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Abstract
Using molecular dynamics free energy simulations with TIP3P explicit solvent, we compute the
hydration free energies of 504 neutral small organic molecules and compare them to experiments.
We find, first, good general agreement between the simulations and the experiments, with an RMS
error of 1.24 kcal/mol over the whole set (i.e., about 2 kT) and a correlation coefficient of 0.89.
Second, we use an automated procedure to identify systematic errors for some classes of compounds,
and suggest some improvements to the force field. We find that alkyne hydration free energies are
particularly poorly predicted due to problems with a Lennard-Jones well depth, and find that an
alternate choice for this well depth largely rectifies the situation. Third, we study the non-polar
component of hydration free energies – that is, the part that is not due to electrostatics. While we
find that repulsive and attractive components of the non-polar part both scale roughly with surface
area (or volume) of the solute, the total non-polar free energy does not scale with the solute surface
area or volume, because it is a small difference between large components and is dominated by the
deviations from the trend. While the methods used here are not new, this is a more extensive test
than previous explicit solvent studies, and the size of the test set allows identification of systematic
problems with force field parameters for particular classes of compounds. We believe that the
computed free energies and components will be valuable to others in future development of force
fields and solvation models.

I. INTRODUCTION
Aqueous solvation (hydration) of molecules is important for much of chemistry and
biochemistry. Many experimental hydration free energies are available, providing a wonderful
opportunity for testing force fields and computational treatments of solvation.

There have been a number of extensive tests of hydration free energies computed using
continuum representations of water and static solute conformations1–4. One recent study
extended this by sampling ensembles of solute conformations using classical molecular
dynamics and using these to compute hydration free energies5. Continuum representations of
solvent, however, have known limitations6,7, and explicit treatment of solvent provides a “gold
standard” for molecular simulations. Early explicit solvent hydration free energy studies were
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limited by computational cost to a few compounds, and, more recently, by the availability of
parameters for small molecules. Thus a variety of studies have looked at hydration free energies
of amino acid sidechain analogs in explicit solvent (for example, references8–11) but few have
studied a more diverse set.

With recent computational and methodological developments, both of these hurdles –
computational cost and parameters – are now at least partially surmountable. Hydration free
energy calculations can now be conducted more efficiently8,12, and computers are faster.
Recent developments also make possible semi-automatic parameterization of small molecules,
using general small molecule force fields like the general Amber force field (GAFF)13 and
parameter assignment tools like Antechamber14. Thus, two recent studies have examined
hydration free energies of a total of roughly 60 small molecules in explicit solvent4,12.

Here, we perform a much more extensive test of explicit solvent modeling, on a test set of 504
molecules previously used for implicit solvent hydration free energy calculations5 – more than
10 times larger than the largest previous explicit solvent tests12. Because this test is so
extensive, we believe it provides a good benchmark for the best results that can currently be
expected from molecular dynamics models of hydration. We also hope that others will find
this compilation of computational and experimental results useful for analysis and force field
parameterization efforts.

II. SIMULATION METHODS
A. General simulation parameters

In this work, we use alchemical free energy calculations to compute hydration free energies in
explicit solvent for 504 small molecules, using the compound set from a previous implicit
solvent study5. Simulation protocols were similar to those used in previous explicit solvent
studies4,12. Hydration free energies were computed using the Bennett acceptance ratio (BAR)
15. A brief summary of the methods follows, and we note the deviations from the previous
studies4,12.

Here, starting molecular conformations were the same as those for the previous implicit solvent
study5, except that here a single starting conformation was used for each molecule (rather than
5) due to computational limitations relating to the size of the set. Simulations were performed
in GROMACS 3.3.116,17 using the GAFF small molecule parameters13 as assigned by
Antechamber14 (as in the implicit solvent study5). Here, AM1-BCC18,19 partial charges were
assigned using the Merck-Frosst implementation of AM1-BCC.

This data set contains several nitro-containing compounds which did not have improper
torsions for the nitro -ring system in the GAFF parameter set. Specifically, improper torsions
for GAFF types ca-o-no-o and c3-o-no-o. We added these using generic GAFF values (that is,
the values used for the majority of the improper torsions in GAFF) – a barrier height of 2.2
kcal/mol, a phase shift of 180°, and a periodicity of 2.

