Moreno et al., 1998), and
numerical studies have shown that luminal maintenance is necessary for a stable and robust
model (Taber, 1998). Hence, we assume that the artery attempts to maintain a circular lumen
with a certain homeostatic radius. The reasons for this are unclear, but perhaps a circular lumen
helps prevent turbulent flow or promotes structural efficiency by reducing potential stress
concentrations in the artery wall.

The second of Eqs. (3) implies that circumferential growth is controlled, in part, by a signal
from the endothelium in response to the fluid shear stress τw. For a circular cylinder, τw has a
single value in any given cross section, and all points in the wall respond to the same signal.
As shown in Fig. 3, however, the lumen in a pressurized torus is not circular in general, and
τw varies around the circumference, even if curvature effects on flow are ignored. Hence, a
point in the wall would receive signals of different strengths from various points on the
endothelium. To handle this situation numerically, we solve the diffusion problem for the signal
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concentration c and assume that the magnitude of the growth response depends on the local
value of c, as governed by the equation

(13)

where ∇2 is the two-dimensional Laplacian operator in the deformed coordinate system of the
cross section.

The moving boundaries for the diffusion problem were handled in COMSOL using the built-
in arbitrary Lagrangian-Eulerian (ALE) method with Winslow smoothing. This technique
computes a deformed mesh at each time step by solving Laplace's equation for the mesh
displacements. The value of c at the endothelium is assumed to be proportional to the deviation
of the lumen from circularity. Hence, for convenience, the boundary condition at the inner wall
is taken as

(14)

where (x, z) is the deformed location of a point on the lumenal boundary and (xc, zc) is the

location of the center of the lumen, defined by the coordinates  (see Fig 1). The
outer boundary is assigned a flux condition ∇c = 0.

With these assumptions, Eq (3)2 is modified as

(15)

where Tc is a time constant and cˆ is the target signal concentration, i.e., the desired lumen
radius (rˆ). At G&R equilibrium, c = cˆ = rˆ at all locations in the artery. For model T2, Fig. 4
illustrates how the distribution of c evolves with time as the lumen becomes circular.

For computational convenience in computing residual stresses and opening angles, we
represented the unloaded and cut artery slices as cylindrical sections using a pseudo-plane-
strain analysis (Fig. 1). For the intact unloaded section, the horizontal diameter is a symmetric
axis; for the cut section, one boundary along this axis is released. We enforced an average
plane-stress condition by setting the average axial stress to zero, i.e.,

(16)

where A is the cross-sectional area of the excised section. In COMSOL, Eq. (16) is integrated
for each iteration, and the uniform axial stretch ratio λs is determined by solving the auxiliary
equation
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(17)

where ν is a constant. The variable λs reaches a constant value when σ ̄s = 0.

The governing equations were solved via quasi-static analysis. (For details on how growth is
included in COMSOL, see Taber (2007)). At t = 0, we set P = 0 and G = I. The pressure was
increased linearly in time to Pmax at t = 10. The smooth muscle was allowed to grow until
σmθ = σˆmθ, σms = σˆms and c = cˆ. To calculate the unloaded and cut configurations, the values
for Fg in the torus model were imported into the pseudo-plane-strain model. Opening angles
were calculated for cuts at the inner curvature and the outer curvature of the torus (see Figs. 1
and 9A,B).

Unless otherwise noted, the model parameters used in the torus models are

(18)

To evaluate the accuracy of our finite element analysis, results from model C1 with fixed ends
were compared to those from an equivalent plane-strain COMSOL model. Even though model
C1 is incompressible and the COMSOL model is slightly compressible, the models yield nearly
identical residual stresses and OAs for various specified growth distributions, lumen size, and
target stresses (results not shown).

