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Abstract
The Epidemiology of Diabetes Interventions and Complications (EDIC) study, an observational
follow-up of the Diabetes Control and Complications Trial (DCCT) type 1 diabetes cohort, measured
coronary artery calcification (CAC), an index of atherosclerosis, with computed tomography (CT)
in 1,205 EDIC patients at ~7–9 years after the end of the DCCT. We examined the influence of the
6.5 years of prior conventional versus intensive diabetes treatment during the DCCT, as well as the
effects of cardiovascular disease risk factors, on CAC. The prevalences of CAC >0 and >200 Agatston
units were 31.0 and 8.5%, respectively. Compared with the conventional treatment group, the
intensive group had significantly lower geometric mean CAC scores and a lower prevalence of CAC
>0 in the primary retinopathy prevention cohort, but not in the secondary intervention cohort, and a
lower prevalence of CAC >200 in the combined cohorts. Waist-to-hip ratio, smoking, hypertension,
and hypercholesterolemia, before or at the time of CT, were significantly associated with CAC in
univariate and multivariate analyses. CAC was associated with mean HbA1c (A1C) levels before
enrollment, during the DCCT, and during the EDIC study. Prior intensive diabetes treatment during
the DCCT was associated with less atherosclerosis, largely because of reduced levels of A1C during
the DCCT.

Patients with type 1 diabetes have a high risk of developing cardiovascular disease (CVD),
which in young adulthood can be 10-fold higher than in the general population (1,2). The
reasons for this increased risk have not been fully elucidated and can only be partly explained
by standard cardiovascular risk factors. Surprisingly, cumulative hyperglycemia has not been
shown consistently to be a risk factor for cardiovascular events in type 1 diabetes (3–8).
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The Diabetes Control and Complications Trial (DCCT)/ Epidemiology of Diabetes
Interventions and Complications (EDIC) study provides an opportunity to explore the complex
relationships among traditional CVD risk factors, glycemia, and CVD outcomes (9). The
DCCT demonstrated the importance of glycemic control in preventing or delaying
microvascular complications (10), but it did not reach a clear conclusion with respect to
macrovascular complications, owing to the low prevalence of macrovascular disease in the
relatively young cohort (11). The long-term EDIC follow-up included assessments of
subclinical CVD with measurement of carotid intima-media thickness (IMT) (12,13) and with
computerized tomography (CT) of the heart to detect and quantitate calcification in the
coronary arteries, a marker of atherosclerosis (14). The EDIC study demonstrated a significant
protective effect of prior intensive diabetes therapy, compared with conventional therapy, on
the progression of IMT over a 6-year period that was associated with the level of HbA1c (A1C)
(13). Progression of IMT was associated with the level of glycemia (A1C) over time, consistent
with some (15), but not all (16,17), reports in type 1 diabetes.

The association of glycemia with coronary artery calcification (CAC) in type 1 diabetes is
unclear. Two studies (18,19) failed to demonstrate a relationship between glycemia and CAC
in type 1 diabetes, whereas one did (20). These studies showed relationships with traditional
CVD risk factors, but a smaller sex difference in CAC than is usual for the nondiabetic
population, consistent with the reduction in the difference between sexes for CAD in type 1
diabetes.

The DCCT/EDIC study has recently reported (21) that DCCT intensive therapy significantly
reduced the long-term risk of clinical CVD by 42%; however, the cumulative incidence of such
events remains low, precluding multivariate analyses at this time. Measurement of CAC
provides an opportunity to assess the effects of putative and established CVD risk factors on
the progression of atherosclerosis in type 1 diabetes that may ultimately translate into effects
on risk of clinical events.

Herein we assess the long-term effects of original DCCT (conventional versus intensive)
treatment assignment on the degree of CAC measured 8 years after the completion of the
DCCT. We also examine the association of CAC with history of glycemia, with other risk
factors and markers of CVD, and with clinically prevalent CVD.

RESEARCH DESIGN AND METHODS
Between 1983 and 1989, the DCCT enrolled 1,441 subjects with type 1 diabetes who, at
baseline, were 13–39 years of age, had type 1 diabetes for 1–15 years, and were in generally
good health (10). The DCCT consisted of two cohorts: the primary prevention cohort had type
1 diabetes for 1–5 years, no retinopathy, and urinary albumin excretion <40 mg per 24 h at
baseline; the secondary intervention cohort had type 1 diabetes for 1–15 years, very mild to
moderate nonproliferative retinopathy, and urinary albumin excretion ≤200 mg per 24 h at
baseline. At the end of the DCCT in 1993, after 6.5 years of mean follow-up, intensive therapy
was recommended for all subjects, and they returned to their own health care providers for
diabetes care. In 1994, 1,375 (96%) of the 1,425 surviving members volunteered to participate
in the EDIC observational follow-up study (9).

