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Abstract
Rational and Objectives—Volumetric high-resolution scans can be acquired of the lungs with
multi-detector CT (MDCT). Such scans have potential to facilitate useful visualization,
characterization, and quantification of the extent of diffuse lung diseases, such as Usual Interstitial
Pneumonitis or Idiopathic Pulmonary Fibrosis (UIP/IPF). There is a need to objectify, standardize
and improve the accuracy and repeatability of pulmonary disease characterization and quantification
from such scans. This paper presents a novel texture analysis approach toward classification and
quantification of various pathologies present in lungs with UIP/IPF. The approach integrates a texture
matching method with histogram feature analysis.

Materials and Methods—Patients with moderate UIP/IPF were scanned on a Lightspeed 8-
detector GE CT scanner (140kVp, 250mAs). Images were reconstructed with 1.25mm slice thickness
in a high-frequency sparing algorithm (BONE) with 50% overlap and a 512 × 512 axial matrix, (0.625
mm3 voxels). Eighteen scans were used in this study. Each dataset is pre-processed which includes
segmentation of the lungs and the broncho-vascular trees. Two types of analysis were performed,
first an analysis of independent volume of interests (VOIs) and second an analysis of whole lung
datasets.

1.) Fourteen of the eighteen scans were used to create a database of independent 15×15×15 cubic
voxel VOIs. The VOIs were selected by experts as having greater than 70% of the defined class. The
database was composed of the following: Honeycombing (# of VOIs 337), Reticular (130), Ground
glass (148), Normal (240), and Emphysema (54). This database was used to develop our algorithm.
Three progressively challenging classification experiments were designed to test our algorithm. All
three experiments were performed using a 10-fold cross validation method for error estimation.
Experiment 1 consisted of a two class discrimination: Normal and Abnormal. Experiment 2 consisted
of a four class discrimination: Normal, Reticular, Honeycombing, and Emphysema. Experiment 3
consisted of a five class discrimination: Normal, Ground glass, Reticular, Honeycombing, and
Emphysema.

2.) The remaining four scans were used to further test the algorithm on new data in the context of a
whole lung analysis. Each of the four datasets was manually segmented by three experts. These
datasets included Normal, Reticular and Honeycombing regions and did not include Ground glass
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or Emphysema. The accuracy of the classification algorithm was then compared with results from
experts.

Results—Independent VOIs: 1.) Two class discrimination problem (sensitivity, specificity):
Normal versus Abnormal (92.96%,93.78%). 2.) Four class discrimination problem: Normal (92%,
95%), Reticular (86%,87%), Honeycombing (74%,98%), and Emphysema (93%,98%). 3.) Five class
discrimination problem: Normal(92%,95%), Ground glass (75%,89%), Reticular (22%,92%),
Honeycombing (74%,91%), and Emphysema (94%,98%).

Whole lung datasets: 1.) William's Index shows that algorithm classification of lungs agrees with the
experts as well as the experts agree with themselves. 2.) Student-T test between overlap measures of
algorithm and expert (AE) and expert and expert (EE) : Normal (t=-1.20, p = 0.230), Reticular
(t=-1.44, p = 0.155), Honeycombing (t=-3.15, p = 0.003). 3.) Lung Volumes Intra-class correlation:
Dataset 1 (ICC = 0.9984, F = 0.0007); Dataset 2 (ICC = 0.9559, F = 0); Dataset 3 (ICC = 0.8623, F=
0.0015); Dataset 4 (ICC = 0.7807, F = 0.0136).

Conclusions—We have demonstrated that our novel method is computationally efficient and
produces results comparable to expert radiologic judgment. It is effective in the classification of
normal versus abnormal tissue and performs as well as the experts in distinguishing among typical
pathologies present in lungs with UIP/IPF. The continuing development of quantitative metrics will
improve quantification of disease and provide objective measures of disease progression.

Keywords
Multi-Detector CT; Lung imaging; Tissue Classification; Quantitative Lung Analysis; Texture
Analysis

1 Introduction
Usual Interstitial Pneumonitis, or Idiopathic Pulmonary Fibrosis (UIP/IPF) is a common type
of interstitial pneumonia. This chronic, and typically progressive, pulmonary disease involves
inflammation of the lung parenchyma which results in ongoing fibrotic scar formation of the
pulmonary interstitium and alveoli. The pathological changes in lung morphology result in
restrictive impairment of lung function. Restrictive diseases, such as UIP/IPF, result in
decreased lung volumes, distortion of normal anatomy and decreased parenchymal
compliance. Thus there are significant deviations from normal lung function, the overall
physiologic and mechanical effects of which can be demonstrated through pulmonary function
testing, including reduction of total lung capacity (TLC), functional residual capacity (FRC)
and lung compliance. In order to clarify the source of these functional abnormalities,
characterize the disease process responsible for the changes and visualize the extent of
pulmonary involvement in diffuse lung disease, high resolution CT (HRCT) of the lungs is
commonly used.