After setup in Antechamber and Leap, small molecule parameters were converted to GRO-
MACS topology and coordinate files using a Perl conversion script developed previously20.
Small molecules were then solvated using GROMACS utilities in a dodecahedral water box
with at least 1.2 nm from the solute to the nearest box edge using the TIP3P model of
water21. The number of water molecules varied depending on the solute size. Simulations were
performed separately at a variety of different alchemical intermediate λ values, with the number
of λ values and the amount of equilibration as described previously12. Production simulations
were 5 ns in length at each λ value, and free energies and uncertainties were computed as
described previously4,12. Uncertainties were computed using the block bootstrap procedure
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described previously. Cutoffs and simulation parameters were as described previously except
that the real-space electrostatic cutoff was 10 Å rather than 9 Å

We computed the electrostatic and non-polar components of solvation. The electrostatic
component was computed as the free energy of turning on the solute partial charges in water,
less the free energy of the same transformation in vacuum. The non-polar component was the
free energy of turning on the Lennard-Jones interactions between the uncharged solute and
water, as in previous studies4,12. Alternative definitions of the non-polar component are
possible.44

B. Analysis of the non-polar component
In implicit solvent models, the non-polar component of solvation is often assumed to correlate
with the surface area and/or the volume based on theoretical arguments relating to cavity
creation cost22–26. To explore this we computed the solvent accessible surface area and volume
for all of the solutes considered here using GROMACS tool g_sas with a probe radius of 1.4
nm.

We also further dissected the non-polar part (due the Lennard-Jones interactions) into repulsive
and attractive components using the Weeks-Chandler-Andersen (WCA) separation27. To do
this, we implemented the WCA separation in a modified version of GROMACS 3.3.1.45

In our main study, we simply computed the total non-polar component and retained the
trajectories. The attractive component for each solute was then obtained by applying the WCA
separation to stored trajectories of the fully interacting solute, and reprocessing these
simulations with the attractive interactions turned off to re-evaluate the energies. We computed
the free energy for turning off the attractive interactions using exponential averaging (the
Zwanzig relation28) and standard error analysis. This assumes that phase-space overlap is good
between the ensemble where the solute has attractive interactions with water, and that where
it does not. Error analysis should tell us if this is not the case. We further tested this by re-
computing the attractive contribution using simulations at series of separate λ values (where
λ modifies only the attractive interactions) for selected solutes (phenol, p-xylene, pyridine, and
toluene) and found that computed free energies were within uncertainty of the values computed
using exponential averaging, indicating overlap was sufficient.

With these attractive components, we then obtained repulsive components by subtracting the
attractive component from the total non-polar component. This probably results in slightly
larger uncertainties in computed repulsive components than would have resulted from
computing the repulsive component separately, but it also saves a large amount of computer
time since we had already computed the total non-polar component, and the repulsive portion
of the calculation is the most difficult to converge.

C. Identification of systematic errors
Some functional groups may lead to systematic errors, resulting in errors which are larger for
some types of molecules than for other types. Alternatively, there might be no systematic errors.
We seek an approach to easily identify systematic errors and prioritize functional groups which
have the largest errors.

We make a list of compounds and sort it by RMS error, from largest error to smallest error.
Following a method that is often used to determine enrichment factors for drug discovery, we
look at the cumulative distribution function (CDF) for each functional group – the probability
of compounds with that functional group having a ranked RMS error up to rank x. Those
functional groups that are systematically wrong will tend to cluster at high RMS error and will
result in a rapid rise in the CDF versus x. This can be assessed easily by computing the area

Mobley et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2010 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



under the CDF, biased by a weighting function to give the most weight to high RMS errors.
Here, we do this using the recently-developed BEDROC metric29, which evaluates the integral
of the CDF multiplied by an exponentially decaying weighting factor, then re-scales this to run
from 0 to 1. Chemical groups which occur most often in compounds with high RMS errors
will have larger BEDROC values, while chemical groups which have more random errors will
have smaller BEDROC values (the expected BEDROC value for a uniform distribution can be
computed analytically29). Chemical groups that only occur in compounds with low RMS errors
have the smallest BEDROC values. In Section III we report BEDROC values for a variety of
chemical groups and atom types. Uncertainties were computed using the standard deviation of
the mean for 40 iterations of a bootstrap procedure where BEDROC values for each chemical
group are recomputed using a new list of compounds made up of a random selection of
compounds from the original list.