Computed tomography of coronary calcification
Computed tomography (CT) was performed between November 2000 and March 2003 (11–
20 years after enrolment into the DCCT, 7–9 years after its end) in 1,205 (86%) of the surviving
1,404 participants, with specific patient consent. CT was performed in scanning sites (see
APPENDIX) using a C-150 cardiac-gated electron beam CT scanner (n = 9; Imatron, San
Francisco, CA), a Lightspeed (n = 7; General Electric Medical Systems, Waukesha, WI) or a
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Volume Zoom (Siemens, Erlanger, Germany) multidetector CT system, a Lightspeed Marconi
MX-8000 (GE), or a Somatom 4+ (Siemens) (n = 3). All participants were scanned twice over
calibration phantoms of known physical calcium concentration.

Scans were read centrally at the Harbor-UCLA (University of California, Los Angeles)
Research and Education Institute (Torrance, CA) to identify and quantify CAC, calibrated
according to the readings of the phantom using the method of Agatston et al. (22). The average
score from the two scans was used in the analysis. Readers were masked to subject identity
and prior treatment assignment.

Scans were evaluated by the staff at the reading center on seven criteria: motion artifact, streak
artifact, phantom placement, slice registration, lack of noise, axis coverage, and xy axis
coverage. The 19 scanning centers were monitored monthly on these criteria. The intra- and
interreader precision was evaluated with the use of a set of standard scans that were reread by
the same reader and another reader at the reading center. The kappa measure of intrareader
agreement beyond chance for the presence or absence of calcification was 0.81, and the
interreader kappa was 0.86. The coefficient of reliability for the calcification scores was 0.99
for both inter- and intrareader.

Other procedures
Each EDIC subject had an annual history, physical examination, electrocardiogram, and
laboratory testing, including serum creatinine and A1C, determined as they were during the
DCCT (9,10,23). Fasting lipid profiles and 4-h urine collections for measurement of albumin
excretion rate and creatinine clearance were obtained in alternate years during the EDIC study
(9). Carotid IMT was measured by B-mode ultrasonography in 1994 and again in 2000–2001
(12,13). Combined IMT was defined as the sum of the standardized intima-media
measurements of the common and internal carotid arteries. Standardized IMT was defined as:
(variable − mean) ÷ SD, as described by O’Leary et al. (24).

Hypertension was defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure
≥90 mmHg, documented hypertension, or use of antihypertensive agents.
Hypercholesterolemia was defined as LDL cholesterol ≥130 mg/dl or use of lipid-lowering
agents. Cardiovascular clinical outcomes included fatal and nonfatal myocardial infarctions,
stroke, revascularization (bypass surgery or angioplasty), angina confirmed with a positive
exercise tolerance test or angiogram, or silent myocardial infarctions identified using criteria
applied to the follow-up electrocardiogram. For classification of cardiovascular clinical
outcomes, information from death certificates; medical records from hospitalizations; autopsy
reports, if available; and interviews with the participants were reviewed by the EDIC mortality
and morbidity committee, masked to treatment assignment, and the event was classified
according to specified guidelines (25).