High-resolution imaging of the chest produces images that are less than 2mm thick in the axial
plane and that are optimized for visualization of the small anatomic structures of the secondary
pulmonary lobule. Traditionally, technical limitations of CT scanners required that HRCT
imaging protocols acquire non-contiguous thin slices (1mm) every 10-20mm. Thus, only about
ten percent of the lung is imaged with resolution sufficient to visualize small pulmonary
structures [1]. The improvements of computational and imaging technologies, including multi-
detector CT (MDCT), has made it possible to acquire isotropic three-dimensional higher
resolution data of the entire chest in a single breathhold. An advantage of these MDCT scans,
when properly acquired and reconstructed, is that volumetric high-resolution scans can be
acquired of the lungs. Such scans allow for visualization, characterization, and quantification
of the entire extent of diffuse lung diseases, such as UIP/IPF. The complex pathological patterns
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which occur in UIP/IPF combined with the subjective nature of visual diagnosis and the labor
intensive task of 300 or more slices from apex to base of the lung results in a significant inter-
and intra-observer variability amongst radiologists attempting to classify and quantify these
pathological patterns.

The objective power that computers offer to the interpretation of pulmonary fibrosis was first
realized by Sutton and Hall [2], in the analysis of chest radiographs. They proposed an
automated pattern recognition system based on textural features to distinguish normal from
abnormal lung radiographs. Subsequently throughout the 1970s other texture-based CAD
algorithms for detection of lung infiltrates from radiographs where developed [3–6]. CAD
algorithms for radiographs of lungs is an active area of research [7].

The first CAD algorithms to detect lung pathologies in CT images were developed in the 1980s
and were based on the mean value of the lung's density histogram. The characteristic
quantitative changes in density of lungs with both high and low attenuating pathologies have
been studied [8,9]. Subsequent CAD algorithms have further analyzed features of the
pulmonary histogram and positively correlated the frequency of CT values within specific
ranges of the histogram with the presence of disease types: restrictive, obstructive, destructive
or mixed involvement [10]. Additionally, the predictive power of the modes of the histogram:
mean, standard deviation, skewness, kurtosis, have been evaluated in detecting the presence
of various types of diffuse pulmonary disease such as emphysema, asthma, cystic fibrosis, and
UIP/IPF [11,12]. Specifically, the high-attenuating restrictive disease UIP/IPF has been
compared with as-bestoses, another high-attenuating disease [13]. Significant differences
between the modes of histogram of those with parenchymal disease and those without were
detected by Hartley and he suggests the possibility of using texture analysis methods which
have previously been used in chest radiographs to further distinguish between various high-
attenuating diseases [13].

The need to objectify, standardize and improve the repeatability of pulmonary disease
characterization and quantification became apparent as HRCT became the standard for imaging
diffuse lung diseases. Even though the microscopic changes in pulmonary parenchyma that
are apparent pathologically in diseases such as UIP/IPF are beyond the resolution of HRCT,
the complex architectural sequelae of the microscopic pathological changes present in the lung
are visible at the resolution of HRCT. These visual abnormalities are described in standardized
terminology which characterizes their 2-dimensional appearance, including descriptive
features such as ground glass and reticular opacities, while other near-microscopic changes are
directly apparent, such as traction bronchiecstasis and honeycombing. Both the visual
appearance and distribution of disease are utilized by radiologists for diagnosis, but traditional
histogram analysis used in CT does not discriminate between the complex pathologies visible
in HRCT images.

Thus, as Hartley suggested, texture classification methods were developed to distinguish
between various types of complex pathologies. These algorithms are reviewed in [14]. They
have been more successful than the traditional histogram analysis approach but they are
significantly more computationally expensive. A couple of these pattern recognition algorithms
have been extended to 3D analysis of MDCT scans of lungs with emphysema [15,16].

This paper presents a novel texture analysis approach toward classification and quantification
of various pathologies present in lungs with UIP/IPF. Our approach integrates a texture
matching method with histogram feature analysis. A method based on computer vision texture
matching has been previously utilized for the analysis of emphysema in 2D HRCT scans
[17]. Our unique combination of methods includes image processing techniques typically
utilized in computer vision and image database queries [18,19] along with the assessment of
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histogram features commonly utilized in computer-assisted diagnosis (CAD) algorithms for
medical imaging.

In general, our algorithm involves initial pre-processing of volumetric HRCT data of the chest,
extraction of the lungs from the thoracic region additional anatomic segmentation of the
broncho-vascular structures from the lungs, and classification of pulmonary parenchyma based
on histogram signatures of volumes of interest (VOI).

Within the extracted lung volume, a sliding box VOI approach is taken to compute the
histogram of the successive VOIs and then compute their signature. A similarity metric is used
to compare the signature for each VOI to all canonical signatures. The label of the canonical
signature most closely resembling the signature of the VOI is given to that VOI. Once the
whole lung is labeled it is passed through a mode filter to remove any spurious
misclassifications. The classified lung tissues can then be quantified and analyzed.

This paper is organized to: first explain the details of the algorithm, second to explain the details
of the experimental testing of the algorithm, third presentation of the results of the testing, and
finally a detailed discussion of the results with conclusions.

2 Materials and Methods
This section presents the pre-processing methods, including lung segmentation and broncho-
vascular segmentation, the adaptive binning algorithm, the concept of signature and canonical
signature, and the Earth Mover's Distance similarity metric.

