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Abstract
Accumulating evidence suggests that characteristics of pre-treatment FDG-PET could be used as
prognostic factors to predict outcomes in different cancer sites. Current risk analyses are limited to
visual assessment or direct uptake value measurements. We are investigating intensity-volume
histogram metrics and shape and texture features extracted from PET images to predict patient's
response to treatment. These approaches were demonstrated using datasets from cervix and head and
neck cancers, where AUC of 0.76 and 1.0 were achieved, respectively. The preliminary results
suggest that the proposed approaches could potentially provide better tools and discriminant power
for utilizing functional imaging in clinical prognosis.
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1. Introduction
Recent years have witnessed increased use of positron emission tomography (PET) in
radiotherapy treatment planning and monitoring. In particular, [18F] Fluoro-2-deoxy-d-glucose
(FDG), a glucose metabolism analog, has been frequently used in clinical practice for tumor
detection, staging, and radiotherapy target definition of different cancer sites [1-3]. Recently,
there has been accumulating evidence that pre-treatment FDG uptake could be used as a
prognostic factor for predicting radiotherapy treatment outcomes [4-10]. This was motivated
by the fact that tumor uptake is dependent on the characteristics of its microenvironment
[11]. More recently, heterogeneity in FDG uptake in head and neck tumors has been reported
in animal models [12]. The heterogeneity was attributed to the distribution of different tissue
components within the tumor region. Typically, quantitative analysis of FDG uptake is
conducted based on observed changes in the standardized uptake value (SUV). However, sole
SUV measurements are potentially impacted by the initial FDG uptake kinetics and radiotracer
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distribution, which are dependent on the initial dose and the elapsing time between injection
and image acquisition. In addition, some commonly reported SUV measurements might be
sensitive to changes in tumor volume definition (e.g., maximum SUV). These factors and others
might make such approach prone to significant intra- and inter-observer variability [6,7].
Alternatively, there have been some efforts in the literature directed towards utilizing variations
in the FDG distribution, characterized by its heterogeneous shape and texture, as potentially
more robust prognostic metrics. Visual assessment was investigated to evaluate heterogeneity
in FDG for patients with locally advanced rectal carcinoma [6] and cervix cancer [13]. Another
visual pattern analysis technique was applied in Hicks et al. [7] for grading tumor response
and normal tissue toxicity in patients with non-small cell lung cancer. Spatial heterogeneity
metric based on deviation from an idealized ellipsoid structure (i.e., eccentricity) was found to
have strong association with survival in patients with sarcoma [14,15].

In this work, we are exploring two feature-based approaches for summarizing and extracting
reliable information from PET images. This information would be used to derive prognostic
metrics in outcome analysis and could potentially be incorporated into the clinical planning
process to modify patients' treatment based on their predicted failure risk. For instance, this
could be done by intensifying the treatment dose for patients that at are high risk of failure and
providing less toxic regimens than standard for patients who are at lower risk.

The first approach is a histogram-based approach referred to as intensity-volume histogram
(IVH), which is analogous to the dose-volume histogram (DVH) concept used for evaluating
treatment plan in radiotherapy [16,17] but is applied to functional imaging datasets instead of
dose distributions. The IVH approach would summarize the 3D functional imaging intensity
information into a single curve for each anatomic structure of interest, which will be used to
derive intensity-volume metrics, as discussed later. The IVH may be represented in two forms:
the cumulative integral IVH and the differential IVH. Considered here is only the cumulative
IVH, which is a plot of the volume of a given structure as a function of image intensity (or
normalized SUV) that is equal to or higher than a certain value.

The second approach extracts shape and texture features from PET images to characterize
anatomical structure of interest. This would provide the analyst with objective morphological
descriptors of PET uptake in these regions. As a proof of principle, we will mainly focus on
commonly well-established features in the pattern recognition community. Hence, in addition
to geometrical shape features such as eccentricity and solidity for shape description [15,18],
we also explore second-order histogram statistics or co-occurrence matrix features for texture
analysis [19]. These features possess strong discriminant power and ability to mimic human
perception of texture variability. Therefore, they have been widely applied in many complex
industrial and medical pattern recognition tasks [20-25]. In PET imaging, texture analysis has
been previously applied to evaluate the performance of reconstruction algorithms [26]. In
addition, we demonstrate that complementary information among extracted features could be
combined to capture differences in tumor metabolic activities between patients who respond
to treatment and patients who do not respond to treatment. To our knowledge, this is the first
report that utilizes a systematic pattern analysis approach for predicting cancer patients'
treatment outcomes based on PET imaging.

