
Changing meaning causes coupling changes within
higher levels of the cortical hierarchy
T. M. Schofielda,1, P. Iversonb, S. J. Kiebelc, K. E. Stephand, J. M. Kilnera, K. J. Fristona, J. T. Criniona, C. J. Pricea,
and A. P. Leffa

aWellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom; bDivision of Psychology
and Language Sciences, University College London, Chandler House, 2 Wakefield Street, London WC1N 1PF, United Kingdom; cMax Planck Institute
for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; and dLaboratory for Social and Neural Systems Research, Institute for Empirical
Research in Economics, University of Zurich, CH-8006 Zurich, Switzerland
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Processing of speech and nonspeech sounds occurs bilaterally
within primary auditory cortex and surrounding regions of the
superior temporal gyrus; however, the manner in which these
regions interact during speech and nonspeech processing is not
well understood. Here, we investigate the underlying neuronal
architecture of the auditory system with magnetoencephalogra-
phy and a mismatch paradigm. We used a spoken word as a
repeating ‘‘standard’’ and periodically introduced 3 ‘‘oddball’’
stimuli that differed in the frequency spectrum of the word’s
vowel. The closest deviant was perceived as the same vowel as the
standard, whereas the other 2 deviants were perceived as belong-
ing to different vowel categories. The neuronal responses to these
vowel stimuli were compared with responses elicited by percep-
tually matched tone stimuli under the same paradigm. For both
speech and tones, deviant stimuli induced coupling changes within
the same bilateral temporal lobe system. However, vowel oddball
effects increased coupling within the left posterior superior tem-
poral gyrus, whereas perceptually equivalent nonspeech oddball
effects increased coupling within the right primary auditory cortex.
Thus, we show a dissociation in neuronal interactions, occurring at
both different hierarchal levels of the auditory system (superior
temporal versus primary auditory cortex) and in different hemi-
spheres (left versus right). This hierarchical specificity depends on
whether auditory stimuli are embedded in a perceptual context
(i.e., a word). Furthermore, our lateralization results suggest left
hemisphere specificity for the processing of phonological stimuli,
regardless of their elemental (i.e., spectrotemporal) characteristics.

dynamic causal modeling � language � magnetoencephalography �
mismatch negativity � predictive coding

For speech to be understood, it is necessary for invariant,
meaningful representations to be abstracted from an incon-

stant and time-varying acoustical signal. The basic symbolic units
of speech are referred to as phonemes. These can be thought of
as the units that differentiate one word from another (1).
Different languages may use different sets of phonemes; 2
acoustically different speech sounds might convey a change of
meaning in one language, but might not in another. Neuronal
representations of these units necessarily accumulate informa-
tion over time. They need to be accurate enough to identify the
differences between 2 similarly sounding words (e.g., pin/pen)
but flexible enough to accommodate variable, context-sensitive
acoustic features imparted to the speech signal by different
speakers (e.g., gender and age differences). In this study, we used
a mismatch paradigm, magnetoencephalography (MEG) and
dynamic causal modeling (DCM), to investigate how these
symbolic representations are reflected in neuronal processing in
auditory cortical areas.

The mismatch negativity (MMN) and its magnetic equivalent
the mismatch field (MMF), together the mismatch response, are
components of the event-related potential or field elicited by the
auditory presentation of rare ‘‘oddball’’ or ‘‘deviant’’ stimuli within

a train of frequently presented ‘‘standard’’ stimuli. The mismatch
response typically peaks between 150 and 250 ms after stimulus
presentation and may be elicited in the absence of stimulus-directed
attention (2–4). Within the auditory cortex, the response is thought
to be generated within a network of 4 sources; these are the primary
auditory cortices and posterior superior temporal gyri (STG) in the
left and right hemispheres (5–8).