2.1 Data Pre-processing
2.1.1 Lung Segmentation—An effective lung segmentation algorithm was developed and
published by Hu et al [20]. It involves using an adaptive density-based morphology approach
which includes thresholding, region-growing, and void filling. The lungs are extracted from
the CT dataset by determining an optimal density threshold and a hole-closing process. A
computationally efficient modification of this algorithm is implemented within the image
analysis software library AVW, developed in the Biomedical Imaging Resource at the Mayo
Clinic. The fissures for each lung are manually defined to segment the lobes. The lungs are
further divided into central and peripheral regions. The central region of each lung is defined
as being within a sphere of a 5cm radius, with the center manually placed by a radiologist on
the pulmonary hilum where it enters the lung. The periphery is defined as the remaining lung
external to the central region, extending to the lung boundary, see Figure 1.

2.1.2 Broncho-vascular Segmentation—One of the advantages of three dimensional
data is that the broncho-vascular tree can be recognized and segmented. It is not possible to
build a classifier that can successfully recognize tubular structures which may be arbitrarily
sliced in a 2D HRCT image. Xu et. al. have shown significant classification improvement of
emphysema by the 3D AMFM algorithm performed after broncho-vascular exclusion [15].
Lungs with UIP/IPF contain a lot of high-attenuating pathologies (fibrosis) compared to low-
attenuating pathologies (emphysema). Thus segmentation of the vascular tree is more
challenging than segmentation of the bronchial tree.

Segmentation of the trachea and its central bronchial branches is performed by an iterative
process of 6 or 8 neighbor region growing algorithm thresholded at different levels to optimally
extract as much of the tracheobronchial tree as possible, but prevent inclusion of erroneous
low-attenuating pathologies (such as emphysema) by limiting the number of connected
components from the seed point by a method similar to Aykac et al. [21].
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Segmentation of the pulmonary vasculature is a challenging problem still under investigation.
When trying to estimate high-attenuating pathologies like fibrosis and honeycombing it is
important to account for other high-attenuating normal structures like vessels to lower the rate
of false positive errors. Algorithms have tried to account for various common cross-sections
of vessels that may appear in a 2D HRCT [22].

All 2D algorithms suffer from high false positive errors for identification of vessels in the
presence of abnormal high-density lung tissues, such as those seen with UIP/IPF, due to the
similarity of density between blood and the fibrotic lung. Several methods have been proposed
to segment vessels in normal lungs where the vessels are the main high-attenuating tissue in
the lungs [23]. Segmentation of the pulmonary vasculature in lungs with more than mild high-
attenuating diffuse pathologies has not been addressed. Major morphological changes occur
in lungs with UIP/IPF. The increased fibrotic pathologies result in the lung volume shrinking
including significant distortion of the vessels and airways within those regions. Our histogram
signature classification method of parenchymal classification does not require segmentation
of the vessels and airway in these regions, however, it is useful for reduction of false positive
classification to extract normal broncho-vascular structures in parts of the lung where severe
architectural distortion has not occurred. Thus it was our goal to perform a semi-automatic
segmentation of the vessels roughly greater than one third of the VOI. For a 15×15×15 pixel
VOI at 0.625mm3 resolution, vessels approximately 3mm in diameter (up to the 5th generation)
or larger were segmented. This was performed by filtering the dataset with a 3D line
enhancement filter (sigma = 2) which is based on the examination of the eigenvalues of the
Hessian matrix [24]. The Hessian matrix is composed of the partial second derivatives of the
image and describes the second order structure of the intensity values surrounding each point
in the image. The filtered image was then thresholded at a value determined specifically for
the dataset by an expert, to include as much vasculature as possible with the least amount high-
attenuating pathology. Figure 2 depicts a broncho-vascular segmentation from one of the
datasets.

2.2 Adaptive Binning of the histogram
A histogram is a discrete function which bins the voxels in a volume based on their intensity
[25]. The location and width of each bin and the spacing between bins are the histogram
parameters. Standard histogram analysis in CT involves equidistant spacing between the
histogram bins. Adaptive binning enables the distance between the bins to be determined by
the image data.

Adaptive binning can be accomplished using a K-means clustering algorithm. Clustering
algorithms have the potential to more accurately describe the distribution of the histogram.
However, the integrity of the clustering depends on the particulars of the algorithm. The
standard iterative algorithm is initialized by a random selection of centroids. An iterative
operation follows in which the distance from a point to each centroid is computed. The point
is assigned to the cluster with the nearest centroid, and the cluster's centroid is updated. This
iterative process continues for each point until a stopping criteria is met. Possible stopping
criteria include reaching the maximum number of clusters or no change in cluster centroids
between iterations. Other versions of K-means clustering iteratively compute the variance of
the clusters as well. For these algorithms, varying stopping criteria are used [26]. The
advantages of K-means clustering algorithms include easy implementation and relatively fast
execution for a small sample size. The disadvantages of iterative K-means algorithms are that
they are dependent on the initialization points so they may succumb to a less than optimal
clustering by entrapment in a local minima. It is possible to compute an optimal K-means
clustering of a histogram through recursion. A fast recursive algorithm can be implemented by
using dynamic programming [27].
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Dynamic programming is an effective algorithm design technique for approaching recursive
problems [28]. Recursive problems are first initialized, and subsequent computations are
formulated so that they depend on the previous computation. Systematically storing previous
computations minimizes the current computation.

