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Abstract
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range
of sensory information by modulating the tonic release of the neurotransmitter glutamate in response
to graded changes in membrane potential. The output synapses of these neurons are marked by
structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active
zone, where glutamate release occurs in response to calcium influx through L-type channels. Ribbons
are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix
proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also
are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular
composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma-
membrane calcium pumps, together with endomembrane pumps and channels, play important roles
in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several
molecular and cellular specializations work in concert to support the sustained exocytosis of
glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance,
abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several
forms of auditory neuropathy and retinopathy.
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Introduction
The synapses of vertebrate sensory receptor cells transmit a broad range of information with
high fidelity over a prolonged period of time. For example, human photoreceptors can release
neurotransmitter tonically for hours and can signal changes in light intensity over a dynamic
range of 1010 [1]. Retinal bipolar cells, which receive inputs from photoreceptors, also
propagate signals via graded, sustained changes in neurotransmitter release to their
postsynaptic partners—amacrine cells and retinal ganglion cells—in the inner retina. In
poikilotherms, pinealocytes resemble retinal photoreceptors and can also relay photic
information to targets such as pineal ganglion cells (reviewed in [2]). Like photoreceptors, hair
cells of the auditory, vestibular, lateral line, and electroreceptor organs are exquisitely sensitive
and continually transmit graded changes in membrane potential [3].

The synaptic terminals of all of these sensory neurons share a specialized organelle, the synaptic
ribbon (Fig. 1). Also termed synaptic bodies or dense bodies, ribbons are proteinaceous
organelles that tether large numbers of synaptic vesicles near the active zone, where
neurotransmitter release occurs. The importance of the ribbon in synaptic transmission was
revealed with the discovery of visual [7,8] and auditory [9] deficits in mutants that lack
anchored ribbons. Over the past two decades, substantial progress has been made in the
characterization of the proteomes of ribbon presynaptic terminals, and investigations of mouse
and zebrafish mutants that affect ribbons have provided new insights into their functions. In
this review, we describe the molecular and cellular biology of adult ribbon presynaptic
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terminals, with an emphasis on the synaptic vesicle cycle and calcium homeostasis in retinal
and hair-cell ribbon terminals.

Molecular composition of the synaptic ribbon
Synaptic ribbons were originally identified in electron micrographs as electron-dense,
osmiophilic structures surrounded by vesicles in the presynaptic terminals of photoreceptors
and hair cells ([10-13]; see Fig. 2). These heterogeneous organelles vary in shape, size, and
number of tethered vesicles depending on activity. Enzymatic digestion of ribbons suggested
they are proteinaceous [16], but the molecular characterization of the synaptic ribbon did not
progress further until the production of the B16 monoclonal antibody, which immunolabels
retinal, pineal [17], and hair cell ribbons [18] and binds to proteins of a variety of different
sizes in Western blots of retinal homogenates [17]. However, although at least one peptide
epitope recognized by B16 has been characterized [19], it is not clear which of the multiple
antigens identified in Western blots might be the component of the synaptic ribbon labeled by
B16 in immunocytochemistry experiments.

The logjam in molecular characterization of the ribbon was broken by Schmitz and colleagues
[20], who used partial purification of retinal ribbons to identify RIBEYE as a specific and major
component of the ribbon. RIBEYE contains a serine- and proline-rich amino-terminal A
domain and a carboxyl-terminal B domain that is identical to all but the amino-terminal 20
residues of CtBP2, a transcriptional repressor related to D-isomer-specific 2-hydroxyacid
dehydrogenases. Consistent with the notion that synaptic ribbons are vertebrate specializations,
no RIBEYE orthologs exist in the Drosophila and C. elegans genomes. However, vesicles are
associated with ribbon-like structures called T-bars at active zones of many synapses in
Drosophila (reviewed in [21]), suggesting that invertebrates possess alternative molecular
mechanisms to achieve the synaptic function of ribbons. The molecular composition of T-bar
ribbons is not yet known. Besides retinal ribbon synapses, RIBEYE appears to be expressed
only in vertebrate pinealocytes [20] and hair cells [22]. Immunoelectron micrographs reveal
that RIBEYE localizes to the ribbon [23]. It has been estimated that RIBEYE (possibly in
association with CtBP1; see below) constitutes 64-69% of the total volume of a goldfish bipolar
cell ribbon [24].

Although a RIBEYE knockout has not yet been reported, zebrafish with decreased levels of a
RIBEYE ortholog have an impaired optokinetic response and retinal ribbon abnormalities
[25]. It is unclear whether the aberrant ribbons in these morphants result from specific defects
in ribbon formation or from secondary effects of abnormal bipolar cell development and
increased apoptosis. RIBEYE can polymerize via interactions between its A and B domains to
form vesicle-associated structures reminiscent of spherical synaptic ribbons. NAD(H) may
promote the assembly of synaptic ribbons by favoring homotypic, and inhibiting heterotypic,
interactions between these domains. Additional proteins may be necessary to generate plate-
like ribbons from the spheres [26].

Although RIBEYE is still the only known protein specific for the synaptic ribbon, the molecular
composition of the ribbon is beginning to be elucidated. CtBP1/BARS, a CtBP2 homolog,
clusters at photoreceptor [23] and pinealocyte [27] ribbons. Because CtBP1 and CtBP2 form
heterodimers in transcriptional complexes, CtBP1/BARS may be recruited to ribbons by
interacting with the B domain of RIBEYE, which is nearly identical to CtBP2. Unlike RIBEYE,
CtBP1/BARS is also found at conventional synapses [23]. Besides its role as a transcriptional
co-repressor, CtBP1/BARS has been implicated in intracellular membrane trafficking,
membrane fission, and regulation of the microtubule cytoskeleton (reviewed in [28]).
Ultrastructural evidence suggests that endocytosis occurs lateral to the active zone at ribbon
synapses [29], so it is difficult to envision how CtBP1/BARS associated with the ribbon could

Zanazzi and Matthews Page 2

Mol Neurobiol. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be involved in the endocytotic limb, unless it shuttles on and off the ribbon. By affecting
membrane curvature, it is possible that CtBP1/BARS could influence exocytosis at the ribbon.