Statistical analyses
Analyses were conducted using SAS (26). Clinical characteristics were compared using
Wilcoxon’s rank-sum test for continuous quantitative variables and χ2 or Fisher’s exact tests
for categorical variables. Analyses used the prevalence of CAC scores of >0 and >200 Agatston
units; the latter has been a predictor of CVD events in other studies (18,20,27). The Mantel-
Haenszel χ2 test of nonzero correlation was used to test for a linear trend in proportions (28).
The stratified adjusted Mantel-Haenszel analysis adjusted for other qualitative covariate effects
on the OR or test of trend (28). Homogeneity of treatment effect over strata was assessed by
the Breslow-Day test (28). Logistic regression examined the relationship between covariates
and the prevalence of CAC (28,29). The entropy R2 coefficient was used to describe the
proportion of variation in risk explained by the model (29).
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Tobit-censored regression models (30) assessed covariate effects on the observed CAC score,
which is a mixture of a discrete random variable (any measurable calcification, yes/no) and a
quantitative random variable (the amount of CAC, if measurable). The Tobit regression
coefficient represents the log ratio of the geometric mean CAC score per unit increase in the
covariate, assuming some true measurable calcification for all subjects, including those with
undetectable levels. Ordinary multiple regression of the observed measurable values is biased,
whereas logistic regression of the prevalence of measurable calcification is inefficient (31).
The Tobit model was fit using the LIFEREG procedure in SAS (26), where the natural
logarithm of the nonzero CAC scores was reduced by subtracting the natural logarithm of the
lowest detectable CAC score (the lower limit of quantification of CAC). Goodness of fit was
assessed by applying the Hosmer-Lemeshow test to the estimated probabilities from the Tobit
model as a predictor for presence of CAC, and by the Spearman correlation coefficient between
the measured score of CAC and that predicted from the Tobit model (32).

The intent-to-treat effects of prior DCCT conventional versus intensive therapy were assessed
in basic logistic and Tobit models, adjusted for baseline age, type 1 duration, sex, scanning
site, and DCCT baseline retinopathy cohort (primary versus secondary). Additional
multivariate models explored effects of covariates measured up to the time of CAC
measurement. The most significant factor among similar variables (e.g., systolic and diastolic
blood pressure) was used. Backward elimination was used to select two-way interactions with
treatment group (28,29), retaining those nominally significant at P ≤ 0.05. In models with an
interaction, the overall treatment effect was assessed using a test of both the group and the
group by covariate interaction on 2 degrees of freedom (df) (29). Receiver operating
characteristics (ROC) plots were used to describe the sensitivity and specificity of CAC for
prevalent CVD (21,33–35)

RESULTS
Clinical characteristics

Table 1 shows the clinical characteristics of the participants in the CT study at DCCT baseline
and at the exam immediately before, or at time of, the CT scan, stratified by sex and original
DCCT treatment group. Of the 1,205 participants, 95% were Caucasian, and 53% were male.
In both male and female subjects, blood pressure and lipids were not significantly different
between the former DCCT conventional- and intensive-treatment groups at the time of the CT
scans. In men only, prevalence of hypertension and aspirin use were significantly lower in the
intensive group. The A1C level before CT was similar in the treatment groups in both sexes,
but mean A1C level during the ~9 years of EDIC follow-up before the CT scan was slightly
higher in the conventional than in the intensive group in men (8.2 vs. 8.0 ± 1.1%, P < 0.01).
Albumin excretion rates were significantly lower in the intensive than in the conventional-
treatment group (P < 0.01). Measurements of adiposity were not different between the
treatment groups. A comparison of the EDIC subjects who participated in the CT study with
those who did not participate revealed similar distributions of sex, race, and treatment group.
However, the participants who did not have CT scans were younger (25 vs. 27 years at DCCT
entry) and had higher mean A1C (8.5 vs. 8.2%, P < 0.003) during the DCCT.

CAC distributions
Figure 1 shows the distribution of CAC scores, including the prevalence of CAC = 0, 1–200,
and >200 Agatston units by treatment group stratified by primary prevention and secondary
intervention cohorts. These analyses showed differences between treatment groups in the
primary cohort (P = 0.03), but not in the secondary cohort (P = 0.41), not adjusted for scanning
site or other baseline factors.
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Figure 2A–D shows the prevalences of CAC >0 and >200 Agatston units within each treatment
group, stratified by sex and also by decade of age at the time of the scan. The overall prevalences
for CAC >0 and >200 Agatston units were 31.0 and 8.5%, respectively. The prevalences of
CAC >0 and >200 Agatston units increased linearly by decade of age within each sex (P <
0.01 for each). Within both sexes, and within each treatment group, the prevalence of
calcification increased significantly with age, except for CAC >200 Agatston units in the
intensive group among women, for which the overall incidence was lower than for men or
conventional group women, especially among those ≥50 years.

DCCT treatment group differences
In the primary cohort, compared with the conventional-treatment group, the intensive-
treatment group had a significantly lower prevalence of CAC >0 Agatston units (21.7 vs.
29.8%, respectively), with an adjusted odds ratio (OR) for conventional versus intensive
therapy of 1.59 (95% CI 1.06–2.39, P = 0.024). By contrast, there was no treatment effect in
the secondary cohort (OR 0.94). The difference in ORs between cohorts (i.e., group by cohort
interaction) was barely significant (P = 0.049).