Define C[n] [k] as the minimum possible cost over all clusters of the histogram of length n into
K clusters, where the cost of each cluster partition is the minimum within-class variance. Thus
defined this function can be evaluated:

(1)

where, C[i] [k − 1] is the minimum cost of splitting the histogram bins 0 to i into k − 1 clusters;
similarly C[j] [k − 1] represents the minimum cost of splitting the histogram bins 0 to j into k
− 1 bins which is added to the cost of binning histogram bins j + 1 to i together.

2.3 Signatures and the Canonical Signatures
A histogram signature is made up of a histogram that has been clustered into K clusters, and
is defined as follows,

where μi is the centroid of the cluster and wi is the weight of the cluster (the number of voxels
in the cluster). The canonical signature for a class is computed by combining the signatures
for each of the training VOIs and re-clustering the distribution into K clusters. The creation of
a canonical signature allows for a more computationally efficient way to match signatures
instead of computing the distance between all training signatures and all test signatures. Each
cluster centroid can be thought of as a texton, which is a cluster of intensity values representing
some texture property as in [29,19]. Thus the signatures from each training image in each class
are grouped or in other words, all the textons are grouped and reclustered. Figure 4 shows the
accumulated signatures in the top plot and the canonical signature created from various
amounts of training data used in the bottom plot. Notice that an optimal clustering is achieved
irrespective of the amount of training data used. The reclustering of all of the training signatures
using the adaptive binning algorithm presented in the previous section maintains the integrity
of the signatures; specifically the centroid location, the intra-centroid distance, and the weight
of the centroids. The clustering of the accumulated centroids results in a representative
signature of K centroids. Figure 5 shows the representative canonical signatures computed in
the development and testing of our algorithm for five classes.

2.4 Similarity Metrics
The earth mover's distance (EMD), first proposed by Rubner, is a cross-bin similarity metric
which computes the minimal cost to transform one signature into another [18]. The EMD is
modeled as a “transportation” problem and can be solved using efficient linear programming
algorithms. Let P = {(μpl, wpl),…, (μpm, wpm)} be the first signature with m clusters and let
Q = {(μq1, wq1) ,…, (μqn,wqn)} be the second signature with n clusters, where (μ, w) is a cluster
and μ is the center of the bin and w is the number of voxels in the bin. Given two signatures
with disparate bins, computing the EMD can be thought of as how much work does it take to
transform signature P into signature Q. The clusters in P are thought of as the ‘supplies’ located
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at centroids μpi with the amount wpi and the clusters in Q are thought of as the ‘demands’
located at centroids μqi with the amount wqi. The EMD is the minimal amount of work required
to transform P into Q. Let D = [dij] be the L1 norm distance between μpi and μqj. Let F = [fij]
be the ‘flow’ between μpi and μqj which minimizes the amount of work. The EMD is the
minimum amount of work normalized by the total flow defined as

(2)

The EMD has been shown to match perceptual distance better than other metrics [18]. The
EMD is well suited to medical image analysis given the amount of intra-class variation which
exists as a result of varying grades of pathology, uniqueness of each patient, inflation of the
lungs, and scanner and scanning parameter differences.

The EMD is an exact metric when applied to probability distributions. It has been shown that
the EMD is equivalent to the statistically based Mallows distance for probability distributions
[30].

2.5 Experimental Evaluation
This section presents in detail the methods of how we tested our algorithm. The first section
describes the data we used. The second section describes the creation of the training VOI
database. The third section describes the creation of the testing dataset. The fourth and fifth
section present the performance metrics we used to analyze our algorithm on the training and
testing dataset respectively.

2.5.1 Data—Patients with moderate UIP/IPF were scanned for clinical purposes on a
Lightspeed 8-detector GE Medical Systems CT scanner in helical mode with 8 × 1.25 mm
detector configuration at a pitch of 1.35 utilizing 140kVp and approximately 250mAs. Images
were reconstructed with 1.25mm slice thickness in a high-frequency sparing algorithm (BONE)
with 50% overlap and a 512 × 512 axial matrix, producing approximately 0.625 mm3 isotropic
voxels. Eighteen scans were used in this study. Fourteen datasets were used to create the
training dataset upon which the canonical signatures were developed and the remaining four
datasets were used to test the algorithm on new unseen data.

2.5.2 Training Set: Independent Volumes of Interest—Analyze and AVW were used
to create a database containing independent cubic samples of various classes. Experts were
asked to outline regions containing greater than 70% of the following classes: Normal,
Honeycombing, Reticular, Ground glass, and Emphysema. The traced regions were stored as
object maps which could then be further manipulated. Object maps efficiently map and store
delineated regions. Traced regions for fourteen datasets were collected as object maps. The
object maps were fed through an AVW program which extracts cubic volumes of interest
(VOIs) of a pre-defined dimension. The VOI was defined empirically to be 15×15×15 cubic
voxels. These VOIs are efficiently stored in a database along with which dataset they came
from, their location in the lung, and their class label. Figure 6 shows the cubic VOIs selected
within the expert drawn regions. Figure 3 shows a cubic VOI for the five classes that were
labeled by the experts: Honeycombing, Reticular, Ground glass, Normal, and Emphysema.
The training set used was composed of 15×15×15 cubic voxel VOIs of the following:
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Honeycombing (# of VOIs 337), Reticular (130), Ground glass (148), Normal (240), and
Emphysema (54).