Over the past decade, additional proteins have been localized to the synaptic ribbon. For
example, photoreceptor [30] and pinealocyte [27] ribbons express the kinesin isoform KIF3A,
which associates with KAP3 and either KIF3B or KIF3C to form the kinesin II holoenzyme
[31-33] that mediates anterograde transport along microtubules [33]. Conditional inactivation
of KIF3A in photoreceptors results in the ectopic accumulation of opsin and membrane in the
inner segment, followed by apoptosis [34,35]. The synaptic terminals of photoreceptors from
these mutant mice were not examined, so the function of KIF3A at ribbons is unknown. One
possible function could be to transport synaptic vesicles down the ribbon to the active zone,
like a conveyor belt [16]. However, the other components of the kinesin II holoenzyme do not
appear to be expressed in photoreceptor terminals [30]. Electrostatic interactions prevent
efficient KIF3A homodimerization [36], and it is unclear if monomeric KIF3A could support
movement. Other kinesin monomers can travel along microtubules, however [37,38]. Because
microtubules are not found at ribbons [39], KIF3A would need to walk down the ribbon by
interacting with some other component of the ribbon.

Cytomatrix proteins assemble at the synaptic ribbon and its surrounding
environment

At least five families of cytomatrix proteins make up the filamentous strand network that may
organize synaptic vesicle trafficking at the active zone of conventional terminals. These
families include liprins, RIMs, Munc13s, CASTs/ERCs/ELKS, Piccolo and Bassoon. These
multidomain proteins interact extensively with each other and have diverse activities that only
recently have begun to be elucidated (reviewed in [40,41]). Except for the liprins, members of
each cytomatrix protein family have been found to be concentrated at the synaptic ribbon (Fig.
3). RIM1 was the first protein to be identified at synaptic ribbons [42]. Despite this, its role at
ribbons is unknown. At conventional synapses, RIM1 interacts with Munc13-1 via an amino-
terminal zinc finger to prime synaptic vesicles for fusion [43]. This interaction and function
may be conserved since Munc13-1 is present at ribbon synapses [23], and it has been suggested
that priming of vesicles associated with the ribbon may occur [44]. ELKS/CAST2/ERC1 and
Piccolo may be a part of this complex since they are found on ribbons [23,45] and can interact
with RIMs [46,47].

Filamentous strands have long been known to connect the base of synaptic ribbons to an
aggregate (called the arciform density by [48]) or aggregates [49] of electron-dense material
closely apposed to the plasma membrane. Bassoon, an enormous cytomatrix protein of 420
kD, is found around the base of ribbons [50] and may correspond to the anchoring filaments.
Consistent with this localization and function, anchored ribbons are absent from photoreceptors
[7] and hair cells [9] in mutant mice that lack the central core of Bassoon. Electroretinograms
(ERGs) revealed impaired transmission between photoreceptors and bipolar cells in these mice,
which also displayed an auditory neuropathy caused by a deficit in fast, synchronous
neurotransmitter release from cochlear inner hair cells. However, sustained neurotransmitter
release was unaffected in the absence of attached ribbons in cochlear hair cells. The basis for
maintained release at these synapses is unclear, but the result has called into question the notion
that ribbons are important for sustained release.

The central core in Bassoon can bind to RIBEYE and CtBP1 [23]. While the molecular links
at the arciform density and active zone are unknown, an attractive candidate is CAST1/ERC2,
because it directly interacts with Bassoon [51] and is found beneath retinal ribbons [23].
Additional studies are needed to identify the molecular composition of the arciform density
and to determine the roles of the other cytomatrix proteins at ribbon terminals.
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Calcium influx through L-type channels, clustered below the ribbon, drives
rapid and sustained neurotransmitter release

Directly aligned with the arciform density are 60-400 polyhedral, intramembranous particles
[52,53] thought to be calcium channels ([54]; see Fig. 4). Influx of calcium occurs through
voltage-gated channels at hotspots, presumably corresponding to the calcium channel clusters,
that co-localize with ribbons [22,55]. Blocking this calcium current with dihydropyridines in
bipolar cells [56], photoreceptors [57], and hair cells [58] decreases neurotransmitter release.
Sensitivity to dihydropyridines classifies the calcium current as L-type. This current also
exhibits rapid activation at relatively hyperpolarized membrane potentials, rapid deactivation,
and very slow inactivation [59-61]. L-type calcium channels cluster at ribbon-type active zones
[62-64] in close proximity to synaptic vesicles, allowing for rapid stimulus-secretion coupling
[61,65].

Photoreceptors release neurotransmitter continuously at rates between 1-100 vesicles/second/
active zone (reviewed in [66]). Calcium channels that inactivate slowly are a prerequisite to
sustain such release. The Cav1.4 (α1F) pore-forming subunit exhibits particularly slow
inactivation and is mutated in patients with incomplete congenital stationary night blindness
(CSNB2) [67,68]. These patients have reduced visual acuity, especially at night, due to
abnormal rod and cone function. Morgans [62] localized Cav1.4 to active zones in rod synaptic
terminals, and Cav1.4 mouse mutants have reduced b-waves in ERGs [69], consistent with a
role for Cav1.4 channels in synaptic transmission between photoreceptors and second-order
retinal neurons. 90% of depolarization-induced calcium influx into photoreceptor terminals is
lost in Cav1.4 knockouts, confirming the essential role of this subunit in photoreceptors. The
Cav1.4 α subunit appears to assemble with the β2 [70] and α2-δ [71] auxiliary subunits, since
mutations in these subunits lead to similar retinopathies. These auxiliary subunits help to shape
the electrophysiological properties of the L-type channel in photoreceptors (reviewed in [66]).