Here, BEDROC values were computed using a weighting factor of α=1.0. This value was
obtained empirically by experimenting with different α values to see what gave the best ability
to recognize functional groups which differ substantially from random. If α is too large, the
weighting is too strong and only compounds at the very highest RMS errors matter. If α is too
small, making BEDROC equivalent to the ROC metric, the weighting of the early part of the
curve is too weak, also apparently reducing the ability to recognize systematic errors. α = 1.0
was a good compromise.

To avoid having to assign functional groups to all of the compounds in the test set by hand,
we used the program Checkmol30, which automatically assigns chemical groups to molecules.
We used MDL molfiles generated by OpenEye’s OEChem toolkit as input. This resulted in an
extremely large set of chemical groups, so we retained only those chemical groups which
occurred in at least 5 molecules. We also combined some small groups. For example, we made
a single group of amines, containing all types of amines. We also did the same for amides,
ethers, esters, thiols, acids, and alcohols. We also manually created a ”hypervalent S” group
and included the appropriate compounds in this group. The resulting list of molecules assigned
to chemical groups was used to generate BEDROC values for these chemical groups.

We also tried using Student’s t test to look for systematic errors to supplement the BEDROC
approach. We used our own implementations of the t test, and SciPy’s implementation of the
incomplete beta function for computing the significance. Results from this are discussed below.

III. RESULTS AND DISCUSSION
A. The mean error relative to experiment is less than 1 kcal/mol

Here we evaluate the agreement between computed hydration free energies and the
experimental values for the full test set. A previous study on the same 504 small-molecule test
set compared the accuracy of several different implicit solvent models5 using molecular
dynamics free energy calculations. RMS errors ranged from 2.014±0.008 kcal/mol to 2.433
±0.002 kcal/mol depending on the implicit solvent model, with correlation coefficients (r2)
from 0.685±0.001 to 0.774±0.001. In all four solvent models tested, the computed hydration
free energies were systematically too negative relative to experiments (the solutes preferred
the water phase too much in the simulations), so the mean error was negative (−0.65±0.09 to
−1.1±0.1).

Here, using explicit TIP3P water, we find an RMS error of 1.26 ± 0.01 kcal/mol, with a
correlation coefficient of 0.889±0.006 and a mean error of 0.676±0.002 (Figure 1). Hence, on
average, explicit solvent simulations give significantly better agreement with experiments than
our earlier implicit solvent study, consistent with an earlier comparison4. Interestingly, the
systematic errors of explicit and implicit solvent studies are in opposite directions. In explicit
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solvent, the hydration free energies here are systematically too positive. These differences are
likely due to the solvent models rather than the force field parameters, since the solute
parameters are very similar in the two cases. Systematic errors in other explicit solvent models
tended to be in the same direction as the explicit solvent deviation here8, so perhaps limitations
of the water model are playing a role. Another potential source of such differences is the neglect,
in implicit solvent models, of asymmetries in the response of water to solutes of different
polarities7. Another origin of differences could be the non-polar term in the implicit models.
That is, the term γ × A(where A is the surface area) in implicit solvent models involves an
adjustable parameter which can change the errors. A table of the full results from this study is
available in the Supporting Information.

B. Improving the alkyne Lennard-Jones parameters and identifying other systematic errors
Are there systematic errors in the force field parameters for molecules in our test set? We found
that the computed hydration free energies for alkynes were systematically much too positive
(Figure 1 and the Supporting Information). There were six alkynes in the set and the mean error
was 1.92±0.21 kcal/mol. All of the computed hydration free energies were actually around 2
kcal/mol, while experimental values are close to zero. For all of the alkynes, the electrostatic
component of hydration is quite small (−0.8 to −0.9 kcal/mol), since these molecules are largely
non-polar. We reasoned that errors in alkyne parameters are thus not likely to be in the
electrostatic terms. Nor are the errors expected to come from the bonded parameters (bond
stretching, angle bending, etc.), which should affect hydration free energies only weakly.
Hence, we focused on the alkyne Lennard-Jones parameters. In GAFF, the alkyne carbon
Lennard-Jones parameters are identical to those for all carbons except selected sp2 carbons
(the ’c2’ atom type), and are taken directly from comparable carbons in older AMBER force
fields13. We were particularly concerned about the parameters for the GAFF ”c1” atom type,
for the triple bonded carbons in alkynes. These apparently originated with the work of Howard
et al., where they ”were obtained by analogy to the Weiner et al. and Cornell et al. force
fields.”31. In that work, those Lennard-Jones parameters were taken to be the same as for the
other carbons.