The adjusted effect of conventional versus intensive therapy on the prevalence of CAC >200
Agatston units within the primary prevention cohort (OR 2.13) was not significantly different
from that in the secondary intervention cohort (1.50, P = 0.474 for test of interaction). For the
two cohorts combined, the adjusted treatment group effect had an OR of 1.65 (95% CI 1.06 –
2.58, P = 0.026).

In a Tobit regression analysis of the log(CAC) score in the primary prevention cohort, allowing
for nonmeasurable values, the conventional-treatment group on average had a 3.7-fold higher
CAC score than the intensive group (95% CI 1.3–10.5, P = 0.014). However, there was no
treatment group difference within the secondary intervention cohort, the geometric mean ratio
being 1.00 (0.4–2.5, P = 0.87). The difference between the primary versus secondary cohorts
(i.e., the 3.7 vs. 1.0 treatment group effect) approached statistical significance (P = 0.060 for
the test of interaction). Further analyses in the secondary intervention cohort revealed a
significant group by diabetes duration interaction effect (P = 0.0008) and the overall treatment
group effect with 2 df was significant (P = 0.003). The treatment effect increased with longer
duration of diabetes at DCCT baseline, with the geometric mean ratio 1.4-fold higher for each
additional year of diabetes duration (Fig. 3). This interaction was diminished after adjusting
for A1C at DCCT entry, smoking, hypertension, and waist-to-hip ratio at the time of CT scan,
but it remained significant (P = 0.0097).

A further analysis adjusting for the differences in the log mean A1C between treatment groups
during the DCCT explained virtually all of the treatment group effect within the primary
prevention cohort. For the Tobit model, the treatment group effect (P = 0.01) became
nonsignificant (P = 0.69) after adjustment for A1C. In the Tobit model within the primary
prevention cohort, and with the above baseline factors, a 10% increase in the DCCT mean A1C
was associated with a 1.85-fold increase in the geometric mean CAC score (P < 0.0001); within
the secondary intervention cohort, it was associated with a 1.32-fold increase (P = 0.051). The
difference between cohorts (test of interaction) was not significant (P = 0.21).

Correlation between CAC and CAD risk factors
Univariate rank correlations, partially adjusted for DCCT baseline age and sex, assessed the
association between the prevalence of CAC >0 Agatston units, CAC >200 Agatston units, and
the log CAC, with covariates (Table 2). The results were similar across all of the CAC
outcomes. Attained age (r = 0.34), male sex (r = 0.21), waist-to-hip ratio (r = 0.14), combined
common and internal carotid IMT at year 6 (r = 0.17), hypercholesterolemia (r = 0.14), and
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hypertension (r = 0.15) had the strongest association with the log CAC. There was no significant
correlation with ankle-to-arm blood pressure ratio. Other weaker or less consistent correlates
were with smoking, DCCT baseline retinopathy status, microalbuminuria, menopausal status,
and a parental history of type 2 diabetes. Neither total cholesterol nor LDL cholesterol levels
were significant correlates, whereas triglyceride level was positively and HDL cholesterol level
was negatively correlated with CAC. A1C before the DCCT, the mean levels during the DCCT,
at DCCT closeout, before the CAC scan, mean during EDIC, and mean during DCCT and
EDIC all correlated with CAC (P < 0.01).

Multivariate regression models
Expanded multivariate regression models assessed the association of additional risk factors,
measured either at DCCT baseline or close to the time of the CT scan during EDIC, with CAC.
In a logistic model, hypercholesterolemia, increased waist-to-hip ratio, and smoking were
significantly associated with prevalence of CAC >0 Agatston units. As observed in the intent-
to-treat analysis of the DCCT treatment group effect, there was a significant interaction
between treatment group and baseline retinopathy strata (primary versus secondary cohort).
Overall, the model explained 20% (R2) of the variation in risk. A logistic regression model
with the prevalence of CAC >200 Agatston units produced similar results.