2.5.3 Testing Set: Whole lung Datasets—Experts were asked to manually segment
complete lung datasets. Three experts each manually segmented four complete datasets. The
experts labeled regions as Normal, Reticular, and Honeycombing. The four datasets manually
segmented did not contain Ground glass or Emphysema tissue classes. Object maps for each
segmentation were created. The Broncho-vascular object maps were added to the expert object
maps to create a complete segmentation. Figure 7 shows the manual segmentation of one of
the four datasets by three Experts; Expert 1: column 1, Expert 2: column 2, Expert 3: column
3.

2.5.4 Performance Measures for Analysis of Classification of Independent
Volumes of Interest—We used three performance measures to analyze the results of the
classifier. If we have N classes, then define the set of known classes as C = {C1,…, CN} with
|Ci| as the total number of samples in class Ci and the set of labeled classes as L = {L1, …,
LN} with |Li| as the total number of samples labeled as Li.

Confusion Matrix: The confusion matrix is a K × K matrix where the rows represent L and
the columns represent C. The diagonal of the confusion matrix represents the correctly
classified VOIs.

Sensitivity and Specificity: Sensitivity or the true positive rate, is the proportion of each class
where the expert and classifier agreed disease was present. Specificity or the true negative rate,
is the proportion of each class where the expert and classifier agreed disease was not present.
Sensitivity and specificity for class i were defined as follows,

Error Rate: The error rate is the number of misclassified samples.

Each performance metric was validated over a 10-fold stratified cross validation. A N-fold
stratified cross validation splits the data randomly into N partitions. Each partition contains the
same proportion of each class as the complete dataset. The classification is performed N times,
each time using N-1 of the partitions as the training set and using the one left out as the testing
set. The N performance measures are averaged over the N = 10 folds. The training of the final
classifier uses all of the available data and it's error rate is estimated as the average of all N=10
error estimates.

2.5.5 Performance Measures for Analysis of Classification of Test Lungs—The
entire lung is classified and is compared to the three expert manual segmentations. The Jaccard
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Similarity Coefficient and the Volume similarity metric are used as metrics to measure level
of agreement. The Jaccard Similarity Coefficient (JC) is defined as:

JC measures the degree of overlap between two sets X and Y. It is zero when the two sets are
disjoint and one when the two sets are totally overlapped. The Volume similarity metric (VS)
is defined as:

VS measures the degree of similarity in the volume of two sets, irrespective of the spatial
location of the elements in the set. It is zero when the two sets are disjoint and one when the
two sets have equal volumes.

The Williams Index: The Williams Index was first proposed by Williams [31] as a statistical
measure of agreement between raters. The Williams Index measures how well an isolated rater
agrees with the group of raters. It has since been used in medical image processing where no
ground truth exists and algorithms must be compared to various experts as in comparing the
result of a boundary detection algorithm to several manually drawn boundaries by experts
[32]; it has also been used to compare the results of various classifiers when no ground truth
is present [33]. The Williams Index is a ratio of the agreement of rater j to the group versus the
overall group agreement and is defined mathematically as follows

where a(Dj, Dj′) is a measure of similarity or agreement between raters j and j′. We used two
similarity measurements: Jaccard Similarity Coefficient and the Volume Similarity Metric
defined above [33]. If the confidence interval (CI) of the Williams Index for rater j includes 1,
then it can be said that rater j agrees with the group as well as the members of the group agree
with themselves. If the numerator and the denominator differ at the 100α percent level then
the CI will not contain one.

3 Results
We present the results of our experimental methods in two sections. The first section presents
the results of the development of our classifier on the training dataset of individual VOIs.
Results on the following experiments are presented: 2 class, 4 class, and 5 class. The second
section presents the results of the classifier on the testing of whole lung datasets and how the
algorithm compares to the experts. Additionally, the quantification of lung tissues by the
algorithm is compared to the experts' quantification of lung tissues.

Zavaletta et al. Page 9

Acad Radiol. Author manuscript; available in PMC 2009 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1 Independent Volumes of Interest
The following results were obtained by performing a 10-fold stratified cross-validation on the
dataset of independent VOIs described previously.

In order to determine the optimal number of clusters in a signature for a two class problem
(Normal vs Abnormal) an ROC analysis was performed. The sensitivity and specificity was
measured as the number of clusters in the signatures varied. The optimal area under the curve
(Az = 0.9307) was attained with a sensitivity (true positive rate) of 92.96% and specificity (true
negative rate) of 93.78% with an optimal signature size of 4 clusters.

The error rate for a multi-class problem (Normal, Reticular, Ground glass, Honeycombing,
Emphysema) versus signature size is shown in Figure 8(a).

The confusion matrix for a four class (Normal, Reticular, Honeycombing, Emphysema)
problem is shown in Table 1. The sensitivity and specificity for the four classes are shown in
Figure 8(b). The confusion matrix for a five class (Normal, Reticular, Ground glass,
Honeycombing, Emphysema) problem is shown in Table 2. The sensitivity and specificity for
the five classes are shown in Figure 8(c).

3.2 Whole Lung Datasets
The William's Index (WI) for the algorithm and the three experts for each label are shown in
Figure 9. The 95% (Z = 1.96) confidence interval (CI) was computed. If 1 falls within the CI
then we can conclude that the rater j agrees with the rater j′ as much as j′ agrees with the rest
of the raters. Figure 9(a) shows the CI of the WI computed using the Jaccard Coefficient. Figure
9(b) shows the CI of the WI computed using the Volume Similarity Metric.