Many AMBER Lennard-Jones parameters were originally taken from the OPLS force field,
so we examined the OPLS choices for triple bonded carbons. It turned out that OPLS uses
several different atom types for alkyne carbons, originating from simulations of linear and
substituted alkynes,32–34, and some of these have much stronger dispersion interactions than
those for the GAFF c1 type, which is intuitively reasonable. It seemed likely that missing
dispersion interactions could account for at least part of the error we were seeing for alkynes,
thus we examined modifying the Lennard-Jones well-depth for alkynes in GAFF.

We sought to avoid adding additional atom types to GAFF, but OPLS has several different
carbon well-depths for alkynes, depending on whether the carbon is terminal (ε= 0.086 kcal/
mol), non-terminal with an attached atom having two or three hydrogens (ε = 0.210 kcal/mol),
nonterminal with an attached atom having one hydrogen (ε = 0.135 kcal/mol), or non-terminal
with an attached phenyl or other atom having no hydrogens (ε = 0.100 kcal/mol)32–34. To avoid
adding additional atom types to GAFF, we needed to pick just one of these, so we chose the
one which gave the most accurate hydration free energies when used for all alkyne triple bonded
carbons. This was ε = 0.210 kcal/mol. The original GAFF well depth was ε = 0.086 kcal/mol.

Using this new ε value for triple-bonded carbons, the computed hydration free energies for
alkynes are much closer to zero (although still slightly positive); now the mean error is 0.49
±0.07 kcal/mol, down from 1.92±0.21 kcal/mol initially. Increasing the well depth further could
reduce this somewhat more, but this might cause other inconsistencies within the force field.
Nevertheless, the systematic error here on alkynes is compelling, and we recommend that future
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GAFF studies use a well depth of ε = 0.210 kcal/mol for triple bonded carbons (GAFF types
c1, cg, and ch).46

The alkynes also provide an example of how the BEDROC metric works for identifying
systematic errors. Before the adjustment of the well depth for alkynes, the BEDROC value
(with α=1) for alkynes was 0.90±0.02 (compared to 0.49 for a random distribution with this
α)47, indicating that alkynes were systematically wrong. After the fix, the BEDROC value was
0.26±0.05, indicating that alkynes now actually are considerably better than other typical
compounds (Figure 2). Although our correction of ε was done without regard for the
carbonitriles, the change results in a decrease in BEDROC for the carbonitriles from 0.86±0.05
to 0.73±0.06 (compared to 0.49 for uniform). So carbonitriles are now improved too, but still
have substantial systematic errors. With this change, the overall RMS error decreases slightly
to 1.24±0.01 kcal/mol and the correlation coefficient remains essentially the same (0.891
±0.006). In all that follows we report values computed with the new well depth.

We believe that the approach utilized here (looking for compounds that are over-represented
at the highest RMS errors) is a general and useful strategy for identifying systematic flaws in
the energy functions used for molecular modeling simulations and prioritize reparameterization
efforts. Functional groups which tend to cause significant errors should occur frequently at the
high-RMS error end of the set, while functional groups which are not necessarily linked to the
errors should be roughly randomly distributed over the test set. For example, one would
intuitively expect that whether a compound is aromatic or not will have little to do with whether
it is systematically mispredicted. Indeed, aromatic compounds have a BEDROC value of 0.48
±0.03 (Figure 2). BEDROC values by functional group for the set are shown in Table I. These
BEDROC values show that cyclic hydrocarbons, alkynes (with the fix), alkanes, aldehydes,
and ketones are now particularly well predicted. On the other hand, there appear to be
systematic errors for alcohols, alkyl bromides and carbonitriles.

We also tried another approach for identifying systematic errors involving Student’s t-test,
which compares the means of two distributions and provides a measure of the significance of
any difference in the means. We applied this approach in two different ways:

1. We compared the mean experimental value for each functional group with the mean
calculated value for each functional group (Supporting Information, Table 5). This
proved not to be particularly useful, as these means are significantly different for
almost every functional group. This is not surprising given the fact that the mean error
across the entire test set is 0.676±0.002, so most computed values (in all functional
groups) are too positive. This does show that results could be improved across the
entire set by addressing this systematic offset, but it does not provide any insight into
which functional groups are particularly problematic.