Although photoreceptors and inner hair cells tonically release neurotransmitter, these two cell
types utilize different calcium channels to release neurotransmitter and control electrical
tuning. Cav1.3 (α1D), which also forms L-type calcium channels, is robustly expressed in
cochlear hair cells [72]. Knockouts display profound deafness as revealed by lack of motor
responses to auditory stimuli and an increased threshold for auditory brainstem responses
[73,74]. Loss of Cav1.3 abolishes 97% of the calcium current in outer hair cells [75] and 90%
in inner hair cells [73], leading to dramatically decreased exocytosis [76]. Vestibular function
appears to be normal in the mouse mutant [73,74], but zebrafish mutants lacking a Cav1.3
ortholog have both auditory and vestibular dysfunction [77]. The Cav1.3 mouse mutant also
has a normal ERG [78], despite reports of Cav1.3 expression in rods [79], cones [80], and
bipolar cells [81].

While Cav1.3 and Cav1.4 constitute the major calcium channels in hair cells and
photoreceptors, respectively, their biophysical properties differ somewhat from the native
channels at ribbon synapses. Like Cav1.4, Cav1.3 displays little inactivation at ribbon
presynaptic terminals [82]. However, Cav1.3 becomes inactivated very quickly by calcium
when expressed in heterologous cells [83], suggesting the existence of an inhibitor of calcium-
dependent inactivation (CDI) in hair cells. Possible candidates are members of the CaBP
family, calmodulin-like calcium-binding proteins that modulate voltage-gated calcium
channels. Indeed, CaBP1 and CaBP4 block CDI of Cav1.3 in heterologous cells [84,85]. Since
CaBP4 knockout mice are not deaf and display normal calcium influx and exocytosis, CaBP1
may be the dominant regulator of Cav1.3 in inner hair cells [85]. CaBP4 shifts the activation
curve of Cav1.4 in the negative direction by 10-15 mV, increasing calcium influx five-fold at
the photoreceptor resting potential of -40 mV [86]. Underscoring its importance in
photoreceptor synaptic transmission, mutations in CaBP4 lead to CSNB2 [87]. CaBP4
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knockout mice phenocopy the genetic deletion of Cav1.4 or its associated subunits [86]. Taken
together, these results suggest that specific L-type calcium channels and their modulators are
essential for calcium influx and subsequent synaptic vesicle exocytosis at ribbon synapses.

Mechanisms of exocytosis at ribbon presynaptic terminals
Ultrastructural evidence suggests that vesicles fuse at active zones lateral to presumptive
calcium channels at synapses where ribbons nestle within an evagination of the plasma
membrane ([29]; see Fig. 4). Imaging of vesicles labeled with FM dye recently confirmed that
ribbon-associated vesicles undergo exocytosis [88]. It is believed that the vesicles docked at
the plasma membrane constitute the readily releasable pool that exocytoses first, depleting with
a time constant of 0.5 milliseconds in goldfish MB1 bipolar cells [89]. Capacitance
measurements have also identified a slower kinetic component of exocytosis that corresponds,
in goldfish MB1 bipolars, to the total number of vesicles attached to ribbons [90]. The
morphological correlate for this slower releasable pool is currently unclear at other ribbon
synapses and may reflect the exocytosis of vesicles on the ribbon combined with those at
ectopic sites (reviewed in [91]).

The precise cellular and molecular mechanisms underlying ribbon-associated exocytosis are
not yet known. As described earlier, the ribbon has been suggested to function like a conveyor
belt, moving vesicles toward the active zone in response to depolarization [16]. In potential
support of this model, the motor protein KIF3A has been localized to ribbons [30]. However,
several pieces of evidence suggest that ribbons act more like a safety belt than a conveyor belt
(reviewed in [92]). In particular, the entire releasable pool at the synaptic ribbon can be
discharged within 1-2 milliseconds [93,94], which is much faster than the rates that could be
achieved with a molecular motor [95]. Furthermore, the addition of ATP-γS to retinal bipolar
cell terminals does not affect the initial bout of exocytosis [44], although it does abolish pool
refilling. The safety belt model postulates that vesicles are held in close proximity at the ribbon
and may undergo compound fusion on this scaffold. Indeed, recent studies have revealed that
vesicles are immobilized at bipolar cell ribbons [88], where they may undergo compound fusion
in response to a strong stimulus [96]. Compound fusion may be one mechanism through which
the ribbon coordinates multivesicular release, which has been reported at hair cell [97] and
bipolar cell [98] terminals. Another mechanism for multivesicular release may be the
exocytosis of large endosomes, but this occurs with a substantial delay after stimulation [99].

Membrane fusion events are driven by the formation of trans-complexes of SNARE proteins.
One membrane contains an R-SNARE/v-SNARE protein such as synaptobrevin/VAMP that
provides an alpha helix to the trans-complex. The other membrane contains two Q-SNARE/t-
SNARE proteins such as syntaxin and SNAP-25 that contribute a total of three alpha helices
to the complex. Specific isoforms of the three core members of the SNARE complex are
differentially distributed in ribbon presynaptic terminals (Table 1). For example, syntaxin 1 is
present in hair cells [144] and pinealocytes [142,143,162], but absent from retinal ribbon
synapses [100,106,111,138,174]. Instead, photoreceptor and bipolar cell terminals express the
b isoform [188] of syntaxin 3 [100,102,138,174]. It remains to be determined how syntaxin 3b
and other specific SNARE protein isoforms contribute to homotypic and heterotypic vesicle
fusion events at ribbon terminals.