It has been proposed that the mismatch response can be
explained in terms of a predictive coding framework (9). Ac-
cording to this view, with each repetition of the standard
stimulus, the auditory system adjusts a generative model of the
stimulus train to allow an increasingly precise prediction of the
subsequent stimulus. Under this account, the mismatch response
that occurs when the novel deviant stimulus is presented repre-
sents a failure of higher-level, top-down processes to suppress
prediction error in lower-level auditory regions. This makes the
mismatch response a useful tool for probing representations in
the auditory system, because the characteristic of the auditory
stimulus that causes the prediction error must be represented in
the brain at this level of auditory processing. The results of
previous mismatch experiments suggest that the abstract stim-
ulus property of ‘‘native phoneme’’ is somehow represented in
the brain during early cortical processing, because speech sound
deviants belonging to a different native phoneme category from
the standard elicit a greater mismatch response than speech
deviants that do not (4, 10, 11).

However, the nature of this interaction between the ‘‘bottom-
up’’ physical acoustic (i.e., the spectrotemporal profile) and the
‘‘top-down’’ linguistic properties (i.e., whether the sound belongs
to a native phoneme category or not) of the stimuli is not well
understood. In this article, we use MEG and DCM (12) to make
inferences about the interaction of bottom-up and top-down
processes during the processing of meaningful speech sounds.
This technique enabled us to pinpoint where in the auditory
processing hierarchy (and in which hemisphere) specific at-
tributes (spectrotemporal and phonemic) of acoustic stimuli are
processed.

To compare speech and nonspeech processing, we used 2 types
of auditory stimuli matched for their psychoacoustic properties.
The first type, vowel sounds, have long-standing neuronal rep-
resentations built up over years of sensory experience. We chose
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this type of phoneme because vowel sounds are distinguished by
differences in their first and second formants (i.e., frequency
peaks caused by resonances in the vocal tract) (13). We varied
the formant frequencies of the vowel component of the standard
stimulus to produce 3 deviant vowel sounds that were percep-
tually different from the standard. The vowels were embedded
in short ‘‘consonant–vowel–consonant’’ words that differed only
in the vowel sound. The standard word was “Bart.” The closest
deviant (D1) differed sufficiently from the standard in the
frequency of the first and second formants to be distinguishable,
but was perceived as containing the same phonemes as the
standard; that is, it sounded like the same word (Bart), spoken
in a different manner. The other 2 deviants (D2 and D3) were
further away acoustically from the standard and were perceived
as different phonemes, thus forming different words (“Burt” and
“beat,” respectively). We then generated a second class of
stimuli, sinusoid tones (tone stimuli) centered on the second
formant frequencies of the vowel stimuli (see Materials and
Methods and Fig. S1 for details), that do not have high-level
neuronal representations. In line with previous studies, we
expected (i) all speech and nonspeech deviants to produce
mismatch responses, (ii) the amplitude of the mismatch would
increase with deviancy (i.e., amplitude for the most distant
deviant, D3, would be greater than for the least distant deviant,
D1), and (iii) an interaction between deviancy and the nature of
the stimuli (speech vs. nonspeech). In other words, the mismatch
response (prediction error) would be greater for vowel D2 than
tone D2 because the former enables more precise predictions
based on phoneme category. By examining the mismatch re-
sponses elicited by these stimuli we could model the functional
anatomy of preattentive processing of acoustic and phonemic
speech sounds, within auditory cortex and associate any deviant-
dependent differences with the spectrotemporal aspects of the
stimuli (oddball vs. standard) and their perceptual context (word
vs. tone).

Although the effects of speech sound deviancy on neuronal
connectivity have not been reported, the simpler case of tone-
frequency deviants and their effects on interaction within the
auditory system have already been investigated in some detail by
using DCM (14–16). Within auditory cortex, the mismatch
response, measured with EEG, is best explained by an increase
in postsynaptic sensitivity within each primary auditory region
and increases in the influence of reciprocal connection (i.e., in
both forward and backward connections) between the primary
auditory region and ipsilateral STG (14). This architecture fits
well with a predictive coding account of the mismatch response;

auditory input is received by the primary auditory regions and
compared with the predictions generated by cortical processing
in the higher levels of the auditory network. These predictions
are finessed by repeated exposure to the standard stimulus such
that when the incoming stimulus violates these predictions, it
evokes a greater prediction error and a more exuberant exchange
of signals between high and low areas (14, 17). The present study
applied DCM and used Bayesian model selection (18) to deter-
mine the most likely location of changes in neuronal interactions
that underlie oddball effects in phonemic processing. We were
specifically hoping to show that changes in vowels involve
changes in distributed processing at higher levels of the auditory
hierarchy, relative to changes in tones. Furthermore, we pre-
dicted that vowel-dependent changes would show a left lateral-
ization.