2. Methods and Materials
As demonstrative examples, we analyzed two datasets of cervix cancer patients and head and
neck cancer patients who received chemoradiotherapy as part of their treatment. All patients,
in both sets underwent pre-chemoradiotherapy diagnostic FDG-PET in our institute. The PET
images were acquired using a hybrid PET/CT Siemens Biograph with an in-plane spatial
resolution of 5.3×5.3 mm/pixel and a slice thickness of 3.4 mm. The images were reconstructed
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using ordered-subsets expectation maximization algorithm with compensation for attenuation
using CT-derived μ-maps. The cervix cancer dataset consisted of 14 patients. The data was
analyzed for the endpoint of disease persistence (i.e., tumor did not eradicate as a result of
treatment) 3 months post-radiotherapy. Half of the cervix patients had persistent disease after
chemoradiotherapy treatment as diagnosed on their follow-up PET scans. The head and neck
dataset consisted of 9 patients. Each patient underwent a CT simulation scan and diagnostic
PET/CT scan providing 3 images per case (27 images in total). The dataset was analyzed for
endpoint of overall survival rate. The patients had a median follow-up period of 30 months
(range: 9-48 months). Four of the head and neck patients died during the follow-up period.
Note that traditional disease staging evaluation was not predictive of response in these patients.
Interested reader could find review literature on the current role of PET imaging for cervix
cancer in Grigsby et al. [8] and in head and neck cancer in Greven et al. [27].

The pre-treatment scans were transferred using the Digital Imaging and Communications in
Medicine (DICOM) protocol into the research treatment planning system CERR, which stands
for Computational Environment for Radiotherapy Research [28], where the intensity values
were converted into SUV. SUV is a decay-corrected measurement of activity per unit volume
of tissue (MBq/mL) adjusted for administered activity per unit of body weight (MBq/kg)
[29]. All patients had a maximum SUV greater than 2. An experienced oncologist outlined and
recorded the clinical target volume (CTV), which includes a margin around the tumor to
account for subclinical invasion of microdisease extensions. The gross tumor volume (GTV)
delineation in the cervix cancer case was performed by thresholding the SUVs within the CTV
at 40% of the maximum value [30], which is the current standard clinical practice in our
institute. Figure 1 shows samples of contoured PET images for the cervix cancer case. In the
case of head and neck, the tumor delineation of the PET's GTV, was performed manually by
the physician (see figure 2) because the 40% maximum SUV is implicated as an unreliable
criteria for the head and neck case [31]. Contouring of head and neck target volumes was done
using a CT simulation scan fused with a PET/CT scan with the PET window level set at 40%
of the maximum value. Delineation of target volumes for head and neck cancer was based on
institutional guidelines that have been developed for each head and neck subsite. The standard
practice at our institution also includes review of all available information including physical
examination, imaging evaluations (CT, PET/CT, MRI, etc), endoscopic findings, operative
reports, and pathologic reports. The current GTV definition guidelines in our institute include
the elective nodes beside the primary tumor as shown in figure 2.

2.1 Intensity volume histogram
The typical role of the intensity volume histogram (IVH) is to reduce a complicated 3D data
to a single easier to interpret curve, whereas in this case the volume of a selected structure is
plotted as a function of image intensity (or normalized SUV) that is equal to or higher than a
certain value.

The IVH method enables several useful metrics to be extracted from functional images for
outcome analysis such as Ix (minimum intensity to x% highest intensity volume), Vx
(percentage volume having at least x% intensity value), and other common descriptive statistics
(mean, minimum, maximum, standard deviation, etc). Note in case of PET, the image intensity
values are typically normalized into SUVs prior to calculations.

As potential measures for analyzing PET heterogeneity using this histogram-based approach,
in addition to Ix and Vx, we also considered differential metrics such as (cf. tables 1, 2):

(1)
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Examples of IVH plots and these metrics for PET data in CERR are shown in figures 3 and 4.
Note that the ‘x’ in Vx is chosen as a percentage of the maximum SUV for each patient because
SUVs tend to have relatively large variability amongst patients. In our datasets, the maximum
SUV range was 3-43 with a median of 12 for cervix patients and it had a range of 4-32 with a
median of 16 for head and neck patients.