At conventional terminals, trans-SNARE complexes appear to be stabilized in a fusion-ready
state by complexin 1 or 2 before calcium enters the presynaptic terminal and binds to
synaptotagmin 1. This calcium sensor then interacts simultaneously with phospholipid
membranes and the assembled SNARE complex to promote fusion (reviewed in [189]). At
ribbon synapses, however, the regulation of the calcium-triggering step is poorly understood.
Complexins 1 and 2 are replaced by complexins 3 and 4 at ribbon terminals [106,107], where
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their functions remain unknown. In addition, the identity of the calcium sensor at these synapses
is unclear. Several pieces of evidence suggest that many ribbon terminals utilize a sensor other
than a vesicular synaptotagmin (i.e., synaptotagmin 1 or 2). First, 1-2 μM calcium induces
tonic exocytosis at photoreceptor [190] and bipolar cell [191] terminals. This calcium
concentration is much lower than that needed for binding of synaptotagmin 1 or 2 to syntaxin
(half maximal binding at 200 μM). Indeed, synaptotagmin 3 binds syntaxin with much higher
affinity (half maximal binding at 1 μM, [192]). Secondly, the sensor for phasic release from
MB1 goldfish bipolar cells does not display the calcium-binding affinity of a classical vesicular
synaptotagmin (reviewed in [165]). Consistent with this finding, these bipolar cells express
synaptotagmin 3 and lack synaptotagmin 1/2 [173]. Third, rat and guinea pig cochlear hair
cells lack synaptotagmins 1, 2, 3, and 5. Rather, they express several nonvesicular
synaptotagmins—4, 6, 7, 8, and 9—with high calcium affinity [144]. The physiological
importance of these synaptotagmins in hair cell synaptic vesicle fusion is not yet known.

Another candidate for the hair cell calcium sensor is otoferlin, encoded by a large gene that is
alternatively spliced and translated from several initiation sites [193]. The longest protein
contains 6 C2 domains (designated C2A-C2F) homologous to the calcium-binding C2 domains
in synaptotagmins and the ferlin family of fusion and membrane repair proteins. Otoferlin’s
C2 domains bind to SNARE proteins [129] and Cav1.3 [194] in a calcium-dependent manner.
Consistent with these interactions and with its robust expression in cochlear hair cells, deletion
of exons 14 and 15 (which encode most of the C2C domain) produces transgenic mice with
diminished calcium-evoked exocytosis in inner hair cells [129]. These otoferlin-null mice, as
well as recently described missense mutants in the C2B [195] and C2F domains [196], lack an
auditory brainstem response but maintain normal otoacoustic emissions and vestibular
responses. Human patients with mutations in otoferlin share these features of auditory
neuropathy, and otoferlin defects are a major cause of nonsyndromic hearing loss in humans
[197]. Since otoferlin partially colocalizes with early endosome antigen 1 (EEA1) and GM130,
a Golgi protein, in the hair cell cytosol [130], the auditory neuropathy may be due to multiple
effects on vesicular trafficking in hair cells.

Mechanisms of endocytosis and vesicle replenishment at ribbon presynaptic
terminals

Endocytotic structures appear at the plasma membrane predominantly lateral to active zones
(Fig. 4) in photoreceptors [29], bipolar cells [53], pinealocytes [198], hair cells [199], and
electroreceptors [14]. Anastomosing tubules [200] and coated vesicles [201] take up
extracellular tracers, especially after depolarization [202]. As with exocytosis, capacitance
measurements have revealed two distinct kinetic components of endocytosis (reviewed in
[203,204]). With a brief stimulus, the fast phase appears with a time constant of 300
milliseconds in mouse cochlear hair cells [205] and 1-2 seconds in goldfish MB1 bipolar cells
[206]. With prolonged stimulation of these cells, a slower component appears with a time
constant of 15-30 seconds. The fast and slow phases of endocytosis are differentially regulated,
suggesting that distinct molecular and cellular mechanisms produce them. For example, high
calcium selectively triggers the fast phase in mouse inner hair cells [207], and hydrostatic
pressure differentially inhibits the slow phase in bipolar cells [208].

Despite intense interest over the past 15 years, the cellular and molecular mechanisms that
contribute to the fast and slow components of endocytosis are poorly understood. One possible
mechanism for the fast component is kiss-and-run, where vesicles interact transiently with the
plasma membrane to make a fusion pore. However, kiss-and-run was not observed in bipolar
cells utilizing total internal reflection fluorescence microscopy [209] or interference reflection
microscopy [210]. Another possible mechanism for the fast mode is bulk endocytosis, whereby
large, uncoated invaginations pinch off from the plasma membrane in response to a strong
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stimulus. At conventional terminals, these bulk endosomes form 1-2 seconds after stimulation
[211]. Anastomosing tubules and large endosomes have long been appreciated as important
endocytotic structures at hair cell [199,212] and goldfish bipolar cell [213,214] terminals, but
it remains to be determined whether they appear rapidly after stimulation. Bulk endocytosis
may have an early or intermediate role in vesicle retrieval at ribbon terminals since synaptic
vesicles bud from internalized endosomes to re-enter the releasable pool [212,214].

A third possible mechanism for vesicle retrieval at ribbon terminals is clathrin-mediated
endocytosis (CME), which begins with the recruitment of adaptor proteins such as AP2, AP180,
and amphiphysins to the plasma membrane (reviewed in [215]). Clathrin triskelia form a coated
pit around a progressively invaginating vesicle that is ultimately severed from the plasma
membrane via the GTPase activity of dynamin. Uncoating of the synaptic vesicle occurs
through the enzymatic activities of synaptojanin, among other proteins. Consistent with a role
for CME in vesicle retrieval, many components of the pathway have been found at retinal
ribbon terminals (Table 1). For example, Sherry and Heidelberger [103] localized clathrin,
amphiphysin, and dynamin to photoreceptors and bipolar cells, although dynamin was only
highly expressed in mouse rod bipolar cell terminals. Retina-specific isoforms of unknown
function have been identified for amphiphysin I [102,216] and dynamin 1 [217]. Among other
major players in endocytosis, AP180 [104] and synaptojanin [8] are enriched at retinal ribbon
terminals. In striking confirmation of its importance in the vesicle cycle, zebrafish with a
truncation mutation in synaptojanin1 lack an optokinetic response and have abnormal ERGs
[8,218,219]. Cone, but not bipolar cell, terminals from these mutants harbor several defects,
including 50% fewer synaptic vesicles, 57% fewer anchored ribbons, and a 10-fold increase
in endosomal area. These results suggest that synaptojanin and possibly other clathrin pathway
components regulate endocytosis at some retinal ribbon terminals.