Neuronal responses were investigated by using DCM in 2
steps: First, we optimized the architecture of the network that
could explain event-related fields (ERFs) for deviant stimuli.
This process entailed the creation of a series of within-subject
DCMs in which the effects of each deviant was modeled with
changes in neuronal coupling in model-specific sets of connec-
tions. The relative evidence for each model was pooled over
subjects to identify the best model. Second, at the between-
subject level, we assessed coupling changes using the correspond-
ing parameter estimates of the best model and simple t tests.

We tested 4 models (see Fig. 1 for a graphical summary). All
models were based on 4 neuronal sources; the left primary
auditory cortex (left HG), the right primary auditory cortex
(right HG), the left superior temporal gyrus (left STG), and the
right superior temporal gyrus (right STG). We used the same
prior mean coordinates for the sources as in refs. 14 and 15 and
likewise assumed extrinsic inputs (auditory stimuli) enter bilat-
erally into the primary auditory cortices. The models differed in
the connections within and between the sources that were
allowed to vary in strength with deviancy.

The network architecture for the first model tested was based
on previous DCM studies of simple tone-deviancy effects (14,
15). Connections between HG and STG in both hemispheres and
the intrinsic connectivity of primary auditory cortex were al-
lowed to change with the deviant stimuli. This model did not
allow for changes of intrinsic connections in the STG, a putative
site for long-term representations of phoneme category. All of
the remaining models allowed for intrinsic changes in STG. In
model 2, modulation of the reciprocal connections between HG
and STG and the intrinsic connectivity of STG were restricted to
the left hemisphere. In model 3, these modulations were re-

Fig. 1. All models contained 4 neuronal sources (far left). A, the left HG [MNI coordinates (�42, � 22, 7)]; B, the right HG (46, � 14, 8]); C, the left STG (�61,
� 32, 8); D, the right STG (59, � 25, 8). The 4 models used in the DCM analysis were, from left-to-right: 1) the initial model derived from Garrido et al. (15);
2) left-sided model; 3) right-sided model; 4) fully connected model. Model 4 explained the observed data (comprising 3 deviant ERFs) better than the other
models, across both stimulus classes. Connections between regions that are not allowed to be modulated by differences in auditory stimuli (standards and
deviants) are dashed (gray); this includes inputs into both primary auditory cortices (dashed black). Connections between regions that are allowed to vary
between standard and deviant stimuli are shown as sold black lines. This characteristic differentiates the 4 basic models.
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stricted to the right hemisphere. Model 4 was a fully bilateral
model, in which all connection strengths in both hemispheres
were allowed to change, including the interhemispheric connec-
tions between HG and STG. Interhemispheric connections were
included because there is good evidence that primary auditory
areas and caudal portions of the STG are connected to homo-
topic regions via the caudal corpus callosum (19). The 4 com-
peting models, embodying different explanations for deviant-
dependent difference in ERFs, were fitted to the data from all
subjects and compared by using a Bayesian model selection
procedure (20). Critically, this selection accounts for the relative
complexity of the models (e.g., number of parameters) when
comparing models.

Our main aim was to determine how neuronal interactions
within the auditory hierarchy were influenced by deviancy (D2
and D3 vs. D1), under phonemic processing. We expected to see
connectivity changes in higher levels (i.e., the superior temporal
regions) that presumably learn phonemic regularity and furnish
appropriate predictions for lower levels. We anticipated that the
depth of hierarchical learning would be less for tone stimuli.

Results
Conventional Analyses of Evoked Responses in Sensor Space. Our
preliminary analyses in sensor space confirmed our expectations.

