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Abstract
Dearomatization of phenols followed by oxidation affords cyclohexadienyloxyacetaldehydes, which
produce hydrobenzofuranones via asymmetric intramolecular Stetter reaction in good to excellent
yield. Quaternary as well as up to three contiguous stereocenters may be formed in good to excellent
enantioselectivities and high diastereoselectivities.

Dearomatization of aromatic compounds provides a useful alicyclic synthetic building block
due to its high economy and simple elegance.1 When coupled with a stereoselective process,
it has the potential for affording enantioenriched material from commonly available precursors
in rapid fashion.2 Reactivity umpolung3 affords an opportunity to take advantage of unobvious,
complementary bond disconnections in the synthesis of complex molecules. One such reaction
is the Stetter reaction, the nucleophile-catalyzed addition of an aldehyde to a Michael acceptor.
4 If the Michael acceptor involves a prochiral alkene, this reaction generates new stereocenters.
5 We have recently developed a family of catalysts capable of inducing highly enantioselective
intramolecular Stetter reactions.6 As part of an effort to extend the power of this transformation,
we considered that cyclohexadienones, readily available from dearomatization of phenols,7
could be suitable substrates for a desymmetrizing Stetter reaction. Herein we disclose that
treatment of such substrates with chiral triazolium salts affords, in high yields and
enantioselectivities, hydrobenzofurans, which are core skeletons found in many natural
products.8

The requisite substrates are readily accessible from the corresponding phenols (Scheme 1).
Hypervalent iodine reagents are used in conjunction with glycol to afford the dienone alcohols
in good yield, whereupon Dess-Martin oxidation leads to the aldehydes and sets the stage for
the asymmetric Stetter reaction. Upon cyclization, the desired product hydrobenzofuranones
would contain at least two contiguous stereocenters.

The reactivity of a series of catalysts6 was studied using substrate 1 (eq 1). The reactions were
conducted in the presence of 20 mol% catalyst and 20 mol% KHMDS in toluene at 25 °C, and
proceeded to completion in less than 5 min affording desired product 2. Aminoindanol-derived
triazolium salt 3 bearing an anisyl substituent was found to be the best catalyst precursor for
this reaction, again reflecting the subtle impact of electronics arising from aryl substitution.6

A range of substrates was synthesized following the general procedure (Scheme 1). Under
optimized conditions,9 the asymmetric intramolecular Stetter reaction proceeds very well,
Table 1. The enantioselectivities are excellent (92-94 % ee) when groups at the 4-position of
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the substrates are methyl, ethyl, isopropyl and tert-butyl (entries 1-4). Aromatic substituents
result in slightly lower, but still synthetically useful enantioselectivities (Table 1, entries 5-6).
Similar effects are observed with more functionalized sidechains at that position, entries 7-9.
With all substrates, the reaction proceeds with very high diastereoselectivities (> 95:5 by 1H
NMR).10

(1)

We have previously documented the ability of the Stetter reaction to form contiguous
stereocenters with trisubstituted alkene acceptors.6d The use of 2,4,6-trisubstituted phenols as
precursors in this chemistry allow a rapid entry into suitably functionalized substrates to test
whether the desymmetrization would proceed. In the event, the dienone derived from 2,4,6-
trimethylphenol proved remarkably efficient. This reaction provides hexahydrobenzofuranone
23 possessing three contiguous stereocenters in excellent yield and ee, entry 1 in Table 2. The
reaction is tolerant of alkoxymethyl groups at the 2-position, providing 25 in excellent ee and
good yield, entry 2. No elimination of the methoxy group is observed under these conditions.
Remarkably, this reaction is also tolerant of as many as three tert-butyl groups in the vicinity
of the reaction center and the substrates provide one (entry 3), or two (entry 4) neopentyl
stereocenters in excellent selectivity. In each of the cases examined to date, a single
diastereomer is formed.10

Commercially available 3,4,5-trimethylphenol provides an opportunity to test whether this
approach is capable of forming quaternary stereocenters as per our previous report.6c In the
event cyclization of substrate 30 affords one quaternary stereocenter adjacent to a tertiary ether
in excellent enantioselectivity and good yield (eq 2).

(2)
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Although the bulk of our work focused on oxygen-tethered substrates due to their accessibility,
the reaction is also capable of forming carbocycles. To that end, when 32 is subjected to the
reaction conditions, hydrindane 33 is isolated in good yield and 90% ee, eq 3.

In conclusion, a family of phenol-derived substrates have been

(3)

successfully synthesized and found to undergo asymmetric intramolecular Stetter reactions in
very good yields. Quaternary stereocenters and up to three contiguous stereocenters may be
formed in excellent enantioselectivities and diastereoselectivities.
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Scheme 1.
Asymmetric Synthesis of Hydrobenzofuranones
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Table 2
Reaction of Tri-Substituted Substrates

Entrya Substrate Product Yield (%) ee (%)b

1 86c >99

2 71c 99
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Entrya Substrate Product Yield (%) ee (%)b

3 80d >99

4 62d >99

a
See Table 1.

b
See Table 1.

c
Reaction time: 5 min.

d
Reaction time: 2h.
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