The average Jaccard Coefficients for the algorithm versus experts (AE) and for the experts
versus experts (EE) are shown in Table 3. The results of a univariate T-test performed for each
of the four classes to determine a difference in the means of the JC overlap between AE and
EE are also listed in Table 3. A multivariate test comparing the difference of AE to EE given
all four classes was also performed using the Hotelling T2 statistic. The results of this analysis
are a T2 = 26.15 and a F = 8.15 with degrees of freedoms 3 and 29, and a p-value of p = 0.0004,
also listed in Table 4.

A three dimensional rendering of a completely classified lung dataset as it is rotated around
the Z axis is shown in Figure 11. Figure 12 shows the amount of each tissue type in the lungs
classified by the algorithm and the three experts for each of the four datasets. The volume
values were put into a 4×4 matrix where the classes are the rows and raters are the columns.
An intra-class correlation measure and an analysis of variance were performed to measure the
degree of similarity of volume classification between the algorithm and the three experts. The
ICC is a metric which approaches 1 if the values in each row of the matrix are similar. The
analysis of variance F statistic is greater than 1 if a significant difference exists. The results
are as follows: Dataset 1: ICC = 0.9984, F = 0.0007; Dataset 2: ICC = 0.9559, F = 0; Dataset
3: ICC = 0.8623, F= 0.0015; Dataset 4: ICC = 0.7807, F = 0.0136.

4 Discussion
Although the microscopic changes in UIP/IPF are below the resolution of traditional CT
imaging, near microscopic changes in attenuation and gross parenchymal distortion resulting
from idiopathic pulmonary fibrosis can be visualized on HRCT. The visual changes include
varying types of high-attenuating pathology, distortion of normal broncho-vascular structures
and areas of end-stage fibrosis, including regions characterized visually on HRCT as ground
glass infiltrates, coarse reticular infiltrates, regional traction bronchiecstasis and
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honeycombing. Our purpose in developing an algorithm to detect these features associated
with pulmonary fibrosis is to characterize and reproducibly quantify the extent of pulmonary
involvement by UIP/IPF. The first task in developing a CAD algorithm to aid in the
quantification and classification of pathology is to distinguish between normal and abnormal
tissue. When cluster-type methods are used, one of the optimal parameters that must be tested
is number of clusters. We performed an ROC analysis varying the size of the signature (number
of clusters) and determined that a signature containing 4 clusters was most discriminatory. The
area under the curve was computed, Az = 93.07, which is the average sensitivity over all
specificities [34]. We have shown that our method can distinguish between normal and
abnormal three dimensional volumes of interest with a sensitivity of 92.96% and specificity
of 93.78%.

Our second objective was to test the classifier's ability to distinguish between various types of
high-attenuating pathologies. This is a considerably more challenging task because of the
continuous evolution of the disease leading to a high intra-class variation and to fuzzy
distinctions between grades and types of pathology. The class types are:

Normal: slightly more dense than air, tissue contains small bronchioles and vessels

Ground glass: increased homogeneous opacity of pulmonary parenchyma where normal
broncho-vascular structures remain apparent - this is a non-specific finding that may
represent many pathologic changes including microscopic fine fibrosis, interstitial cellular
infiltration, increased parenchymal water or tissue compression

Reticular: abnormal irregular linear parenchymal opacities that may represent near-
microscopic parenchymal fibrosis

Honeycombing: moderately thin-walled, air-filled cysts that do not communicate with
airways, corresponding to regions of end-stage dense fibrosis and architectural distortion;
variable sizes from microscopic to several millimeters

Emphysema: Regions of pulmonary parenchymal destruction resulting in large air-filled
spaces or decreased attenuation of the parenchyma due to microscopic changes not directly
apparent on HRCT

The ability of a classifier to distinguish between Ground glass, Reticular, and Honeycombing
and their grades depends on how it is trained. The traditional method of choosing defined box
regions which contain at least 70% of the tissue class introduces errors in the training of the
classifier. Our classifier was trained with a high intra-class variation for every class by using
fourteen datasets to construct our training database.

Again, because we are using cluster-type methods, we tested for the optimal signature size
given a multi-class problem. The error rate for various signature sizes using a 10-fold stratified
cross validation method was computed. As can be seen in Figure 8(a) the signature containing
4 clusters was again most discriminatory. To test our second task two tests were performed,
first a four class problem, and second a five class problem.

The four class problem included the following classes: Normal, Reticular, Honeycombing, and
Emphysema; The classifier sensitivity and specificity for the Reticular and Honeycombing
pathologies is less than that of Normal and Emphysema, see Figure 8(b). Table 1 shows the
misclassification between Honeycombing and Reticular. This decreased sensitivity and
specificity is in part a result of high intra-class variation but primarily due to the inherent
gradations of the microscopic pathology and resultant incomplete separation of the visual
appearance of these findings in these areas. Specifically, this is exem-plified at the Reticular/
Honeycombing boundary where visually the Reticular class contains severely course linear
abnormalities that appear almost cystic and the Honeycombing class contains only barely
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apparent small cysts with a large amount of adjacent increased opacity that is presumably
fibrosis.