We found that (i) all speech and nonspeech deviants produced
mismatch responses; (ii) the peak amplitude of the mismatch
increased with the degree of deviancy for both classes of stimuli,
the amplitude for D3 being significantly greater than for D1
[vowels: t(8) � 2.74, P � 0.05; tones: t(8) � 2.78, P � 0.05]; and
(iii) there was an effect of phonemic deviancy on the mismatch
response for the vowel stimuli. In other words, there was an
effect of stimulus class on the mismatch response for D2
deviants, the peak amplitude of the mismatch response to the
vowel D2 being significantly greater than that elicited by the
matched tone D2 [t(8) � 2.64, P � 0.05]. The 2 phonemic
deviants (vowel D2 and D3) elicited mismatch responses of
similar amplitude [t(8) � �0.38, P � 0.71] (see Fig. 2 and SI Text
and Figs. S2 and S3 for more details).

DCM. All deviants, regardless of class, were best explained by the
most complex bilateral model (model 4; see SI Text for details
of the model comparison results). Note that this result is not
simply because this model is the most complex of all models
tested because the Bayesian model comparison approach we
used takes model complexity into account. Within this bilateral
model, the phonemic deviants (vowel D2 and D3) caused an
increase in connectivity within the left STG and a decrease in the
influence of the right STG upon the left STG (Fig. 3); these
effects were stronger for D2 and D3 than for vowel D1 [within
left STG: t(8) � 2.56, P � 0.05; right STG upon left STG: t(8) �
�2.36, P � 0.05]. Within the tone class of stimuli, the most
distant frequency deviant (D3) produced a mismatch response of
greater amplitude than the other frequency deviants (D1 and
D2), which was caused by an increase in connectivity within the
right HG and an increase in the influence of HG on the right
STG via forward connections [within right HG: t(8) � 2.25, P �
0.05; right HG upon right STG: t(8) � 4.06, P � 0.05] (see Fig.
3 and SI Text for more details).

Discussion
In this study, we investigated differences in neural responses to
auditory stimuli that have high-level neural representations
(vowels) with those that do not (tones). We used an oddball
paradigm, which takes advantage of automatic change detection
and implicit perceptual learning processes occurring within
auditory cortex when a series of identical stimuli (standards) are
interrupted unpredictably by a different stimulus (oddball or
deviant).

When the MMF amplitudes for the 3 vowel deviants were
tested against their tone counterparts, we found no effect of
stimulus class for D1 and D3 (Fig. 2), with only D2 differing
across classes. The larger relative response for this vowel deviant
compared with the matched tone D2 deviant is likely because it

Fig. 2. MMF results for all 6 deviants compared with the relevant standard.
(Upper) The amplitude responses (in femtoTesla) for the 3 deviants (D1, D2,
and D3) across both stimulus classes (vowels in blue, tones in magenta). *
denotes peak amplitude differences significant at P � 0.05. Note the relatively
large amplitude response for vowel D2 compared with the perceptually
matched tone D2. (Lower) The peak latency data. More distant deviants
(across both classes) gave rise to quicker times to the MMF peak. These
amplitude and latency summary statistics were taken from the maxima of
spatiotemporal SPMs of F statistics, testing for a main effect of stimulus (D1,
D2, and D3).

Fig. 3. Parameter estimates from the winning model (model 4) were used to
test for deviancy-induced differences in connectivity within each stimulus class
for tones (Left) and vowels (Right). Red indicates increasing connectivity, blue
indicates decreasing connectivity.
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was perceived as a different phoneme to its standard. This
finding agrees with previous studies that have shown that, for
speech sounds, the amplitude of the mismatch response depends
on both native phoneme category membership and absolute
acoustic difference from the standard (21). In common with
Vihla et al. (22), we found no significant difference in the
mismatch response amplitude associated with the phoneme
category deviants, D2 and D3, despite these being further away
from each other in terms of acoustic difference than D2 is from
the standard. Therefore, the main perceptual driver for mis-
match response to D2 and D3 appears to be phoneme change
rather than acoustic difference. In contrast, although the fre-
quency difference of tone D2 from the standard was slightly
greater than that of tone D1, the MMF amplitudes were not
significantly different. The most distant tone frequency deviant,
D3, had significantly greater MMF amplitude than either tone
D1 or tone D2 (Fig. 2).