The multivariate Tobit regression model (Table 3) provided results similar to the two logistic
regression models. The CAC score increased 1.3-fold per year of age, was 3.4-fold more for
men than women, was 7.1-fold greater among current smokers, and increased 1.3-fold per 10
mg per 24 increase in albumin excretion rate, 2.6-fold per 10% increase in waist-to-hip ratio,
2.8-fold among those with hypercholesterolemia, 2.8-fold among those with hypertension, and
1.4-fold per 10% increase in DCCT mean A1C. The Hosmer-Lemeshow test (P = 0.14),
comparing the Tobit model predicted probability of having CAC to the detected presence of
CAC, and the significant Spearman correlation coefficient (0.4781, P < 0.0001) between the
predicted and observed CAC scores both suggest that this model fits the observed data.

Sensitivity and specificity
The sensitivities and specificities of CAC >0 and >200 Agatston units for nonfatal myocardial
infarction (n = 10) were 80 and 69.4% and 70 and 92.1%, respectively. The sensitivities and
specificities for all CVD events (see RESEARCH DESIGN AND METHODS, n = 44) for
CAC >0 and >200 Agatston units were 72.7 and 70.5% and 47.7 and 93.0%, respectively. The
ROC curve (Fig. 4) reflects the characteristics of the CAC score with discriminating power for
CVD. CAC >0 Agatston units showed the highest (29%) false-positive rate and highest (73%)
true-positive rate. The false- and true-positive rates for CAC >200 Agatston units were 7 and
44%, respectively. The area under the ROC curve was 0.78 (95% CI 0.69–0.86).

DISCUSSION
The most important and new observation of this study is that the prevalence of CAC, and the
CAC scores, in the DCCT/EDIC type 1 diabetes cohort are significantly lower in the former
intensive treatment compared with the former conventional-treatment group. The prevalence
of a clinically significant CAC score of >200 Agatston units was 7.0% in the former intensive-
treatment group and 9.9% in the former conventional-treatment group.

The beneficial effect of prior intensive therapy during the 6.5 years of the DCCT was greater
among those entered into the primary prevention cohort with 1–5 years’ diabetes duration on
entry, among other factors, than among those entered into the secondary intervention cohort
with 1–15 years’ duration. The beneficial effect of intensive therapy is largely attributable to
the differences between groups in the level of A1C during the DCCT.
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The lesser treatment effect in the secondary intervention cohort appeared to be the result of an
interaction between baseline diabetes duration and treatment group (Fig. 3). The beneficial
treatment effect at longer durations was washed out by the negative treatment effect at shorter
durations, mainly 1–5 years. The absence of a treatment effect among those in the secondary
intervention cohort with only 1–5 years’ duration could be an artifact of the selection criteria.
Prior epidemiological modeling (36) suggests that subjects who have retinopathy present after
only 1–5 years’ duration tend to have higher preexisting levels of A1C that could in turn
diminish the long-term effectiveness of intensive therapy on other outcomes, such as CAC. In
addition, there were some imbalances between treatment groups in the subcohort of the
secondary intervention cohort with 1–5 years’ diabetes duration. Most importantly, compared
with the conventional-treatment patients, intensive-treatment patients had higher A1C levels
at DCCT entry (9.6 vs. 8.8%).

The 31% prevalence of CAC >0 Agatston units in the DCCT/EDIC cohort is lower than in
other reports of type 1 diabetic cohorts (18–20,37). This may reflect a substantially lower CVD
risk, based on eligibility criteria and lower mean A1C, than in other studies. In addition, unlike
some (18–20) but not all (37) reports, female subjects in the DCCT/EDIC study had a lower
prevalence of CAC level in all age-groups. The male-to-female OR of 2.7 for CAC >0 Agatston
units in our cohort is similar to the OR of 2.5 reported in a previous study of type 1 diabetes
(37).

Most previous studies in type 1 diabetes have not shown a significant association between
glycemic control and CVD or CAD events, either cross-sectionally (3–5) or prospectively
(6). Moreover, two previous studies have not shown a relationship between glycemic control
and CAC (18,19). However, a recent report (20) showed a greater risk of progression of CAC
over 3 years among those with A1C >7.5% than patients with A1C <7.5%. Perhaps owing to
the small numbers who progressed (21 of 109), A1C was not a significant univariate risk factor.
In contrast, the DCCT/EDIC study, with a much larger sample size and detailed longitudinal
assessment of metabolic control, has shown that A1C measured before DCCT enrollment,
mean A1C during the DCCT (which had the strongest correlation), and mean level during the
EDIC study were each significantly correlated with CAC after adjustment for age and sex, and
were independent of waist-to-hip ratio, smoking, hypertension, and hypercholesterolemia
before CT scan. The DCCT cohort was selected to exclude patients with hypertension and
hypercholesterolemia on entry to the DCCT, and the impact of hyperglycemia may have
become more apparent without the influence of these conventional CVD risk factors at baseline.