Is the clathrin pathway responsible for the slow or fast mode of endocytosis? Perturbation of
CME with polypeptides directed against either clathrin, AP2, amphiphysin I or II, or dynamin
reduced the slow, but not the fast, component of endocytosis at goldfish bipolar cell terminals
[220]. Inhibition of GTP hydrolysis also perturbed the slow component. Other studies,
however, present evidence suggesting that clathrin [214] and GTP hydrolysis [44,221] do not
contribute to endocytosis at these terminals. Rather, the latter studies revealed a requirement
for ATP hydrolysis in compensatory endocytosis. These discrepancies highlight the need for
additional studies to determine the morphological and molecular bases of the slow and fast
components of endocytosis at ribbon terminals.

Ribbon-associated vesicles can contain extracellular tracers such as horseradish peroxidase
[201], suggesting that these vesicles are in the endocytotic pathway. Replenishment of ribbons
can be extraordinarily fast in cone photoreceptors [222], thereby supporting tonic exocytosis
for prolonged periods of time. How do synaptic vesicles traffic to the ribbon? At present, the
molecular and cellular mechanisms are poorly understood. The large cytoplasmic pool of
vesicles found in most ribbon terminals is more mobile than at conventional synapses [88,
222], possibly due to the absence of synapsins [148,223]. Vesicles may move rapidly with the
assistance of one or more unconventional myosins, although direct evidence for this
mechanism is still lacking. However, photoreceptors in mice with a mutation in myosin Va
have partially denuded ribbons with ectopic clusters of synaptic vesicles in the terminals
[224]. Abnormal ERG b-waves are present in these mice, as well as in mice with mutations in
myosin VI [225] and myosin VIIa [226]. Patients with mutations in myosin VIIa suffer from
Usher syndrome type IB, characterized by congenital deafness and vestibular defects in
addition to retinal degeneration (reviewed in [227]). Since myosin VIIa is present in several
domains in receptor cells besides the presynaptic terminal, it is currently unclear to what extent
synaptic vesicle trafficking contributes to the disorder (see, for example, [228]).
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VGLUT1 and VGLUT3 fill synaptic vesicles with glutamate at ribbon terminals
Glutamatergic vesicles become available for reuse following refilling by VGLUTs, a family
composed of three structurally related vesicular neurotransmitter transporters with a largely
complementary distribution pattern [229]. In the retina, VGLUT1 localizes exclusively to the
ribbon terminals of photoreceptors and bipolar cells, while VGLUT2 is found in ganglion cells
and 10% of cone pedicles (Table 1). The importance of VGLUT1 in visual transduction is
underscored by the absence of visual evoked potentials in the visual cortex of VGLUT1
knockout mice [230]. Synaptic transmission throughout the outer plexiform layer is impaired
given the absence of an ERG b-wave under either scotopic or photopic conditions.
Interestingly, VGLUT1 is expressed in most (if not all) pinealocyte synaptic-like microvesicles
and co-localizes with VGLUT2 in a subset of them [166,231]. An alternatively spliced
VGLUT1 isoform, with a 25 amino acid insert of unknown function in the first intravesicular
loop, constitutes 70% and 25% of VGLUT1 mRNA in the adult retina and pineal, respectively
[232]. Retinal and pineal ribbon terminals may therefore share common mechanisms for
loading glutamate into their vesicles.

While VGLUT1 and VGLUT2 are expressed at terminals that release glutamate, VGLUT3 is
primarily expressed by interneurons that release other neurotransmitters [233]. Consistent with
this hypothesis, retinal expression of VGLUT3 is confined to a subpopulation of glycinergic
amacrine cells [151,181,182]. Until recently, it was not known if strictly glutamatergic neurons
could express VGLUT3. Several reports published last year revealed that hair cells, in fact,
utilize VGLUT3 as their primary vesicular transporter. Zebrafish [234], humans [172], and
mice [132,172] with VGLUT3 mutations exhibit profound deafness. Intact cochlear sound
amplification suggests normal outer hair cell function [132]. The primary defect occurs at the
afferent presynaptic terminals of inner hair cells, as whole cell recordings from auditory nerve
fiber terminals reveal postsynaptic responses with kainate but not after depolarization with
high levels of potassium. Capacitance measurements do not reveal a defect in the kinetics or
amount of vesicle fusion [172], although the vesicle pool near the ribbon is smaller in the
zebrafish mutants [234] but not the mouse mutants [132]. Interestingly, the zebrafish, but not
mouse, mutants also exhibit balance defects. Taken together, these results suggest that
VGLUT3 is essential for loading glutamate into synaptic vesicles in some populations of hair
cells.

Calcium buffering, sequestration, and release from internal stores
The precise regulation of the synaptic vesicle cycle relies heavily on the intra-terminal calcium
landscape, with peaks and valleys shaped by multiple buffers and stores (Fig. 5). Pioneering
work by Roberts [235,236] revealed that mobile buffers bind calcium within a few
microseconds of entry into frog saccular hair cells, thereby limiting spatiotemporal spread of
the exocytotic signal. Several calcium-binding proteins have been proposed to serve as mobile
buffers in hair cells, including calbindin [236], calretinin [237], and parvalbumin 3 [238]. At
retinal ribbon synapses, the function of these calcium-binding proteins is unclear, especially
given the morphologically normal retina of calbindin knockout mice [239].