5 Results
5.1 Effects of Axial Growth on Opening Angles

The homeostatic cylinder model C1 was used to study how axial growth influences the OA. If
axial growth is not included, the OA depends strongly on the magnitude of the axial stretch
ratio λs (Fig 5A). Notably, the peak value (about 116°) occurs at the value of λs for which
passive inflation of a tube without residual stress yields the largest circumferential wall stress
(Fig 5B). Due to nonlinearities, when the value of λs is increased from 0.5 to 2.5, the stress
peaks around λs = 1.6, where the largest OA also occurs. In contrast, if axial growth is included,
the OA is unchanged by axial stretch (Fig 5A).

In model C1, the smooth muscle modulus αm greatly affects the OA (Fig. 6A). The OA becomes
smaller as αm increases, regardless of the inclusion of axial growth. (Note: For a more direct
comparison of modulus to opening angle, we set αf = 0 in Fig 6A only. However, if αf ≠ 0, the
qualitative trend remains the same for variations in either αm or αf (results not shown)).

With no axial growth, opening angles increase monotonically with the value of the
circumferential target stress σˆmθ (Fig 6B). (Note that the homeostatic wall thickness decreases
with σˆmθ.) When axial growth is included, however, the OA reaches a peak around σˆmθ ≈ 600
kPa and then decreases for higher target stresses. A similar trend is seen when the axial target
stress σˆms is varied, with the peak OA occurring when σˆms ≈ 300 kPa (Fig 6C). Qualitatively,
these trends are the same if the muscle is considered isotropic (αf = 0) (results not shown).
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5.2 Effects of Elastin Production Time
5.2.1 Opening Angles—During development, the peak elastin production rate moves as a
proximal to distal wave along the aorta, and the total elastin production decreases with distance
from the heart (Davidson et al., 1986). Our previous model accounts for the decreased elastin
content along the aorta (Alford et al., 2007). Here, using model C2 for the developing aorta,
we focus on the effect of elastin production time.

Simulations were run for a number of cases, three of which are highlighted in Fig. 7. In cases
a, b, and c, elastin is synthesized before, during, and after the time of birth, respectively (Fig.
7A). The earlier elastin appears, the higher is the OA at G&R equilibrium (Fig.7B).

5.2.2 Axial Growth—According to model C2, elastin plays a crucial role in regulating arterial
length. If elastin is never produced, the developing artery grows without bound. In addition,
the length of the vessel (i.e., λs) reaches equilibrium soon after the peak elastin production rate
occurs (Fig. 7C). At the same time, the onset of elastin production hastens the equilibration of
the axial muscle stress σms (Fig. 7D).

5.3 Effects of Axial Curvature
5.3.1 Growth and Residual Stress—As longitudinal curvature decreases (toroidal radius
of curvature increases), the circumferential Cauchy stress3 due to inflation approaches θ-
independence, similar to that in a straight tube. As the curvature increases, however, a stress
concentration develops near the inner radius of the inner curvature of the tube (Fig. 3).
Therefore, to bring the smooth muscle cells to their target stress, there must be a similar θ-
dependent growth distribution. For model T2 (with elastin fibers and axial growth), this
behavior is illustrated for tori of three different curvatures (Fig. 8). The three components of
G are shown at G&R equilibrium, as well as the resulting circumferential residual stress in the
unloaded torus. In the tubes with tighter curvature (a/b = 2.0, 3.4), radial and circumferential
growth are distinctly higher at the inner curvature than the outer curvature. Correspondingly,
the vessel wall is thicker at the inner curvature than at the outer curvature in both the loaded
and unloaded section.

If axial growth is included without elastin, the torus undergoes unbounded growth, never
achieving the target stress. This response is consistent with the cylindrical model C2 for the
developing artery.

5.3.2 Opening Angles—Liu and Fung (1988) found that OAs in the rat aorta depend on the
location of the radial cut. Here, two cuts are considered for the torus model T1 (no elastin or
axial growth) — one at the inner curvature (inner cut) and one at the outer curvature (outer
cut) (see Fig. 1).