We then carried out a DCM analysis to explore how these
mismatch responses could best be explained in terms of changes
in the strength of the connectivity within and between the
cortical sources of the auditory hierarchy. Our network consisted
of 4 sources within the supratemporal plane: the primary audi-
tory cortex and posterior STG in the left and right hemispheres
(15, 16). We tested a model derived from the best previously
published model of the neuronal dynamics of this system (14)
against 3 models that allowed for deviant-induced variation in
intrinsic connectivity within STG. These 3 models included left
and right lateralized models and a more complex ‘‘fully con-
nected’’ model that additionally allowed interhemispheric con-
nections between both the HG and STG to vary in strength and
thereby explain the mismatch response (Fig. 1). The more
complex bilateral model provided a better explanation of the
observed data than the simpler models.

The highest level in these models was auditory cortex. We did
not include the right inferior frontal gyrus (IFG), commonly
implicated in mismatch studies, because the prevailing view is
that the temporal and frontal activations are functionally distinct
and operate at different time scales (23, 24), with the temporal
generators sensitive to stimulus change, and activity within the
frontal generators reflecting a later shift of attention to the novel
stimulus. MEG (unlike EEG) has been shown to be insensitive
to the putative ‘‘attention shift’’ frontal sources (25), therefore
4 temporal sources were considered sufficient to model the data.
To test this assumption, we also estimated 2 additional 5-region
models (one with the right IFG as the fifth source, one with the
left IFG as the fifth source). As expected, these performed very
poorly compared with all 4-region models (see SI Text for
details).

For the next stage of the analysis we looked within the
‘‘winning’’ model to see how the significant differences in the
mismatch response within stimulus class, as observed in sensor
space, could be explained in terms of differences in neuronal
interactions.

The results for the tone comparison (D3 vs. D1/D2), which
reflects an increase in frequency deviancy, showed that 2
connections were stronger for D3: the intrinsic connections of
the HG and the forward connection between the HG and STG,
both on the right (Fig. 3). It should be stressed that the other
connections in the model are still important for producing the
mismatch response; it is just that they are not more (or less)
modulated by one deviant compared with the others. This result
is consistent with predictive coding theory; all tones, D1, D2, and
D3, violated the prediction (accrued through repeated exposure
to standard stimuli) in the same way; they were of a different
frequency from the expected stimulus, but D3 violated the
prediction to a much greater extent. The increase in postsynaptic
sensitivity (intrinsic connectivity), within the right HG observed
for this deviant, may reflect the generation of a corresponding

error signal of greater magnitude, and the increase in the
influence of the right HG over the right STG may reflect the
forward influence of this signal on the higher cortical level. Such
effects of frequency deviancy being apparent at the level of the
HG are consistent with the findings of Ulanovsky and colleagues
(8), who recorded directly from neurons in cat primary auditory
cortex and found an increase in neuronal response to deviant
stimuli, with some neurons displaying a hyperacuity in sensitivity
to frequency change.

The DCM result for the vowel responses is very different. For
the phonemic deviancy contrast (D2/D3 vs. D1) there was one
connection that was modulated to a significantly greater extent
during the mismatch response and one connection that became
significantly weaker: we observed an increase in connection
strength within the intrinsic connection on the left STG and a
decrease in the influence of the right STG upon the left STG
(Fig. 3). Considered in a predictive coding framework, vowel
deviants D2 and D3 violated the prediction in a different manner
than did vowel deviant D1; vowel D1 differed from the expected
stimulus only in formant frequency, whereas vowels D2 and D3
were, perceptually, from different phoneme categories. The
native phonemes have neuronal representations that will have
been built up and maintained by years of experience. Therefore,
it is likely that the adjustments to the predictive model needed
to account for these representations would be of a different
nature to those needed to account for the simple frequency
violation caused by vowel D1. From this perspective, it is not
surprising that the changes observed occur within a higher level
of the network, i.e., STG, which, from a predictive coding
perspective, would be involved in adjusting the predictive model.
The increase in connectivity seen in the left STG and the
conjoint decrease in the influence of the right STG on the left
suggests a decoupling of these regions, perhaps because the
higher level is in this case generating predictions about phonemic
as opposed to spectrotemporal features. Such representations
are thought to be used by higher-level multimodal left hemi-
sphere networks to access word form and meaning (26–31).