Endoplasmic reticulum (ER) in the terminals of photoreceptors [240], bipolar cells [241],
pinealocytes [242], and hair cells [243] sequesters calcium presumably via sarcoplasmic-
endoplasmic reticulum calcium ATPases (SERCAs; Fig. 5). These pumps comprise a family
of three genes that are alternatively spliced to produce several proteins that transport calcium
from the cytosol into the ER lumen. SERCA2 is the predominant isoform in photoreceptor and
bipolar cell terminals [244,245] and localizes very close to ribbons [246]. While several studies
have implicated one or more SERCAs in hair cells through the use of inhibitors such as
thapsigargin and cyclopiazonic acid (see, for example, [247,248]), its identity is unknown.
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The outer hair cell subsynaptic cistern, which is located within 20-30 nm of the plasma
membrane directly across from efferent terminals, has long been suspected to be a calcium
store given its resemblance to muscle sarcoplasmic reticulum (reviewed in [249]). The efferent
presynaptic terminal releases acetylcholine onto the outer hair cell, inducing calcium influx
and subsequent activation of SK channels. The outer hair cell then hyperpolarizes, thereby
inhibiting the cochlear amplifier (reviewed in [250]). Calcium-induced calcium release (CICR)
from intracellular stores regulates this efferent feedback since exogenous ryanodine or caffeine
can modulate otoacoustic emissions [251]. These two drugs primarily target the ryanodine
receptor (RyR) calcium release channels, which are homotetramers of three homologous
proteins, on the endomembrane. Lioudyno et al. [252] have proposed that RyR1 on the
subsynaptic cistern couples efferent input with CICR in order to regulate the cochlear amplifier.

Release of calcium from intracellular stores also modulates exocytosis at several ribbon
terminals. Inner hair cells, which express RyR1 and RyR2 [253,254], modify afferent nerve
fiber activity in response to exogenous ryanodine [253]. Calcium release from RyR-gated
[255,256] and inositol 1,4,5-trisphosphate receptor (IP3R)-gated [255] stores potentiates
exocytosis from vestibular hair cells during prolonged stimulation. Similarly, prolonged
stimulation of rods releases calcium from ryanodine-sensitive stores to boost and maintain
exocytosis [257-260]. Since rods tonically release neurotransmitter in the dark at a resting
membrane potential where most of their voltage-gated calcium channels are closed, CICR
ensures that exocytosis occurs under physiologic conditions [260]. The RyR that mediates
CICR in rods is unknown; however, RyR2 has been found in photoreceptor terminals [244,
258].

Ribbon presynaptic terminal calcium stores have recently been implicated in another pathway
that maintains intracellular calcium levels and exocytosis. Szikra et al. [261] identified store-
operated calcium entry (SOCE), possibly through TRPC1, as a requirement for light-adapted
rod terminals to maintain exocytosis. Since rods continue to release neurotransmitter even
under saturating white light conditions [262], calcium levels need to be maintained via a
voltage-independent mechanism such as SOCE. TRPC-mediated entry also occurs in hair cells
to maintain intracellular calcium levels [263]. Thus, CICR from the ER and store refilling
through calcium influx pathways are important in calcium homeostasis and in supporting tonic
exocytosis at several ribbon terminals.

Besides ER, mitochondria are known to sequester calcium (reviewed in [264]). Indeed,
mitochondria frequently appose the ER and may interact to regulate calcium homeostasis
(reviewed in [265]). In bipolar cells, however, calcium uptake into mitochondria was only
observed with high intracellular calcium levels [266]. This study demonstrated that the
principal role for mitochondria in these terminals is to generate large quantities of ATP. In
potential support of a minor role for mitochondria in calcium sequestration at some ribbon
terminals, studies have revealed that mitochondria cluster far from ribbons in cone [265],
bipolar cell [90], and inner hair cell (reviewed in [249]) terminals.

Plasma membrane calcium-ATPases extrude most of the calcium from ribbon
terminals

To prevent an overload of calcium in the terminal, extrusion must eventually occur into the
extracellular space. This is especially important for ribbon terminals where slowly inactivating
calcium channels allow for the accumulation of large intracellular calcium loads. To maintain
neurotransmitter release, however, calcium levels must remain high near active zones,
suggesting spatial regulation for extrusion. Two major calcium extrusion mechanisms exist:
plasma membrane calcium-ATPases (PMCA) and sodium-calcium exchangers (NCX). PMCA
appears to be the dominant mechanism for clearing calcium from most ribbon terminals
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[266-268]. Inhibition of PMCA with sodium orthovanadate in photoreceptors [268] or bipolar
cells [266] maintains high intracellular calcium levels. PMCA segregates away from ribbon-
associated active zones by localizing to the lateral walls of terminals [268] via interactions with
a protein complex that includes PSD95, Veli3, and MPP4 [246]. Indeed, genetic ablation of
MPP4 results in the loss of PMCA from the presynaptic plasma membrane and altered calcium
homeostasis [246].

In mammals, the PMCA family contains four genes that are alternatively spliced at two main
sites (termed A and C) to generate isoforms that may have specific local functions. In hair cells,
a large insert in the A site targets the PMCA isoform to the apical stereociliary bundles, while
a Leu-Ile motif in the C site provides a targeting signal to the basolateral domain [269,270].
Most PMCA1 isoforms appear to contain the Leu-Ile motif [271], so they may regulate basal
calcium levels near ribbons. PMCA2, on the other hand, is targeted primarily to the apical
stereociliary bundles [269,270]. Deafwaddler mice have mutations in PMCA2 that diminish
pump activity, leading to hearing and balance defects [272]. These mice also exhibit ERG b-
waves with decreased amplitudes and slow kinetics [273], suggesting a defect in photoreceptor
synaptic transmission. Evidence for PMCA2 involvement in the rod pathway was obtained
from recordings of light responses from Deafwaddler rod bipolar cells, which revealed a 50%
decrease in sensitivity. Since PMCA1 is expressed in rod and cone terminals [274], it will be
important to determine whether PMCA1 has non-redundant functions in the OPL. Taken
together, these results suggest that specific PMCA isoforms localize to specific niches in
sensory neurons and play a major role in clearing calcium from their presynaptic terminals.