Because wall thickness in the unloaded section is not uniform, it is important to note how the
OA is defined. Figure 9A,B shows three different opening angles for inner and outer cuts of
model T1. The inner angle φi is the traditionally measured opening angle (Chuong and Fung,
1986). The outer angle φo and the central angle φc are defined similarly, as shown. The
homeostatic value of each of these OAs is plotted as a function of the normalized longitudinal
radius of curvature (a/b) (Fig. 9C,D). For the inner cut, the traditional OA, φi, changes little,
while the other angles increase sharply for large curvatures (small a/b) (Fig. 9C). For the outer
cut, the opposite effect is seen, as φi increases the most (Fig. 9D). Hence, how the OA is
measured is extremely important.

3Cauchy stress is computed relative to convected base vectors. Thus, circumferential stress in the torus may not correspond to the
circumferential direction in the reference configuration.
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For a vessel of uniform thickness, all of the OAs would have the same value. But because the
inner curvature is thicker than the outer curvature, the traditionally measured OA (φi) may not
accurately describe the deformation of the section following a transmural cut. For the inner
cut, the inner angle likely underestimates the subsequent unbending, while for the outer cut, it
likely overestimates the unbending. Although experimentally cut edges are not always clean,
we recommend using the central angle (φc), which is an approximate average of the three
angles.

The behavior illustrated in Fig. 9C,D seems to be quite robust. For realistic material parameters
and target stresses, the curves in Fig. 9 change very little qualitatively for both models T1 and
T2 (results not shown).

6 Discussion
It long has been known that arteries adapt to their physical environment. Macroscopically,
geometric adaptations to changes in loading are readily observed. In response to acute changes
in hemodynamic flow rate, many arteries contract or dilate to maintain a desired fluid shear
stress on their endothelia (Johnson, 1980; Holtz et al., 1984). If the altered flow persists, the
wall grows and remodels to maintain the new geometry as the smooth muscle tone returns
toward normal levels (Langille et al., 1989). In cases of sustained hypertension, arteries thicken
and stiffen, presumably to maintain homeostatic values of wall stress (Fung and Liu, 1991;
Matsumoto and Hayashi, 1996). Arteries also grow and remodel in response to forces applied
along their longitudinal axes (Jackson et al., 2002).

On the subcellular level, a number of biomolecules are expressed in response to changes in
pressure or endothelial shear stress. These include, but are not limited to, nitric oxide,
prostacyclin, endothelin-1, transforming growth factor-1, and fibroblast growth factors 1 and
2 (Humphrey, 2002). Further, arterial smooth muscle cells rapidly reorganize their focal
adhesions and stress fibers in response to loading beyond their homeostatic stress state (Na et
al., 2007). On the genetic level, Huang et al, (2001) showed that the upregulation of a number
of genes in arterial tissues correlates directly with induced hypertension.

In addition to these gross macroscopic and fine intracellular adaptations, artery growth and
remodeling can also be characterized as a response to variations in the local stress state of the
artery wall. Recently, Dajnowiec et al. (2007) demonstrated that arterial growth is influenced
by local stresses in the wall by showing that endothelial and smooth muscle cells divide
preferentially in the direction of the highest applied force. The opening angles studied in this
paper provide an indirect measure of this local adaptation.

The present study extends our previous model for arterial G&R (Alford et al., 2007) to explore
two unanswered questions (1) What is the cause of the relatively large OAs that occur in the
arch of the rat aorta? (2) How does longitudinal growth affect the response?

6.1 Opening Angles in the Aortic Arch
Opening angles vary substantially from artery to artery and from region to region within a
single artery. Along the aorta, for example, OAs can vary by as much as 200° (Liu and Fung,
1988). In rat and porcine aortas, the arch region has significantly higher OAs than the more
distal thoracic and abdominal regions (Liu and Fung, 1988; Han and Fung, 1991). Recently,
we presented a model that includes realistic transmural and axial distributions of smooth muscle
cells, elastin, and collagen (Alford et al., 2007). This model yields OAs that agree reasonably
well with experimental measurements in all regions along the length of the rat aorta, except
for the arch, where the predicted values are about 100° too low.
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In this paper, we examined two possible causes for the elevated opening angles in the arch —
longitudinal curvature and the timing of elastin synthesis during development. In our models,
both effects elevate the OA, but not to the degree seen in the experiments.