It has been argued recently that left and right auditory cortex
are differentially sensitive to the spectrotemporal attributes of
auditory stimuli, with the left hemisphere exhibiting relatively
higher temporal resolution and lower spectral resolution and the
right hemisphere having a lower temporal resolution and a
higher spectral resolution (32). According to this view, a left
hemisphere bias for speech processing may arise from the high
incidence of fine temporal information in the speech signal. Our
findings challenge this hypothesis. At the spectrotemporal level,
all our deviants differed from the standard only in the frequency
dimension. Our tone stimuli did indeed cause an increase in
coupling within the right hemisphere with increasing frequency
deviancy as predicted by this hypothesis. However, the connec-
tivity increase associated with our phoneme deviants occurred
within the left hemisphere. Our results therefore suggest a left
hemisphere bias for the processing of phonologically meaningful
stimuli, regardless of their spectrotemporal characteristics.

Conclusion
We used a paradigm that exploits automatic change detection
and rapid perceptual learning known to occur in auditory cortex.
Our findings offer a perspective on how the areas in the auditory
hierarchy exchange neuronal signals when meaningful auditory
objects are processed. Meaningful changes in the speech signal
evoke changes within higher levels of auditory cortex in the left
hemisphere, whereas equivalent spectrotemporal changes in
nonspeech stimuli induce connectivity changes within primary
auditory cortex in the right hemisphere.
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Materials and Methods
Subjects and Stimuli. Nine right-handed native English-speaking subjects
participated (mean age 28, 3 male, 6 female). No subjects were hearing
impaired or had any preexisting neurological or psychiatric disorder. All
participants gave written consent, and the study was approved by the Na-
tional Hospital for Neurology and Neurosurgery and Institute of Neurology
joint research ethics committee.

Vowel Stimuli. The synthesized word stimuli took the form of [/b/ � vowel
�/t/]. The stimuli were based on those from a previous study (33) and were
designed to model a recording of a male British English speaker (the /b/ burst
and the /t/ release were excised from a natural recording of this speaker rather
than being synthesized). The duration of each word was 464 ms (260 ms for the
vowel, excluding the bursts and /t/ stop gap). A total of 29 stimuli were
produced, the vowel sound varying in F1 and F2 frequencies for each. The
vowels were synthesized by using the cascade branch of a Klatt synthesizer
(34). F0 had a falling contour from 152 to 119 Hz. The formant frequencies of
F3–F5 were 2,500, 3,500, and 4,500 Hz. The bandwidths of the formants were
100, 180, 250, 300, and 550 for F1–F5. The frequencies of the first and second
formants of the vowel sound in the standard stimulus (F1: 628 Hz, F2: 1,014 Hz)
created a prototypic /a/ vowel [as judged in a previous study (33)]. The deviant
stimuli differed from the standard (see Fig. S1) in a nonlinear, monotonic
fashion. The formant frequencies of the vowel sounds in the deviants were
chosen so that F1 and F2 fell along a vector through the equivalent rectangular
bandwidth-transformed vowel space [ERB: a scale based on critical band-
widths in the auditory system, so differences are more linearly related to
perception (35)], with the formant frequencies of the furthest deviant match-
ing that of a prototypic /i/.

Perceptual thresholds were measured outside the scanner in a quiet room
and before the subjects had been exposed to the experimental paradigm.
Stimuli were delivered via an Axim X50v PocketPC computer using Sennheiser
HD 650 headphones. The volume was adjusted to a comfortable level for each
subject. Subjects completed a same-different discrimination task with a fixed
standard; the deviant stimulus was varied adaptively (36) to find the percep-
tual threshold (i.e., acoustic difference where subjects correctly discriminated
the stimuli on 71% of the trials). The mean perceptual threshold in terms of
stimulus distance from the standard (in ERB) for vowel stimuli was 0.61 (SD
0.22), which was well below the distance between the standard and closest
vowel deviant.