In univariate analyses, most of the known risk factors for coronary artery disease, including
age, smoking, systolic blood pressure, hypertension, waist-to-hip ratio, hypercholesterolemia,
HDL cholesterol and triglyceride levels, and microalbuminuria, were significantly associated
with the presence of CAC in the DCCT/EDIC study. Although both microalbuminuria and
hypertension were also reduced by prior intensive treatment (38), the effect of glycemic control
on coronary artery calcium control was independent of these two risk factors. The LDL
cholesterol level was not by itself a significant continuous risk factor for the prevalence of
coronary artery calcium in the DCCT/EDIC study.

In the Tobit multivariate regression model, the mean CAC score was significantly greater in
older individuals, men, and those with higher waist-to-hip ratios, retinopathy at DCCT baseline,
and higher albumin excretion rates. The association of early signs of microvascular
complications with later CAC may reflect some common elements in their development and
in the pathogenesis of atherosclerosis, such as hypertension or hyperglycemia.

We previously reported that the rate of progression of carotid artery IMT from DCCT closeout
to 6 years later was reduced by prior intensive treatment (13). This effect was largely explained
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by the difference in A1C levels that existed between the two prior treatment groups. We have
now shown that CAC correlates significantly with carotid IMT that was measured 1–3 years
earlier (Table 2). Taken together, these prolonged effects of intensive treatment on both
coronary artery calcium and carotid IMT support the interpretation that lowering glycemia with
intensive treatment results in a slowing of atherosclerosis.

The mechanism(s) by which hyperglycemia causes atherosclerosis is incompletely understood
but could involve long-lived advanced glycation end products (39,40) in vessel walls and their
interactions with advanced glycation end product receptors (41). The demonstration of a
delayed benefit from intensive treatment on atherosclerosis is also consistent with the persistent
beneficial effect of prior intensive treatment on retinopathy and nephropathy during the EDIC
study (38,42). The observation of a treatment effect principally within the primary prevention
cohort with a preexisting mean duration of diabetes of 2.5 years on entry adds further weight
to the recommendation that intensive treatment be started as early in the course of type 1
diabetes as safely and practically possible.

Certain limitations of this study should be noted. A baseline assessment of CAC was not
obtained either at the beginning of the DCCT or at the beginning of EDIC study. Although
such assessments are not necessary to document a treatment effect on CAC levels, without
baseline levels it is not possible to describe the magnitude or rate of change in CAC over time.
Theoretically, it is possible that these findings simply reflect a chance baseline imbalance in
the CAC levels. However, this appears unlikely given the similarity of characteristics relevant
to atherosclerosis in the conventional-treatment and intensive-treatment groups at DCCT
baseline (9,10). Although CAC scores measured by electron-beam CT and multidetector CT
correlate very well (43), the use of several different machines to measure CAC may have added
variability to the measurements and interfered with our ability to establish correlations.
However, even if we looked separately at the results from the nine electron-beam CT scanners
and the results from the other scanners, the trend in differences between intensive- and
conventional-treatment groups remained (data not shown).

The overwhelming majority of the subjects did not have any detectable levels of calcification,
thus reducing the sensitivity of these analyses to detect an effect of intensive therapy, or to
assess the relative effects of glycemia and known risk factors. The low prevalence of
measurable CAC also limits the ability to assess the predictive value of CAC for future
macrovascular events. Nevertheless, significant risk factor effects were observed, and an ROC
analysis showed significant association between CAC score and prevalence of overt CVD at
the time of assessment. A recent DCCT/EDIC analysis showed that intensive therapy reduced
the risk of aggregate CVD events by 42% and the risk of major clinical events (fatal or nonfatal
myocardial infarction or stroke) by 57% (each P < 0.02) (21). However, the predictive value
of a given level of CAC for the risk of a future CVD event cannot be definitively assessed,
owing to the small number of such events that were observed after the measurement of CAC.