2.2 Texture features using co-occurrence matrix
The co-occurrence features are based on the second-order joint conditional probability density
function P(i,j;a,d) of a given texture image. The ith, jth element of the co-occurrence matrix
for an anatomical structure of interest represents the number of times that intensity levels i and
j occur in two voxels separated by distance (d) in direction (a). In our implementation d was
set to a single voxel size, and a was selected to cover the 26-connected neighborhood in 3D
space. For an image with M intensity levels, the co-occurrence matrix size is M × M. The M
levels were obtained by applying a non-uniform quantization method (root-squared) to limit
the size of the matrix and speedup computation. Note that in this case the main source of noise
is actually due to quantization rather than the original image photon-limited count.a The values
for M are typically selected in powers of 2 (8, 16, 32, etc). Shown in figures 5 and 6 are sample
surface plots from clinical PET images.

Four co-occurrence features relevant to our application are defined as follows [19] (cf. Tables
1,2):

•

(2)

•

(3)

•

(4)

•

(5)

These metrics are independent of tumor position, orientation, size, and brightness, and take
into account the local intensity-spatial distribution [19,32]. These are considered advantages
of texture-based analysis over direct (first-order) histogram metrics (e.g., mean and standard
deviation), which are currently practiced clinically in some institutes for analyzing PET
metabolic uptake [8,27]. Hence, these features can provide an intensity-spatially dependent
map of the tumor metabolic uptake that can potentially be used a signature to characterize the
tumor response to treatment.

aFor a uniform-quantizer, assuming uniformly distributed data, the signal-to-noise ratio is given by 6 dB/bit. This would be improved
by about 2 dB for non-uniform case (Jain, 1989).
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2.3 Shape features
We computed the following geometrical shape features [18] (cf. tables 1,2):

• Eccentricity (EC): is a measure of non-circularity defined in terms of the ratio of the
minor axis to the major axis of the best-fitted ellipsoid to the structure of interest:

(6)

where a is the semi-major axis and b is the semi-minor axis. EC values ranges from
0 (circle) to 1 (line).

• Euler number (e): is the number of connected objects in a region minus the number
of holes.

• Solidity: this is a measurement of convexity and is defined as the proportion of pixels
in the convex hull that are also in the region. The convex hull, defined as the smallest
convex polygon that can contain the region, is computed using the Qhull algorithm
[33].

• Extent: is similar to solidity, however, it represents the proportion of pixels in the
bounding box that are also in the region. The bounding box is defined as the smallest
rectangle containing the region.

In our experiments, these features were mainly calculated for the tumor GTV region and in
some cases; figures are presented for the surrounding CTV background for comparison
purposes as discussed below.

2.4 Statistical analysis
We used Spearman's rank correlation (rs) and the area under the receiver-operating
characteristics curve (AUC) to analyze the association between the extracted features and post-
radiotherapy outcomes in cervix and head and neck cancers. Spearman's coefficient provides
a simple yet robust nonparametric way to estimate bivariate increasing or decreasing trends
that are not necessarily linear associations [34]. The receiver-operating characteristics (ROC)
is a graph of the true positive fraction (sensitivity) versus the false positive fraction (1-
specificity) for a continuum of threshold values. A value of the area under the curve (AUC) of
1 is ideal, while a value of 0.5 is equivalent to a random guess [35]. Figures 7 and 8 show ROC
curves for outcome prediction based on PET analysis in cervix cancer and head and neck
cancer, respectively. To improve the prediction power, we have adopted a multi-metric model
building approach based on logistic regression and resampling methods to combine several
prognostic factors [36], in which a logit transformation was used:

(7)

where n is the number of patients, xi is a vector of the input variable values used to predict f
(xi) for outcome yi of the ith patient. The ‘x-axis’ summation g (xi) is given by:

El Naqa et al. Page 5

Pattern Recognit. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(8)

where p is in the number of selected feature metrics. The most relevant metrics are selected
using a sequential forward search. The parameters of the model (βj) are estimated using
maximum likelihood techniques. The validity of the derived logistic regression model was
tested using the leave-one-out cross-validation resampling technique. The main rationale for
using the logistic functional in (7) as a predictor is that treatment responses are thought to
follow S-shaped curves [37]. This is in addition to its format simplicity for routine clinical
evaluation.

3. Experimental results
As a demonstration of applying these methods to improve cancer treatment outcomes analysis
in PET, we considered cohorts of 14 cervix cancer patients and 9 head and neck patients who
were treated by chemoradiotherapy in our institute.