2. We compared the error for the compounds in each functional group with the error for
the entire set (Table II). This shows which functional groups have significantly
different performance than the overall set, though this performance could be better or
worse. We also show the mean error for each functional group in Table II; functional
groups with mean errors around 0.676 kcal/mol are typical, while those with larger
mean errors are worse than average, and those with smaller mean errors are better
than average. The t-test tells us which of these differences are significant, and many
are. This appears to be a useful analysis that complements the BEDROC analysis.
The advantage of the BEDROC analysis is that it tells us which functional groups
have the worst errors, while this analysis can tell us which functional groups have the
most significant errors.

The study done here uses one particular charge model. Charge model may affect which
compounds are particularly poorly-predicted, though in two recent tests, the compounds which
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were poorly predicted tended to be poorly predicted by most charge models4,35. Still, our
analysis here does not in general point to a specific source of error. Errors may be due to the
charge model, Lennard-Jones parameters, or bonded parameters, some combination, or even
due to the water model. In the case of the alkynes, we can be fairly confident that the source
of error is the Lennard-Jones parameters for the reasons noted above. But for the other cases
noted here, further work will be required to determine the source of error.

C. The total non-polar component does not correlate with surface area or volume
We examined the non-polar components (the non-electrostatic component of the hydration free
energy) for our dataset. The total non-polar contribution to the solvation free energy is typically
assumed to correlate with surface area or volume in implicit solvent models. Yet we find that
there is essentially no correlation. Plots of non-polar components versus surface area and
volume are shown in Figure 3. The correlation of the non-polar component with surface area
is r2 = 0.019±0.001, and that with volume is r2 = 0.011±0.001. The molecules in this test set
are small enough that surface area and volume are highly correlated (r2 = 0.991 ± 0.001).

We further dissect the nonpolar component using the WCA separation of the Lennard-Jones
potential energy (and thus the nonpolar component) into attractive and repulsive parts. The
potential is split based on the sign of the force, as discussed in the Methods section. We find
that both the attractive and repulsive components individually correlate strongly with surface
area and volume (repulsive: r2 = 0.964 ± 0.002 with surface area, r2 = 0.952 ± 0.002 with
volume; attractive: r2 = 0.945 ± 0.002 with surface area, r2 = 0.946 ± 0.002 with volume; Figure
4), and it is only the total (the small difference of the two large individual components) that
does not correlate well with surface area or volume. This is in accord with previous work on
a smaller set of compounds36. Essentially, the total nonpolar component is the sum of two anti-
correlated quantities and so the total ends up being dominated by the scatter in these quantities.
It is interesting to note that the minimum in the Lennard-Jones potential is precisely where
these two forces, the attractive and repulsive components, are very well balanced, so it is
perhaps not surprising that the attractive and repulsive components correlate so well.

The observed poor correlation, and the importance of attractive interactions, is consistent with
several previous studies which have found that the nonpolar component of solvation does not
correlate well with surface area36–39.

Why is the correlation with surface area so poor? In Figure 3, it is apparent that compounds
containing only carbon and hydrogen have a nonpolar component that is less favorable to
solvation than molecules of an equal size which additionally contain nitrogen and/or oxygen.
The likely reason for this is that nitrogen and oxygen atoms tend to have stronger attractive
dispersion interactions with their environment than do carbon and hydrogen. Several other
studies have noted that dispersion interactions play an important role in nonpolar
solvation36–39. Even interior solute atoms contribute to these attractive interactions in an
important way40. Other factors may also contribute to the poor correlation with surface area.
For example, geometric effects may play an important role as well.

Overall, our results strongly support the growing consensus that implicit solvent models should
move beyond the simple surface area model for treatment of the nonpolar component, perhaps
at least to include a treatment of dispersion interactions. A number of alternate models have
already been proposed36,38,39,41,42.