While PMCA may be the dominant calcium extrusion mechanism at ribbon terminals, NCX
has been proposed to promote calcium extrusion from cones [265], rod bipolars [274], and
mixed rod-cone bipolars [275]. Johnson et al. [265] suggest that the low affinity/high turnover
NCX could potentially decrease calcium levels rapidly when cones are stimulated with light.
The high affinity/low turnover PMCA could maintain a low level of calcium in rods during
darkness. The utilization of these two extrusion mechanisms, along with sequestration,
buffering, and intake through L-type calcium channels in a spatiotemporally regulated manner,
maintains calcium homeostasis. This precise regulation of calcium signaling supports efficient
synaptic vesicle cycling and the extraordinary performance of ribbon presynaptic terminals.

Conclusions
In this review, we have described the organization and function of some of the molecular
constituents of ribbon presynaptic terminals. The molecular architecture of ribbon synapses
resembles that of conventional synapses despite their ultrastructural differences. So far, only
RIBEYE appears to be unique to ribbon terminals, probably because it is the major structural
component of the ribbon itself. However, particular ribbon synapses appear to utilize specific
isoforms of synaptic proteins to fit their physiological needs. In several instances, mouse and
zebrafish mutants have provided strong evidence for the involvement of specialized isoforms
in the rapid and tonic synaptic transmission found in the visual, vestibular, and auditory
systems.

Several major questions remain unanswered. First of all, the functions of RIBEYE and other
ribbon components continue to be enigmatic. Bassoon mutant mice lack the fast, but not the
slow, component of exocytosis in inner hair cells without properly anchored ribbons. The
presence of slow exocytosis in these mutants does not preclude the possibility that the ribbon
sustains neurotransmitter release under normal physiological conditions. Therefore, additional
studies are needed to clarify the roles of the ribbon in exocytosis. In addition, the molecular
components of the ribbon, vesicle-associated tethers, and arciform density should be delineated
further. What signals direct the assembly of the ribbon and its surrounding domains?
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Cytomatrix proteins may be involved, but most of their roles have not yet been defined.
Multiple modes of exocytosis and endocytosis exist at ribbon terminals, yet their molecular
and cellular mechanisms are mostly unclear. While progress has been made in defining the
composition of synaptic vesicles at ribbon terminals, the molecular signatures of the different
vesicle pools are unknown. Finally, continued investigation into the spatiotemporal regulation
of calcium buffering, sequestration, and release may shed light on these important aspects of
calcium homeostasis. The elucidation of these and other remaining questions about the
molecular architecture of ribbon synapses should provide new insights into the
pathophysiology of synaptopathies.
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Fig. 1.
Examples of ribbon presynaptic terminals. In panel A, an electron micrograph of a dark-
adapted, turtle cone presynaptic terminal is shown. Postsynaptic processes are apposed to
ribbons (rb) and basal junctions (arrowheads) in the terminal. The large population of synaptic
vesicles is a hallmark of most ribbon presynaptic terminals. Other organelles in this terminal
include microtubules (mt), agranular reticulum (ar) and vacuoles (circle). Figure modified from
(4), with permission of The Rockefeller University Press (copyright 1978). Panel B shows an
electron micrograph of the basal portion of a guinea pig outer hair cell (OHC), which makes
contact with afferent (NE1) and efferent (NE2) nerve fibers. Two synaptic ribbons (SR) are
directly apposed to the afferent nerve fiber, while subsynaptic cisterns (SSyC) are opposite the
efferent nerve fibers. A relative paucity of synaptic vesicles and abundant mitochondria also
characterize the OHC ribbon terminal. Figure modified from (5), with permission of Elsevier
(copyright 1980). In panel C, an electron micrograph shows a goldfish bipolar cell synaptic
ribbon (arrow) at high magnification. Three distinct laminae can be observed in this ribbon.
Panel D reveals an electron micrograph of an elephantfish promormyromast. These sensory
organs of the lateral line contain electroreceptors (sc) that synapse onto terminal neural boutons
(tn). Ribbons (arrows) nestle within invaginating synapses. Also present in the electroreceptor
terminal are numerous synaptic vesicles and mitochondria. Figure modified from (6), with
permission of John Wiley and Sons (copyright 2007). Scale bars, 0.5 μm (A, B and D), 0.15
μm (C).
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Fig. 2.
Structure of the synaptic ribbon. Panel A contains an electron micrograph of a skate
electroreceptor ribbon synapse. The ribbon (r), which appears electron-dense and laminar, is
located in an evagination of the presynaptic plasma membrane flanked by postsynaptic
processes. Vesicles are attached to the surface of the ribbon except at its base, which is
connected to osmiophilic aggregates on the plasma membrane (black arrows). Postsynaptic
densities are most prominent adjacent to the constrictions in the presynaptic plasma membrane
(white arrows). Coated vesicles (an example is marked by the arrowhead) are found lateral to
the ribbon and its active zones. Figure modified from (14), with permission of Chapman and
Hall (copyright 1982). Panel B shows a freeze-etched replica of a cross-fractured frog
photoreceptor synaptic ribbon and its surrounding environment. Synaptic vesicles (SV) are
tethered to the ribbon by filaments (arrows). Figure modified from (15), with permission of
Springer (copyright 1987). In panel C, a confocal micrograph of a goldfish cone presynaptic
terminal filled with a fluorescent RIBEYE-binding peptide is shown. Ultrastructural analysis
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confirmed that the two long, curvilinear structures were synaptic ribbons (data not shown).
Panel D shows several ribbons in a 3D reconstruction from optical sections through the synaptic
terminal of a goldfish bipolar cell dialyzed via a whole-cell patch pipette with the fluorescent
RIBEYE-binding peptide. The smaller size and greater number of puncta in the bipolar cell
are consistent with the characteristics of synaptic ribbons in this cell. Scale bars, 0.1 μm (A
and B), 2.5 μm (C), 5 μm (D).
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Fig. 3.
Cytomatrix proteins identified at the synaptic ribbon or the active zone in retinal ribbon
terminals. The left side of the schematic contains those proteins localized to photoreceptor
terminals, while the right side reveals their identity in bipolar cell terminals. A question mark
denotes either a discrepancy in the literature or that the protein localization has not been
determined.