Longitudinal curvature, to one extent or another, is present in all arteries. Even arteries that are
considered relatively straight, like the carotids, are transiently curved by natural movements.
The present study focuses on arteries with large intrinsic curvature. Our application is the arch
of the aorta, but this analysis also could apply to other highly curved arteries such as those in
the Circle of Willis.

The torus models predict that the central OA changes relatively little until the longitudinal
curvature becomes very large, and then it begins to increase dramatically (a/b ≲ 2, Fig. 9C,D).
Liu and Fung (1988) found that the radius of curvature of the excised rat aorta is no smaller
than about 3 mm, with a lumen radius being about 1 mm, giving A/B = 3. When a model with
these dimensions is inflated at G&R equilibrium, the loaded ratio a/b reduces to about 2.2,
putting it near, but not quite on, the steep portion of the curve shown in Fig. 9. Hence, the actual
curvature of the aorta likely accounts for only a small portion of the elevated OAs in the arch.
On the other hand, the model correctly predicts the wall thickening at the inner curvature of
the arch, as found by Han and Fung (1991) in the porcine aorta (Fig. 8, lower left).

In model C2 for the developing aorta, earlier elastin production leads to higher OAs (Fig. 7B).
This behavior follows from the assumption that elastin does remodel after its initial synthesis.
As the artery wall thickens during development, the elastin created near the outer radius is
stretched further than that near the inner radius, thereby creating a net moment that bends the
section open after a radial cut. The earlier the elastin is synthesized, the greater the transmural
stress gradient and moment, and thus the higher is the OA. However, the increase due to this
effect is only about 15°-20°.

Hence, according to our models, the effects of neither longitudinal curvature nor the timing of
elastin production are great enough to explain completely the relatively large opening angles
found in the aortic arch. Another possibility is suggested by the recent study of Lillie and
Gosline (2007), who found that the modulus of elastin in the pig aorta increases with distance
from the heart. Our results show that decreasing smooth muscle/collagen modulus (Fig. 6A)
or elastin modulus (not shown) can lead to significant increases in OAs. A lower stiffness in
the arch, therefore, could explain the discrepancy. In the end, all of these effects may contribute
to the large OAs in the arch.

To repeat, Fig. 6A shows that the OA decreases as the wall modulus increases. Moreover, the
curve for no axial growth in Fig. 6B shows that the OA also decreases as the circumferential
target stress drops. For a given pressure and radius, simple equilibrium considerations (i.e.,
Laplace's law) indicate that lower circumferential wall stress requires a thicker wall. Both of
these effects — an increased wall modulus and a thicker wall — are associated with a higher
wall stiffness. Consequently, when the artery is cut, the amount of bending due to the release
of residual stress is less, leading to a smaller OA. This possible relation between wall stiffness
and OA warrants further study.

6.2 Axial Growth in Arteries
The most notable result from our study of axial growth is that, according to our model, the
length of a developing artery would grow without bound without the introduction of a
constituent with a very slow turnover rate. Elastin seems the likely candidate for this growth
regulator. This result agrees with experimental evidence in mice showing that disruption of
elastogenesis results in long tortuous, i.e., buckled, arteries (McLaughlin et al., 2006).
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Consistent with this idea, model C2 predicts that arteries with delayed elastin production grow
longer than arteries in which elastin is produced early in development (Fig. 7C).

Our models also indicate that, if axial growth does not occur, then the OA depends strongly
on the magnitude of the axial stretch in vivo (Fig. 5A). If axial growth occurs, however, the
stretch has no effect on OA. The reason for this is that, if axial growth is included, then the
homeostatic state of stress is independent of the length of the artery, as all stress components
are at their respective target values.