IV. CONCLUSIONS
We used molecular dynamics simulations in explicit TIP3P water to compute the hydration
free energies for a set of 504 neutral compounds. We compared the results with experimental
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data in the most extensive such test in explicit solvent to date. We find a good correlation (r2

of 0.891±0.06) and an RMS error of 1.24±0.01 kcal/mol, or roughly 2 kT. We believe this is
representative of the accuracy that can be expected from the best current physical models for
hydration free energies. It may be possible to develop new models which can do somewhat
better, though we expect that it may be very hard to increase accuracies past 1 kT. A key finding
is that these explicit solvent free energies are considerably more accurate than the
corresponding implicit solvent values for the same dataset.

At the same time, many of the molecules in this test set are relatively small and simple compared
to typical drug-like molecules, which may be highly polyfunctional. Recent work suggests that
overall performance of the approach applied here may be significantly worse in tests where
the compounds involved are more polar and polyfunctional4,35. This may suggest we need
much more hydration free energy data on more polyfunctional, drug-like molecules in order
to refine our force fields.

Here, we also propose a way to identify systematic errors in force field parameters for particular
functional groups. We do this using the BEDROC method29. Using this approach, we were
able to fix a systematic problem with alkyne Lennard-Jones parameters. We also identified
several other classes of compounds which appear to have systematic errors, and for which
further force field development should be done. Having a method to systematically identify
problematic compound classes provides good opportunities for force field improvements.

In addition, we studied the nonpolar component of the hydration free energy for the compounds
in the test set. We find that while the large repulsion and attraction terms both correlate well
with the size (area or volume) of the solute, the total nonpolar component, which is a small
difference between these two quantities, does not. This strongly suggests that implicit solvent
models need to move away from treating the nonpolar component as simply dependent on the
surface area. The data additionally suggest that new models must address the non-linear
behavior arising from the delicate balance of repulsive and attractive nonpolar terms.
Furthermore, implicit solvent models that have been parameterized to match experimental
hydration free energies using a simple surface area-based nonpolar term may need to be re-
parameterized.

Here, the real value of this study is not the methods presented – the methods were used in
previous work. Rather, it is the extensive nature of the test, which provides the opportunity to
actually identify systematic errors in the force field descriptions of particular functional groups.
It also provides guidance into what compounds are likely to be particularly challenging to study
computationally with current force fields.

Because we believe the real value of this study is these results, we have deposited the full set
of computed free energies, components, starting molecular structures, and parameters for this
work in the Supporting Information. We hope that others find this experimental data set and
the computational results to be useful in future studies of solvation and for force field
development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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44. Here, the alchemical pathway used turns off all solute partial charges, meaning that the non-polar
component is calculated without solute intramolecular electrostatic interactions. An alternative
pathway8,43 involves turning off only intermolecular electrostatic interactions between the solute
and its environment, while maintaining intramolecular electrostatic interactions. While the two
pathways must give equivalent hydration free energies, the breakdown into electrostatic and non-
polar components will be slightly different, since the conformational ensemble sampled during the
non-polar component of the calculation will be altered by the presence (or lack thereof) of
intramolecular electrostatic interactions.

45. Other separation schemes and probe radii are possible, as are other surface definitions, but our main
conclusions here should not depend significantly on these factors, as suggested by the work of Tan
et al.36

46. We do not believe it is necessary to perform additional tests to examine other alkyne properties (such
as pure liquid properties) before making this recommendation for two reasons. First, the AMBER
force field does not typically use these properties to inform the parameterization process, so including
them would be a deviation from AMBER parameterization strategies. Second, the AMBER force
field and GAFF claim (in the force field files) to use the OPLS Lennard-Jones parameters for alkynes.
The suggested modification simply makes this claim true and brings AMBER/GAFF back into
conformity with OPLS.