Zanazzi and Matthews Page 28

Mol Neurobiol. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Events in the synaptic vesicle cycle near the ribbon. Clathrin-mediated endocytosis (A)
retrieves vesicles that can either coalesce with a presynaptic cistern (B, top arrow) or enter
either the reserve (middle arrow) or releasable (bottom arrow) pools. Single (C) or multiple
(D) ribbon-associated vesicles fuse with the plasma membrane lateral to L-type voltage-gated
calcium channels. Vesicle retrieval may also occur from large anastomosing tubules (E) or
directly via large endosomes (F).
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Fig. 5.
Calcium handling mechanisms at ribbon presynaptic terminals. Calcium influx occurs through
L-type voltage-gated calcium channels (VGCC) found below the ribbon. Mobile calcium-
binding proteins (CaBP) quickly limit the spread of calcium, which is also sequestered into
endoplasmic reticulum (ER) by sarcoplasmic ATPases (SERCAs). Activation of ryanodine
receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) induces release of calcium
from ER stores through these channels. Calcium is primarily extruded from ribbon presynaptic
terminals via plasma membrane calcium ATPases (PMCA) located on the lateral walls of the
terminal, but may also be extruded by the sodium-calcium exchanger (NCX).
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Table 1
Expression of synaptic vesicle cycle proteins in adult ribbon presynaptic terminals

Protein Photoreceptor Bipolar cell Pinealocyte Hair cell

Amphiphysin Yes [100-103] Yes [101-103] ? ?

AP180 Yes [104] ? ? ?

Clathrin Yes [100,103,105] Yes [103] ? ?

Complexin 1 No [106,107] No [106,107] ? ?

Complexin 2 No [106,107] No [106,107] ? ?

Complexin 3 Yes [107] Yes [107] ? ?

Complexin 4 Yes [107] Yes [107] ? ?

CSP Yes [108] ? Yes [109] Yes [108,110]

Dynamin Yes [103,111] Yes [103] Yes [112] ?

GLT1/EAAT2 Yes [113-120], No
[121,122]

Yes [113-118,120-122] Yes [123,124] ?

Munc13 Yes [23], No [125] No [125] Yes [27] ?

Munc18 Yes [111] ? Yes [109,112] ?

Munc119/RG4 Yes [126,127] No [126,127] ? ?

NSF ? ? Yes [128] ?

Otoferlin ? ? ? Yes [129-133]

Rab3a Yes [100,111], No
[134]

No [134] Yes [135] Yes [136]

Rabphilin Yes [100], No [100] ? ? ?

SNAP-23 Yes [100] ? ? ?

SNAP-25 Yes [100,111,
137-140], No [134,
141]

Yes [137,138], No [134,
141]

Yes [112,142,
143]

Yes [110,144]

SV2 Yes [100,140,
145-149], No [146]

Yes [140,146,148-151], No
[146]

Yes [152], No
[152]

No [153]

Synapsin 1 Yes [100], No [100,
106,137,140,141,148,
150,154,155]

No [106,137,140,150,154] No [156,157] Yes [158,159],
No [153]

Synapsin 2 No [148] No [148] ? ?

Synaptobrevin/VAMP Yes [100,139,140,
150,160,161]

Yes [140,150,160] Yes [142,143,
157,162], No
[162]

Yes [144,153]

Synaptophysin 1/2 Yes [100,111,137,
140,141,147,148,155,
163,164]

Yes [137,141,148,165] Yes [112,128,
142,143,156,162,
166,167]

Yes [136,159,
168-170], No
[110,144,171,
172]

Synaptotagmin 1/2 Yes [100,111,163,
165,173], No [163,
165,173]

Yes [163,173], No [163,165,
173]

Yes [142,143,
157,162]

No [144]

Synaptotagmin 3 ? Yes [173], No [173] ? ?

Syntaxin 1 No [100,102,106,111,
138,174]

No [106,138,174] Yes [142,143,
162]

Yes [144]

Syntaxin 2 No [174] No [174] ? ?

Syntaxin 3 Yes [100,102,138,
174]

Yes [102,138,174] ? ?

Syntaxin 4 No [174] No [174] ? ?
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Zanazzi and Matthews Page 32

Protein Photoreceptor Bipolar cell Pinealocyte Hair cell

V-ATPase ? ? Yes [128,157] ?

VGAT/VIAAT No [175,176] Yes [177], No [175,176] Yes [178] ?

VGLUT1 Yes [107,149,150,
164,179-185]

Yes [107,149-151,164,177,
179-182,184,185]

Yes [166] Yes [186], No
[132,187]

VGLUT2 Yes [182,183], No
[149,164,179,185]

No [149,164,179,182,183,
185]

Yes [166,167] No [132,186,
187]

VGLUT3 No [151,164,181,182,
185]

No [151,164,181,182,185] ? Yes [132,187]

AP assembly protein, CSP cysteine string protein, GLT glutamate transporter, EAAT excitatory amino acid transporter, Munc mammalian UNC, RG retinal
gene, NSF N-ethylmaleimide-sensitive factor, SNAP synaptosome-associated protein, SV synaptic vesicle, VAMP vesicle-associated membrane protein,
VGAT vesicular GABA transporter, VIAAT vesicular inhibitory amino acid transporter, VGLUT vesicular glutamate transporter, ? expression not yet
determined
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