Finally, although coronary artery calcium is a quantitative marker of coronary atherosclerosis
burden (44,45) and predicts coronary artery disease measured by angiography (46,47), it is not
known whether the reduction in the prevalence of CAC with intensive therapy will translate
into a reduction in the incidence of coronary artery disease and other CVD events (48,49). The
usefulness of screening asymptomatic patients with CT is controversial (50,51). The majority
of DCCT/EDIC participants with a mean age of 43 years at the time of CAC measurement
displayed no detectable coronary artery calcium. Further follow-up with assessment of clinical
events will permit us to assess the predictive power of CAC for incident CVD events.
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Glossary
CAC, coronary artery calcification; CT, computed tomography; CVD, cardiovascular disease;
DCCT, Diabetes Control and Complications Trial; EDIC, Epidemiology of Diabetes
Interventions and Complications; IMT, intima-media thickness; ROC, receiver operating
characteristics.
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FIG. 1.
Distribution of CAC scores (Agatston units) by cohort and treatment group. □, CAC = 0; ▧,
CAC 1–200;, ■, CAC >200. CONV, conventional treatment; INT, intensive treatment.
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FIG. 2.
Unadjusted prevalence of CAC >0 and CAC >200 Agatston units within each treatment group,
separately stratified by sex and age at the time of the scan. A: CAC >0 intensive treatment.
B: CAC >0 conventional treatment. C: CAC >200 intensive treatment. D: CAC >200
conventional treatment. The number of subjects evaluated in each age category is noted. □,
female subjects; ■, male subjects.
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FIG. 3.
Estimated geometric mean ratio of CAC scores for conventional- versus intensive-treatment
groups as a function of type 1 duration, using the Tobit model, at DCCT baseline in the
secondary cohort. Dotted lines represent 95% CIs. The overall treatment group difference was
significant (P = 0.003). Overall age effect was also significant (P < 0.0001). P values for
durations of 1–15 years, respectively, are 0.002, 0.003, 0.004, 0.007, 0.015, 0.043, 0.154, 0.535,
0.756, 0.235, 0.061, 0.019, 0.008, 0.004, and 0.002. P values are a test that the ratio = 1 at each
year of duration. IDDM, type 1 diabetes.
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FIG. 4.
ROC curve of CAC relative to cardiovascular events. True-positives are plotted on the y-axis
and false-positives on the x-axis. The accuracy of the CAC is the area under the curve. An area
of 1 represents a perfect test; an area of 0.5 represents a worthless test. An area under the curve
of 0.78 implies that there is a 78% likelihood that a randomly selected affected case subject
will have a higher CAC score than a randomly selected nonaffected control subject. The 95%
CI (0.69–0.86) indicates that the lower end point is >0.50 and is better than random chance.
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TABLE 1
Clinical characteristics of participants in CT scan study by sex and DCCT treatment assignment

Female subjects Male subjects

Intensive Conventional Intensive Conventional

n 297 275 300 333

Age at entry into DCCT (years) 27 ± 7* 26 ± 7 28 ± 7 28 ± 7

DCCT follow-up (years) 6.4 ± 1.7 6.3 ± 1.7 6.4 ± 1.7 6.1 ± 1.6

EDIC follow-up (years) 9.2 ± 0.5 9.1 ± 0.5 9.1 ± 0.5 9.2 ± 0.5

DCCT baseline

  Retinopathy (negative by fundus
photographs) (%)

51 49 46 54

  Albumin excretion rate (mg/24 h) 16 ± 20 15 ± 13 17 ± 21 15 ± 20

  Diabetes duration (months) 69 ± 50 71 ± 51 70 ± 50† 60 ± 46

Visit prior to or at time of CT scan

  Age (years) 43 ± 7* 42 ± 7 43 ± 7 43 ± 7

  Current smokers (%) 15 14 18 15

  Diabetes Duration (years) 21 ± 5 21 ± 5 21 ± 5π 20 ± 5

  BMI (kg/m2) 28 ± 5 27 ± 5 28 ± 4 28 ± 4

  Natural waist-to-hip ratio 0.79 ± 0.07 0.78 ± 0.06 0.91 ± 0.06 0.90 ± 0.06

  Ankle-to-arm blood pressure ratio <0.9
(%)