47. BEDROC values for a random distribution actually depend on the number of compounds being
considered relative to the total. But here the BEDROC value for the random distribution is 0.49 for
all of the sizes of our chemical groups except for aromatics, where it is 0.50. To simplify our tables,
then, we simply compare all BEDROC values to 0.49.
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FIG. 1. Calculated hydration free energies versus experiment
Shown are the calculated hydration free energies versus experiment for the full test set. The
diagonal line is x = y. Vertical error bars denote computed uncertainties, and horizontal error
bars are a conservative estimate.
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FIG. 2. CDFs for selected functional groups versus error
Shown are cumulative distribution functions for finding compounds with particular functional
groups at a given ranked error. Compounds found far to the left have very large errors;
compounds far to the right have very small errors. An ideal random distribution of errors would
give rise to a linear rise in the CDF, as shown by the dotted line. CDFs are shown for (a) alkynes
before fixing the Lennard-Jones well-depth; (b) alkynes after fixing the Lennard-Jones well-
depth, and (c) aromatics.
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FIG. 3. Nonpolar components versus solvent accessible surface area and volume
Shown are the calculated nonpolar component of the hydration free energies versus solvent
accessible surface area and volume for the compounds in the set. Carbon and hydrogen
containing compounds are black, those with oxygen additionally are red, those with nitrogen
additionally are blue, and those with nitrogen and oxygen both are magenta. Compounds with
diamond symbols contain other elements in addition to C, H, N, and O. In the surface area plot,
the line is a typical implicit solvent nonpolar component estimate of Gnp = (0.00542· SA +
0.92) kcal/mol1.
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FIG. 4. Repulsive and attractive parts of the nonpolar component versus surface area
Shown are the repulsive (a) and attractive (b) parts of the nonpolar component, as calculated
using the WCA separation, plotted versus the solvent accessible surface area for solutes in the
test set. Similar plots comparing the repulsive and attractive components to volume are given
in the Supporting Information.
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TABLE I

BEDROC values by functional group for the different functional groups represented in the test set, compared to
what would be expected for the same number of compounds distributed randomly across the test set. Functional
groups with high BEDROC values (relative to the value for random, roughly 0.5 here) are overrepresented in
compounds with high RMS errors.

Functional group Number BEDROC

acid 73 0.48±0.03

alcohol 38 0.76±0.03

aldehyde 20 0.22±0.04

alkanes 28 0.16±0.03

alkene 35 0.55±0.04

alkyl bromide 17 0.72±0.08

alkyl chloride 31 0.61±0.05

alkyl iodide 9 0.44±0.06

alkyne 6 0.26±0.04

amine 44 0.47±0.04

aromatic compound 170 0.48±0.03

aryl chloride 20 0.54±0.05

carbonitrile 12 0.73±0.07

cyclic hydrocarbon 8 0.14±0.03

ester 8 0.46±0.11

ether 42 0.60±0.04

halogen derivative 22 0.58±0.07

heterocyclic compound 48 0.60±0.04

hypervalent S 5 0.62±0.20

ketone 25 0.26±0.06

nitro compound 17 0.63±0.08

other 29 0.62±0.06

phenol or hydroxyhetarene 33 0.60±0.05

thiol 5 0.46±0.04
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TABLE II

Statistics from applying Student’s t test to the difference between the mean error for each functional group and
the overall mean error. Shown are the number of compounds in each functional group, the calculated t value, the
computed significance (probability that t could be this large or larger by chance) and the mean error for this group
(in kcal/mol). The overall mean error is 0.676±0.002 kcal/mol, so groups with mean errors smaller than this may
be significantly better than average (until the mean error becomes negative), while those with mean errors larger
than this may be significantly worse.

Functional group Number t-value Significance Mean error

acid 73 −7.43 4e-13 −0.34

alcohol 38 3.62 0.0003 1.29

aldehyde 20 −3.04 0.003 −0.07

alkanes 28 −1.69 0.09 0.31

alkene 35 2.34 0.02 1.07

alkyl bromide 17 3.31 0.001 1.50

alkyl chloride 31 2.31 0.02 1.09

alkyl iodide 9 0.59 0.6 0.86

alkyne 6 −0.38 0.7 0.49

amine 44 −0.65 0.5 0.55

aromatic compound 170 −1.05 0.3 0.55

aryl chloride 20 1.65 0.1 1.04

carbonitrile 12 3.22 0.001 1.63

cyclic hydrocarbon 8 −1.18 0.2 0.21

ester 8 −1.69 0.09 0.02

ether 42 2.18 0.03 1.01

halogen derivative 22 0.32 0.8 0.73

heterocyclic compound 48 2.38 0.02 1.02

hypervalent S 5 −4.55 7e-06 −1.50

ketone 25 −2.77 0.006 0.05

nitro compound 17 1.86 0.06 1.13

other 29 −0.48 0.6 0.55

phenol or hydroxyhetarene 33 2.72 0.007 1.16

thiol 5 0.51 0.6 0.89
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