3.1 Cervix cancer example
In figure 3, we show the IVH plots for the clinical tumor volume (CTV) outlined by the
oncologist and the 40% maximum SUV delineated cervix tumor corresponding to patient's
PET scan of figure 1. Note that the IVH slope of the delineated tumor has a shallower slope
compared to the CTV, indicating larger variability uptake values in the tumor region (due to
spanning a wider range of intensities in the accumulative histogram). Shown in figure 5a, b
are surface plots of co-occurrence matrix for the CTV and the cervix tumor. Note that the CTV
is relatively smooth (entropy is 3.6) while the tumor is showing a ‘noisy’ pattern (entropy is
5.3), which is consistent with the shallow slope of the IVH (larger variability). Summarized in
table 1 are the statistical analysis results. It is observed that the texture-based metrics in the
table had the highest categorical prediction power of failure risk, while commonly used SUV
descriptive statistics had the lowest predictive ability. Specifically, the IVH-based V10–90 and
the texture energy were the most significant predictive features. A combined model of these
two variables using logistic regression analysis is characterized by the following linear
combination:

(9)

The model order was manually set to 2 and the variables were chosen by forward selection as
explained in section 2.4. This model had an rs=0.49 (p=0.04) and an AUC=0.76 as shown in
figure 7.

3.2 Head and neck cancer example
We carried out similar analysis for the head and neck case with an endpoint of overall survival.
In figure 4, we show the IVH plots for the CTV and the tumor GTV outlined by the oncologist
corresponding to patient's PET scan of figure 2. Note that the IVH slopes of the CTV and the
GTV are more comparable in terms of their steepness/shallowness in contrast with the cervix
case; this could be due to the relatively more heterogeneous nature of FDG uptake in
surrounding normal tissues in head and neck cases. Shown in figure 6a, b are the surface plots
of co-occurrence matrix for the CTV and the head and neck gross tumor. Notice that the texture

El Naqa et al. Page 6

Pattern Recognit. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



map of the CTV is again less noisy than that of the tumor (entropy of 3.8 versus 4.7,
respectively), but was less smooth than the cervix case (cf. figure 5a and figure 6a). Whereas
the cervix tumor's texture map was noisier than that of the head and neck tumor (cf. figure 5b
and figure 6b). Summarized results for statistical analysis of the head and neck data are found
in table 2. It is interesting to notice from table 2, that shape-based metrics had the highest
categorical prediction power of failure risk, while commonly used SUV descriptive statistics
had the lowest predictive ability. The IVH-based V90 had the highest univariate predictive
power of survival outcome. However, the tumor volume was also noted to be a good predictor
of outcome, which is consistent with previous findings [38-40].

We have chosen again to build a two-metric logistic regression model. The IVH-based V90 and
shape extent were chosen for constructing the model, which is characterized by the following
linear combination:

(10)

This model had an rs=0.87 (p= 0.0012) and an AUC=1 as shown in figure 8, which is a perfect
fit results for this small cohort of 9 patients. Larger datasets are needed to validate the prediction
power of this model.

4. Discussion
In this work, we have investigated methods based on pattern recognition for analyzing
functional imaging data to ameliorate reported shortcomings of relying on visual inspection or
sole traditional standardized uptake value (SUV) measurements in assessing treatment relative
risk. These methods would allow for extracting potential prognostic factors from functional
imaging data that could be more robust, informative, and discriminative than simplistic SUV
descriptive statistics to predict treatment outcomes.

Two distinct approaches were explored for analyzing functional imaging information. The first
category is histogram-based reduction of 3D functional imaging data and is denoted as
intensity-volume histogram (IVH). The IVH analysis of functional imaging information
inherits the same advantages and disadvantages of histogram analyses in analyzing volumetric
data. Metrics such an Ix and Vx are derived from IVH plots and could be used to build predictive
models of outcomes as demonstrated in Section 3. Nevertheless, IVH like other first-order
histogram approaches is limited by its spatial insensitivity. To overcome this limitation, we
have also investigated image-based features such as texture and shape attributes.