All of the stimuli were used when testing the subjects’ perceptual thresh-
olds behaviorally, but only 4 were used in the mismatch paradigm, the
standard stimulus and 3 deviant stimuli. The Euclidean distances of the devi-
ants from the standard were 1.16, 2.32, and 9.30 ERB, respectively. Qualita-
tively, this meant that the first deviant (D1) was above all subjects’ behavioural
discrimination thresholds, but still within the same vowel category, the second
deviant (D2) was twice as far away from the standard as D1 and similar to the
distance that would make a categorical difference between vowels in English
(33), and the third deviant (D3) represented a stimulus on the other side of the
vowel space (i.e., 8 times further away from the standard than D1, as large a
difference in F1 and F2 as it is possible to synthesize). The first and second
formant frequencies of the 3 deviants were, respectively, 565, 507, and 237 Hz
for F1, and 1,144, 1,287, and 2,522 Hz for F2.

The identity of these 4 stimuli were checked in a separate 4-way, forced-
choice experiment on a different set of subjects (n � 11) who were native
English speakers. This procedure confirmed that the standard was perceived
as Bart (100%); D1 was also perceived as Bart (87%); D2 was perceived as Burt
(100%); and D3 was perceived as Beat (100%).

Tone Stimuli. Frequency discrimination is better for sinusoids than for vowel
formants of the same frequency because sinusoids are narrow-band whereas
formants are broad-band. For formant shifts there is no change in the carrier
frequency but for tones there is; tone changes are thus easier to detect
because they involve changes in pitch and frequency shifts in the spectral
envelope (e.g., see ref. 37). The tone stimuli used in this study were sinusoids
of 234-ms duration that were amplitude modulated by one-half cycle of a
raised cosine (i.e., leading to a gradually rising then falling amplitude enve-
lope). The frequency of the standard stimulus was the same as for the F2 of the
vowel standards (1,014 Hz). To correctly discriminate stimuli on 71% of trials,
subjects required, on average, a 23-Hz difference in the tone stimuli, but a
simultaneous change of 33 Hz in F1 and 66 Hz in F2 for the vowel. Our tone
deviant stimuli were chosen so that they would shadow the vowel stimuli in
terms of relative distances from threshold. That is, even though the tone
frequency differences were smaller than for the vowels, as with the vowel
stimuli, D1 (1,044 Hz) was slightly above the behavioral threshold, D2 (1,074

Hz) was twice as far away from the standard as D1, and D3 (1,278 Hz) was 8
times as far away from the standard as D1.

MEG Scanning and Stimulus Presentation. A VSMMedTech Omega 275 MEG
scanner was used to measure the electromagnetic field changes that occurred
during the experiment from 275 superconducting quantum interference de-
vices (each referenced to a third-order axial gradiometer) arranged around
the head. A total of 480 data points were sampled each second with an
antialias filter applied at 120 Hz.

Auditory stimuli were presented binaurally by using E-A-RTONE 3A audio-
metric insert earphones (Etymotic Research) that were attached to the rear of
the subject’s chair and connected to the subject with flexible tubing. The
stimuli were presented initially at 60 dB/sound pressure level. Subjects were
allowed to alter this to a comfortable level while listening to the stimuli during
a test period. A passive odd-ball paradigm was used involving the auditory
presentation (stimulus onset asynchrony � 1,080 ms) of a train of repeating
standards interleaved in a pseudorandomized manner with presentations of
D1, D2, or D3. Within each acquisition block 30 deviants (of each sort) were
presented to create a standards-to-deviants ratio of 4:1. A minimum of 2
standards was presented between deviants. A total of 6 acquisition blocks
were performed by each subject, 3 blocks with vowel stimuli, 3 with tone
stimuli, resulting in a total of 90 trials for each of the 6 deviants. Each block
lasted for 540 s.

During stimulus presentation subjects were asked to complete an inciden-
tal visual detection task and not to pay attention to the auditory stimuli. Static
pictures of outdoor scenes were presented for 60 s followed by a picture
(presented for 1.5 s) of either a circle or a square (red shape on a gray
background). The subjects were asked to press a response button (right index
finger) for the circles (90%) and to withhold the response when presented
with squares (10%). This go/no-go task provided evidence that subjects were
attending to the visual modality (mean accuracy � 96%).