6.3 Limitations
As with any model, the underlying assumptions could affect the accuracy of the results. A key
assumption is that muscle and collagen maintain uniform target stresses under homeostatic
conditions. This assumption warrants further testing, but it is consistent with our previous
models, which have generally produced results in reasonable agreement with available
experimental data (Alford et al., 2007).

In all of the models presented here, smooth muscle and collagen are treated as a single
composite material characterized by a relatively simple strain-energy density function. We
performed some simulations that indicate that this is a reasonable assumption during the
relatively slow process of G&R (results not shown), but modeling adaptation to acute changes
in loading requires treating muscle and collagen as separate constituents (Gleason et al.,
2004; Alford et al., 2007). Further, we have assumed that the distributions of collagen, elastin
and smooth muscle cells do not vary circumferentially. Such variations would affect growth
and remodeling patterns and could account for changes in opening angles.

We have ignored the complex pressure and flow patterns that occur in the aortic arch, due to
its curvature as well as the junctions with the carotid arteries (Kilner et al., 1993). Branches
also affect the state of stress in the vessel wall (Zhao et al., 2002). Moreover, the G&R behavior
is treated phenomenologically without taking into account gene and protein expression. All of
these issues are obviously important, but outside the scope of this paper.

It is important to note that the elevated OAs in the arch are not conserved across all species.
Rat and pig show this trend, but mice and humans do not and, in fact, show relatively little
variation in OA along the entire length of the aorta (Saini et al., 1995; Guo and Kassab,
2004). A detailed study comparing the microstructure of different species could help to
elucidate the source of OA variations. It is also important to note that opening angles do not
completely characterize the residual stress state of an artery. It has been shown, for example,
that a second, circumferential cut in the wall yields additional stress relief (Vossoughi et al.,
1993; Greenwald et al., 1997). We have not addressed this issue here, but two-cut opening
angles have been examined in our previous models (Taber and Humphrey, 2001; Alford et al.,
2007). A comprehensive study of two-cut opening angles in the arch compared to straighter
sections of the aorta could be valuable in helping to determine the source of the elevated
opening angles in the arch.

In conclusion, the physiological reasons for the variations in residual stress and opening angles
that occur along the aorta are not yet completely understood. Our models show that opening
angles are affected by various factors, including curvature and wall stiffness. They also indicate
that the timing at which elastin is introduced into the artery during development has important
implications on the growth response to pressure loads. We hope that this information provides
new understanding of growth and remodeling in arteries that can be used by tissue engineers
as they design methods to construct replacement blood vessels.
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Appendix A: Field Equations for a Cylinder

Intact Artery
Models C1 and C2 are thick-walled cylinders with fixed ends and capped ends, respectively,
subjected to an internal pressure P. In the initial configuration B, a point in the wall is located
at the cylindrical coordinates (R, θ, S) (Fig 10). In the deformed configuration b, the location
of the point is (r, θ, s). At a given time, the deformation from B to b is mapped by the relations

(A.1)

where λ is the axial stretch ratio. The components of the total deformation gradient tensor F
are given by

(A.2)

The equations of radial and axial equilibrium, respectively are

(A.3)

(A.4)

where the σi are Cauchy stress components, and ri and ro are the inner and outer radii of the
deformed cylinder. The boundary conditions are σr(ri) = −P and σr(ro) = 0. For a cylinder with
capped ends, λs is an unknown. For fixed ends, λs is specified, and Eq. (A.4) is not needed.