Unlike SUV descriptive statistics and IVH metrics, image-based features would have spatial
and topological information embedded in them. As a proof of principle, we have used the co-
occurrence matrix features to represent texture information because of its relatively simple and
intuitive structure. Surface plots of the co-occurrence matrix give a pictorial representation of
the spatial-intensity distribution, which is typically masked by first-order histogram analyses.
Several metrics could be derived from the co-occurrence matrix to characterize the texture
features of the structure of interest. We have chosen only four features from this pool, which
we thought were most relevant for analyzing PET prognostic value, mainly focused on
characterizing uptake's heterogeneity texture patterns. However, other invariant texture
features approaches could be investigated as well such as the multi-channel Gabor filter,
wavelet transform, Markov model, etc, which may not suffer from information loss due to
quantization. These methods and others are surveyed in [41].
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For shape analysis, we have chosen geometric shape features such as eccentricity, Euler
number, solidity, and extent. The Euler number is particularly useful for analyzing necrotic
tumors or GTVs that include lymph nodes structures in addition to the primary tumor as noticed
in figure 2. As this shape feature can capture the presence of multiple uptake regions within
the region of interest.

We have selected two cancer sites for demonstrating our methods, other sites such as lung
maybe good candidates as well, however, issues related to respiratory motion artifacts need to
be addressed carefully. We observed from our preliminary analysis, that the predictive
variables were site and endpoint specific. In both the cervix and the head and neck examples,
an IVH-based variable was among the strongest correlates with outcome. However, the texture
features seemed to be more relevant in the cervix case, while shape features appeared to be
more prevalent in the head and neck case. The prevalence of shape features in this case might
be affected by the GTV definition that included active lymph nodes. We noted that the
prediction in the case of cervix cancer was modest compared to head and neck cancer. This
could be attributed to inability of the selected features to fully characterize tumor persistence
in cervix cancer based on heterogeneity of FDG-uptake only and possibly additional variables
related to irradiation resistance such as oxygenation levels need to be included in analysis ass
well. In general, we conjecture that heterogeneity metrics such as entropy and local
homogeneity may be most relevant if texture matters, while eccentricity and shape convexity
would be more prevalent if shape matters. The presented results are based on a small cohort
of patients and are intended for demonstrative purposes. Analysis on larger data sets would be
required to shed more light on role of these metrics and their clinical relevance. We expect that
these imaging metrics will complement and enrich currently existing clinical knowledge.

For effective use of PET imaging as a biomarker and proper application of pattern recognition
features, deliberate attempts should be made to ensure that the PET scanning of the patients
follows the same standard with regard to blood glucose concentration, FDG dose, interval
between FDG injection and imaging, and imaging duration. In addition, it should be noted that
shape metrics are relatively more sensitive than texture metrics to delineation variations.
Manual contouring is known to suffer from inter-observer variabities [42]. Therefore,
automated methods would be preferred to manual contouring when possible. However,
currently used threshold-based approaches may be prone to errors [43]. We have recently
investigated an automated concurrent PET/CT image segmentation algorithm based on active
contours that can potentially provide better performance than its counterparts by jointly
analyzing the CT and the PET boundary information [44].

In our analysis, we have emphasized building a multi-metric model of relevant features to
further improve the predictive power by exploiting complementary information in these
features [36]. This approach has improved the prediction power for both cervix cancer and
head and neck cancer cases in comparison to using a single metric (correlation in cervix case
improved by about 14% and in head and neck by about 12%). However, other models based
on machine learning [45,46], which are able to capture nonlinear pattern relationships could
provide better discriminant power as in our previous work in mammography [47].

We believe that using the proposed pattern analysis methodology would potentially enrich the
set of tools available to the outcome analyst in oncology to extract the most relevant information
from functional imaging data.