The five class problem included the following classes: Normal, Ground glass, Reticular,
Honeycombing, and Emphysema; This problem tackles the very challenging distinction
between Ground glass and Reticular pathologies present in lungs with mild to moderate UIP/
IPF. The sensitivity and specificity for Ground glass, Reticular and Honeycombing is
decreased, as seen in Figure 8(c). As expected, since the visual appearance is most similar, the
Reticular class which includes grades of pathology in between Ground glass and
Honeycombing is most decreased. Table 2 shows the Reticular class as most misclassified,
with either Ground glass or Honeycombing. Again, the decreased sensitivity and specificity
are a result of high intra-class variation and the gradual contiguity of visual and pathologic
changes in the parenchyma which result in no-distinct appearance in many regions this
probably represents mixed or transitional microscopic involvement. However, even though
there may be some misclassification or decreased discrimination between similar abnormalities
for our classifiers, it is more important that the methods provide a consistent result that agrees
with the experts as frequently as the experts agree among themselves, particularly in a setting
were an objectively defined gold standard outside of the expert opinion does not exist.

Medical image processing validation often can not rely on availability of true gold standards.
Gold standards based on experts' interpretation or correlation with other imaging modalities
and/or with pathology have been developed [35]. The comparison of a manual segmentation
to a computer algorithm's classification is another issue. The resolution at which a computer
algorithm can classify pathology is much finer than a manual segmentation can typically
accomplish, especially for diffuse lung pathology. Hence, standard measures of overlap are
less than optimal because of the varying resolutions of the regions, so we use a volume
similarity metric as well. Lacking a gold standard we used the William's Index to measure our
algorithm agreement with the experts as well as the experts agreement with themselves. A
William's Index with an upper confidence interval greater than 1 would affirm our claim. Figure
9(a) shows that when the Jaccard Coefficient is used as the metric of agreement, the algorithm
agrees with the experts for the definition of Normal class yet it does not quite agree as well
with the definition of Reticular and Honey-combing. On the other hand, Figure 9(b) results in
the upper limit of the CI greater than one for the Algorithm in every class. Additionally, because
the CI's for the Algorithm and the Experts overlap it can be concluded that they are not
significantly different from each other. Experts exhibit high inter-rater variability as a result
of the very high intra-class variation and gradual evolution of pathology, making validation of
a CAD algorithm problematical using experts as gold standards.

We also tested the agreement between the algorithm and the experts using the Jaccard
Coefficient (JC), which is essentially a measure of overlap. The average overlaps (JC) and their
standard deviations for the Algorithm versus Expert (AE) and for the Expert versus the Expert
(EE) are shown in Table 3. When the results of the three classes are considered together, a
significant difference exists between AE and EE with a Hotelling T2 statistic of 26.15 and an
F statistic of 8.15. A closer look at the difference in overlaps of AE and EE for each class
individually helps to explain why there exists an overall difference between AE and EE. The
T-statistic and the p-value for each test are listed in Table 3. No significant difference between
AE and EE exists for Normal and Reticular class. However, for the Honeycombing class, the
AE and EE are significantly different. Further investigation is needed to identify the reason for
this discrepancy. The high intra-class variability as a result of the disease process is evident in
the JC values below 50% for the Reticular and Honeycombing class by the experts (EE).

Regional quantification is one of the important goals for developing CAD algorithms on MDCT
scans of lungs. Figure 11 depicts the regional localization of the disease made possible with
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this type of analysis. Figure 12 shows the amount of each tissue type in the lungs classified by
the algorithm and the three experts for each of the four datasets, and Figure 10 shows a
transverse slice of each of the four datasets. Notice the degree of inter-expert variation in Figure
10. The Algorithm and Experts agree best for Dataset 1 and 2. Note in Figure 10 row 2, column
2, in the lower central region of the right lung that the Algorithm has misclassified as
Honeycombing a region of overlapping bronchioles and vessels. The algorithm found
Honeycombing in dataset 3 where the Experts did not. This could be due to over classification
by the Algorithm or a miss by the Experts. In this case, after review of the classification results
by experts, it appears that the Algorithm labeled as Honeycombing a very course, dense
Reticular pathology with some traction bronchiecstasis. The misclassification of traction
bronchiecstasis (low density tube with adjacent fibrosis) for Honeycombing (low density cyst
with adjacent fibrosis) is a result of classification of a small VOI which does not cover the
extent of the tube nor account for circularity of the structure being classified. The Algorithm
and the Experts disagreed most in Dataset 4. This Dataset contained a significant amount of
large Honeycombing cysts that were at times larger than the 15×15×15 VOI. This resulted in
classifying this region of large filled cysts as Emphysema and Reticular. Figure 10 row 4,
column 2, shows the misclassification of Honeycombing tissue for Reticular and Normal. In
addition to increasing the size of VOI, the inclusion of a wider range of Honeycombing type
patterns in the training set would minimize this type of misclassification. Additionally, the
subdivision of the Honeycombing class into large cysts versus small cysts, and into dense
network of cysts versus isolated cysts, is necessary.

5 Conclusion
In conclusion this paper presents a novel method to texture analysis in the classification and
quantification of pathology in 3D CT images. The method is computationally efficient and
produces results comparable to expert radiologic judgment. Currently, the computation of
signatures for a whole lung dataset can be performed in approximately ten minutes on a standard
workstation with unoptimized code. We have demonstrated its effectiveness in the
classification of normal versus abnormal tissue. Additionally, we have demonstrated that it
performs as well as the experts in distinguishing between the pathologies present in lungs with
UIP/IPF. We have summarized the challenges in validating a CAD algorithm on detection of
diffuse lung pathologies from high-resolution MDCT data. The development of quantitative
metrics in medical image processing will allow for the quantification of disease and thus, for
objective measures of disease progression.