Cut Artery
To calculate the cut configuration β, we assume that the artery remains a circular sector (Fig
10). The deformation to β relative to the loaded configuration b is defined by

(A.5)

where (p, ϑ, Σ) are the coordinates of a point in β, Λ is the axial stretch ratio, and the OA φ is
defined by φ = π − φ ̄ (Taber and Humphrey, 2001). The associated stretch ratios relative the
loaded state are given by
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(A.6)

which satisfy the incompressibility condition λρλϑλΣ = 1. The radial force, axial force and
moment equilibrium equations, respectively, are

(A.7)

where ρi and ρo are the inner and outer radii of the cut artery, respectively. The boundary
conditions are σρ(ρi) = σρ(ρo) = 0.
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Figure 1.
Schematic of torus model and opening angles. Geometry is shown at G&R equilibrium. Inner
opening angles φi are shown for radial cuts at the inner curvature (IC) and outer curvature (OC)
of the torus (see also Fig. 9A,B). Note: In this paper, the inner curvature always is located on
the left side of the cross section.
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Figure 2.
Configurations for growth and remodeling. Capital Bs represent stress-free configurations;
lower case bs are configurations with stresses. For smooth muscle, the total deformation
gradient tensor F is decomposed into a growth tensor G and an elastic deformation gradient
tensor . Elastin produced at time τ undergoes the elastic deformation . See text for further
details.
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Figure 3.
Circumferential Cauchy stress distributions in pressurized torus. (G&R is not included.) As
the curvature increases (A/B decreases), a stress concentration develops near the inner wall at
the inner curvature. IC = inner curvature; OC = outer curvature.
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Figure 4.
Diffusion of endothelial signal in torus model. Normalized signal c/cˆ is shown for four time
points during development. As the model reaches G&R equilibrium, c uniformly approaches
the target value cˆ (t = 75).
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Figure 5.
Effects of axial stretch in cylinder model C1. (A) Homeostatic opening angle plotted as a
function of axial stretch ratio λs, with and without axial growth. (B) Transmural circumferential
stress distributions in pressurized cylinder (P = 16 kPa) for various axial stretch ratios. The
peak stress occurs at the same stretch ratio (λs ≈ 1.3 in this example) as the peak opening angle
for no axial growth.
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Figure 6.
Effects of smooth muscle modulus (αm) and target stresses (σˆmθ and σˆms) on opening angle
in cylinder model C1. Parameters are varied one at a time from the values αm = 10 kPa, σˆmθ
= 300 kPa, and σˆms = 300 kPa. (A) Effects of αm with and without axial growth. (B) Effects
of circumferential target stress with and without axial growth. (C) Effects of axial target stress
with axial growth.
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Figure 7.
Effects of elastin production time on opening angles in cylinder model C2. (A) Pressure P,
flow rate Q, and three example elastin production-rate curves (a, b, c) are plotted as functions
of time during development. Time is normalized by the time of birth. (B) Opening angle plotted
as a function of peak elastin production time. (C) Axial stretch ratio plotted as a function of
time for cases a, b, and c. (D) Axial stress of smooth muscle at inner radius of artery plotted
as a function of time for cases a, b, and c. Circles in B–D indicate the peak elastin production
time for cases a, b, and c.
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Figure 8.
Growth and residual stress in torus model T2 at G&R equilibrium. Growth in the radial (λgr),
circumferential (λgθ), and axial (λgs) directions (loaded artery) and circumferential residual
stress (σθ, unloaded artery) are shown for three values of the normalized radius of curvature
a/b. For each case, b = 1.5 mm at G&R equilibrium. Note: In the reference configuration, the
corresponding values are A/B = 2.3, 4.0, and 13.3. Inset: Section of unloaded porcine aortic
arch; reprinted from Han and Fung (1991) with permission of ASME.
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Figure 9.
Effect of longitudinal curvature on homeostatic opening angles in torus model T1. Due to
inhomogeneous wall thickness, opening angles measured at the inside φi), center (φc), and
outside (φo) of the wall are different. (A,B) Examples of opening angles for cuts at inner and
outer curvature of vessel. Cut sections are given by the model. (C,D) Opening angles are plotted
as functions of the normalized longitudinal radius of curvature a/b with b = 1.5 mm.

Alford and Taber Page 26

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Configurations for cylinder model. Growth, remodeling, and applied loads deform the cylinder
from initial configuration B to deformed configuration b. When a transmural cut is made in the
unloaded artery, the section springs open, yielding the cut configuration β.
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