5. Conclusions
We have proposed a systematic pattern recognition approach for analyzing functional imaging
data, in particular for FDG-PET. This would allow for extracting robust visual cues and features
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that could facilitate incorporation of PET imaging information to understand better patient's
response to radiotherapy treatment and reduce the subjectivity induced by visual assessment.
The intensity volume histogram (IVH) summarizes intensity-volume relationships in
functional images, which could have clinical treatment implication regarding dose coverage
adequacy for the oncologist. Image texture and shape features are valuable tools to mimic
human perception of visual cues without being prone to inter- and intra-observer variability.
In particular, texture features could significantly aid in summarizing tumor uptake
characteristics in its microenvironment and its relation to treatment resistance in certain clinical
scenarios. Our preliminary results are encouraging and suggest that the proposed
methodologies could yield beneficial and more robust tools for treatment response assessment
based on functional imaging information. However, further testing using larger datasets is
required to validate the quality of extracted relevant features from PET images for clinical
decision-making.
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Figure 1.
A pre-treatment PET scan of a cervix cancer case of a patient with persistent tumor at 3 months
follow-up post-radiotherapy treatment. The cervix clinical tumor volume (CTV) was outlined
by the physician (brown) and the 40% maximum SUV delineated tumor gross volume (GTV)
(green).
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Figure 2.
A pre-treatment PET scan of a head and neck cancer case of patient who died from disease
after radiotherapy treatment. The head and neck clinical tumor volume (CTV) (brown) and the
gross-tumor volume (GTV) (green) were outlined by the physician.
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Figure 3.
Intensity volume histogram (IVH) for cervix example showing the IVH plot for the clinical
tumor region CTV (brown) and the 40% maximum SUV delineated tumor GTV (green). IVH-
derived metrics such as Vx or Ix and their differentials could be extracted for outcome analysis.
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Figure 4.
Intensity volume histogram (IVH) for the head and neck cancer example showing the IVH plot
for the clinical tumor region CTV (brown) and the tumor GTV (green). IVH-derived metrics
such as Vx or Ix, and their differentials could be extracted for analyzing outcomes.
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Figure 5.
Surface plots of the co-occurrence matrix in the case of cervix cancer showing (a) the cervix
tumor CTV and (b) 40% maximum SUV delineated tumor GTV. The texture pattern described
by the co-occurrence matrix could be utilized to discriminate between homogeneous and
heterogeneous tumors uptake. Note that the CTV is relatively smooth while the tumor is
showing a ‘noisy’ texture pattern. The number of intensity levels (M) was selected to be 16 in
this example.
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Figure 6.
Surface plots of the co-occurrence matrix in the case of head and neck (H&N) cancer showing
(a) the H&N tumor CTV and (b) the delineated tumor GTV. The texture pattern described by
the co-occurrence matrix could be utilized to discriminate between homogeneous and
heterogeneous tumors uptake. Note that the CTV is again relatively smooth while the tumor
is showing a noisy pattern but less than that of the cervix case. The number of intensity levels
(M) was selected to be 16 in this example.
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Figure 7.
Receiver-operating characteristics (ROC) curve of a logistic regression model for cervix
outcomes prediction composed of IVH-based and texture Energy. As demonstrated, the model
has good prediction power with an area under the ROC curve (AUC) of 0.76.
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Figure 8.
Receiver-operating characteristics (ROC) curve of a logistic regression model for head and
neck outcomes prediction composed of IVH-based and shape extent characteristics. As
demonstrated, the model possesses excellent prediction power with an area under the ROC
curve (AUC) of 1.

El Naqa et al. Page 20

Pattern Recognit. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

El Naqa et al. Page 21

Table 1

Association between different extracted features and treatment failures in a cohort of 14 cervix patients measured
by Spearman's rank correlation (rs) and the area under the ROC curve (AUC).

Variable Spearman (rs) AUC

Tumor volume -0.1074 0.5714

SUV Measurements

Maximum -0.0886 0.4592

Minimum -0.0710 0.4592

Mean -0.0886 0.4592

Standard deviation -0.1240 0.5306

IVH Intensity-volume metrics

I10 -0.1240 0.5306

I90 -0.0886 0.4592

I10-90 -0.1595 0.5306

V10 -0.3012 0.6122

V90 0.2304 0.6122

V10-90 -0.3721 0.6531

Texture-based features

Energy -0.4276 0.7245

Contrast 0.1949 0.6020

Local homogeneity -0.3012 0.6224

Entropy 0.2304 0.6531

Shape-based features

Eccentricity 0.1949 0.6429

Euler Number -0.2747 0.6327

Solidity 0.1949 0.7245

Extent 0.2658 0.5612

Pattern Recognit. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

El Naqa et al. Page 22

Table 2

Association between different extracted features and overall survival in a cohort of 9 head and neck patients
measured by Spearman's rank correlation (rs) and the area under the ROC curve (AUC).

Variable Spearman (rs) AUC

Tumor volume 0.6928 0.8750

SUV Measurements

Maximum 0.3464 0.7000

Minimum -0.2642 0.6000

Mean 0.1732 0.6500

Standard deviation 0.3464 0.6750

IVH Intensity-volume metrics

I10 0.1732 0.7000

I90 0.0 0.5000

I10-90 0.2598 0.6750

V10 -0.1732 0.5750

V90 -0.7794 0.9500

V10-90 0.0866 0.5000

Texture-based features

Energy 0.0866 0.5000

Contrast -0.5196 0.8000

Local homogeneity 0.5196 0.8250

Entropy -0.1732 0.5250

Shape-based features

Eccentricity 0.2598 0.6500

Euler Number 0.6166 0.8500

Solidity -0.6088 0.8500

Extent -0.6062 0.8500
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