Specifically, in the case of UIP/IPF, the extent and visual features of this disease visually
apparent on chest CT have been shown to be independent prognostic indicators. In combination
with clinical and physiologic parameters, a clinical/radiological/physiologic score (CRP score)
has been utilized to stage patients with this disease and predict its temporal course, which is
typically progressive and leads to death within 5 years of diagnosis [36,37]. Since the CT
radiologic findings are strong independent indicators of disease, it is critical to have accurate
and reproducible quantification of the extent of disease. As an objective measure, our
quantitative methods appear to provide such a capability and thus offer a means for accurately
assessing and monitoring the disease progression and/or response to therapy.
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Fig. 1.
Lung Segmentation: 1st Row: Transverse slice, Coronal slice (Peripheral and Central Regions
and Lobes Outlined by color); 2nd Row: Sagittal slice, Volumetric Rendering
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Fig. 2.
Broncho-vascular Structure. The Bronchial tree (pink) was segmented using an algorithm
involving morphological operations and region growing [21]. The Vascular tree (yellow) was
segmented by thresholding the 3D line enhancement filtered image [24].
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Fig. 3.
The main point of the algorithm is detailed in this figure. The top three rows show the cubes
of data that are known along with their histograms and canonical signatures. The bottom three
rows show an unknown cube of data with its histogram and signature. The idea of the algorithm
is to compare the unknown signature with the known signatures using the EMD as the metric.
The unknown cube of data is assigned to the known cube's class for which the signatures are
most similar.
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Fig. 4.
Creation of canonical signature. Top plot: Accumulated signatures from training set. Bottom
plot: Canonical signatures computed by re-clustering the top plot using various amounts of
training data.

Zavaletta et al. Page 19

Acad Radiol. Author manuscript; available in PMC 2009 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The canonical signatures computed for each class (Normal, Reticular, Ground glass,
Honeycombing, and Emphysema) are plotted in this figure. These signatures are made up of
4 cluster centers positioned at various locations with varying frequencies. Each signature is
uniquely computed for each class.
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Fig. 6.
Independent Volumes of Interest (VOI): transverse, coronal, sagittal Views of cubic VOIs
selected within expert drawn regions. The colored cubes represent different VOIs selected
within the manually traced region (red) by the expert for this particular dataset.
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Fig. 7.
Each column is a segmentation of a dataset by a different expert. Each row is a different
orientation (transverse, coronal, and sagittal). The colors represent different tissue classes:
Green-Normal and Red-Reticular.
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Fig. 8.
In order to determine the optimal number of clusters in a signature for a multi-class problem
the error rate was measured as the number of clusters in the signature was varied. Figure (a),
shows the least error with a 4 cluster signature. Figure (b), shows the sensitivity (true positive
rate) in green and specificity (true negative rate) in yellow for the 4-class classification
experiment of normal (N), reticular (R), honeycombing (H), and emphysema (E). Figure c,
shows the sensitivity (true positive rate) in green and specificity (true negative rate) in yellow
for the 5-class classification experiment of normal (N), ground glass (G), reticular (R),
honeycombing (H), and emphysema (E). Note that the sensitivity for honeycombing class
remains about the same for the 4 and 5 class problem. However, note that the sensitivity of the
reticular class is significantly reduced in the 5 class problem - this is because of the similarity
between the ground glass and reticular classes, detailed in the confusion matrices in Table 1
and Table 2
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Fig. 9.
The Williams Index CI for the Algorithm and the Experts for each class computed using the
Jaccard Coefficient shown in (a). and the Volume Similarity Metric shown in (b). The Williams
index tests the ability of an isolated rater to agree with the group as much as the members of
the group agree amongst themselves. An upper limit of the confidence interval greater than or
equal to one is indicative agreement. The metric used to measure agreement makes a difference.
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Fig. 10.
Classified Lungs by Algorithm and Experts. Rows 1-4 depict a transverse slice of Datasets 1-4.
Column 1 is the original slice, Column 2 is the Algorithm's classification and Columns 3-5 are
the Experts' 1-3 segmentation. Purple is Normal, Red is Reticular, Green is Honeycombing,
Yellow is Vessel, and Blue is Airway
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Fig. 11.
Volumetric rendering of a classified lung. Purple is Normal, Red is Reticular, Green is
Honeycombing, Yellow is Vessel, and Blue is Airway
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Fig. 12.
Lung Volumes calculated by Algorithm and Experts. Dataset 1, ICC = 0.9984; Dataset 2, ICC
= 0.9559; Dataset 3, ICC = 0.8623; Dataset 4, ICC = 0.7807
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Table 1
4 Class Confusion Matrix; Actual Class (rows) versus Classified Class (columns)

Normal Reticular Honeycmbg. Emphysema

Normal 201 12 10 3

Reticular 6 109 66 0

Honeycmbg. 1 6 221 0

Emphysema 9 0 2 42
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Table 4
Hotelling T2 multivariate test comparing the AE to EE given all four classes.

T2 (3 dof) F (29 dof) p

26.15 8.15 0.0004
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