15 12 7 8

  Systolic BP (mmHg) 120 ± 14 120 ± 15 123 ± 13 125 ± 15

  Diastolic BP (mmHg) 75 ± 9 74 ± 9 78 ± 9 78 ± 10

  Hypertensive (%)§ 29 36 35¶ 46

  Aspirin ≥14 tablets per month (%) 22 25 26§ 33

  Menopause (%) 26 21 — —

  One or both parents with diabetes (%) 20 15 17 19

  Carotid IMT year 6 0.60 ± 0.11 0.59 ± 0.10 0.63 ± 0.10 0.65 ± 0.14

Lipids

  Total cholesterol (mmol/l) 4.94 ± 0.95 4.83 ± 0.84 4.81 ± 0.90 4.73 ± 0.85

  HDL cholesterol (mmol/l) 1.59 ± 0.38 1.62 ± 0.38 1.31 ± 0.35 1.32 ± 0.30

  LDL cholesterol (mmol/l) 2.89 ± 0.76 2.81 ± 0.69 2.98 ± 0.76 2.92 ± 0.74

  LDL-to-HDL ratio 1.9 ± 0.8 1.8 ± 0.6 2.4 ± 0.9 2.3 ± 0.8

  Triglycerides (mmol/l) 0.95 ± 0.64 0.89 ± 0.58 1.15 ± 0.88 1.06 ± 0.61

  Hypercholesterolemia (%)‡ 30 29 44 40

Renal

  Albumin excretion rate (mg/24 h) 36 ± 194† 84 ± 370 105 ± 731† 234 ± 863

  Albumin excretion rate >40 mg/24 h (%) 9∥ 18 13∥ 26

A1C

  At DCCT eligibility 9.2 ± 1.6 9.1 ± 1.7 9.0 ± 1.6 8.8 ± 1.6

  Mean during DCCT 7.3 ± 0.9∥ 9.1 ± 1.4 7.2 ± 0.9∥ 8.9 ± 1.1

  At DCCT closeout 7.3 ± 1.0∥ 9.1 ± 1.8 7.4 ± 1.1∥ 9.1 ± 1.3

  Mean during EDIC 8.1 ± 1.2 8.1 ± 1.2 8.0 ± 1.1† 8.2 ± 1.1
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Female subjects Male subjects

Intensive Conventional Intensive Conventional

  Mean at visit prior to CT 8.0 ± 1.4 7.9 ± 1.5 7.9 ± 1.2 7.9 ± 1.3

  Mean during combined DCCT/EDIC 7.8 ± 0.9∥ 8.5 ± 1.1 7.7 ± 1.0∥ 8.5 ± 1.0

Data are the means ± SD unless otherwise indicated.

*
P < 0.05,

†
P < 0.01, and

∥
P < 0.001 for intensive vs. conventional.

‡
LDL ≥130 or using anti-lipid agents;

§
defined as systolic ≥140 or diastolic ≥90 mmHg, or hypertension has been documented, or using antihypertensive agents.
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TABLE 3
Risk factor analysis for CAC

Covariates Geometric mean ratio of
CAC scores (95% CI)*

Χ2 P value

Sex (male versus female) 3.4 (1.4–8.3) 6.8 0.0091

Scanning site (n = 19) — 28.1 0.0611

DCCT baseline

  Age (year) 1.3 (1.2–1.4) 81.7 <0.0001

  Diabetes duration (year) 1.3 (1.1–1.6) 4.1 0.0441

  Albumin excretion rate (mg/24 h)† 1.3 (1.1–1.5) 7.3 0.0069

  Cohort (primary versus secondary) 1.7 (0.7–4.4) 1.2 0.2651

EDIC year 7–9 (prior to CT scan)

  Smoking (yes versus no) 7.1 (3.0–16.9) 19.7 <0.0001

  Waist-to-hip ratio (%)† 2.6 (1.5–4.5) 11.5 0.0007

  Hypercholesterolemia (yes versus no) 2.8 (1.4–5.7) 8.6 0.0033

  Hypertension (yes versus no) 2.8 (1.4–5.7) 8.6 0.0034

DCCT mean A1C† 1.4 (1.1–1.7) 9.3 0.0022

Analysis was performed using Tobit regression: Y = log CT − log (lowest detectable CT score).

*
Geometric mean ratio of CAC scores is the ratio of predicted CAC scores for a 1-unit increase in quantitative variables or change in status for dichotomous

variables if without notation;

†
geometric mean ratio of CAC scores is based on 10 mg/24 h increase in albumin excretion rate, 10% increase in waist-to-hip ratio, and 10% increase in

DCCT mean A1C.
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