Statistical Analyses in Sensor Space. Statistical parametric mapping was per-
formed by using SPM8b software (Wellcome Trust Centre for Neuroimaging),
running under Matlab 7.4.0 (Mathworks). For each subject, the electromag-
netic field data from all channels for each acquisition block were digitally
filtered with a third-order butterworth band-pass of 1–20 Hz. Data were then
organized into epochs referenced to stimulus presentation, running from 100
ms prestimulus to 600 ms poststimulus. The mean amplitude of the prestimu-
lus period was used as a baseline for the poststimulus data points. Epochs that
contained a value �� 3,000 femto-Tesla were rejected as artifacts and re-
moved from further analysis. MEG data for each subject were inspected
visually before averaging to ensure that the remaining trials did not contain
eye blinks or eye movements that would materially affect the data upon
averaging.

A 3D image was constructed for each epoch, electromagnetic field values
being interpolated between sensors across 2D sensor space at each sample
point in time. The data at each sensor at each time point were projected onto
a 2D scalp map. This 2D scalp map was a 64 � 64 grid. In other words, there
were 64 bins from the leftmost sensor to the rightmost sensor and 64 bins from
the most anterior sensor to the most posterior sensor. These spatiotemporal
images were entered into statistical parametric mapping analysis, for each
subject, with 4 levels of 1 factor (i.e., STD, D1, D2, D3). The search space
included all voxels in sensor space between the time points 150–250 ms
poststimulus presentation (18). The data were interrogated with F-contrasts
of the form [�1 1 0 0] to identify the MMF for D1, [�1 0 1 0] to identify the MMF
for D2, and [�1 0 0 1] to identify the MMF for D3. The value of the contrast
estimate at the peak voxel in the resulting F-maps, and the peak latency at this
voxel was extracted for each contrast to provide summary statistics for each
deviant (i.e., contrast) and subject. This process was repeated for both vowel
and tone stimuli.

To investigate the effects of deviancy within class, the amplitude summary
statistics for each deviant level were tested against each other by using paired
t tests across subjects. Peak amplitudes for the vowel stimuli were tested
against the equivalent tone estimates with paired t tests (across subjects) to
look for effects of stimulus class at each level of deviancy. The peak latencies
for the vowel stimuli were also tested against the peak latencies for the
equivalent tone stimuli with paired t tests across subjects.

DCM. DCM estimates the influence of cortical subpopulations of neurons on
one another by the inversion of a biologically informed, spatiotemporal
forward model of the observed MEG sensor-space activity. The concept of
applying a spatiotemporal dipole model was first put forward by Scherg (38).
In DCM, the parameterization of the temporal model is based on neural mass
models, the details of which are explained at length in refs. 12, 39, and 40.
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Simply put, DCM attempts to explain the distribution and timing of the field
changes observed in sensor space, after stimulus presentations, by combining
a user-specified network architecture (i.e.: the number and location of the
sources in the network, how these sources are connected, where the inputs
enter the system) with empirically derived information about neuronal
dynamics.

For each subject, the average ERF for each deviant was calculated from the
epoched data used for the sensor space analysis (Fig. S2). The data from each
of these ERFs, between stimulus presentation and 300 ms poststimulus, were
reduced to 16 spatial modes by singular value decomposition and used to
invert each dynamic causal model. Each subject-specific DCM modeled one
deviant, and the difference between deviants was explained in terms of
changes in coupling specified by the particular model. Using the procedure
specified by Friston et al. (41), the log evidence was evaluated for all models

for each deviant class (vowel and tone) and used to compare models. The
ensuing differences in log evidence (i.e., log Bayes factors or marginal likeli-
hood ratios) were summed across subjects (given the data were acquired
independently from each subject) to pool log evidence over subjects. A
relative log evidence �3 was taken as strong evidence in favor of one model
over another (20). Once the best model was identified, the deviant-dependent
coupling change was extracted for each connection and each type of stimulus.
These parameter estimates were used as subject-specific summary statistics as
above and fed into a second-level analysis, testing for consistent differences
under vowels and tones, across subjects, by means of paired t tests.
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2. Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on
evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329.
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