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Abstract
Volatile anesthetics protect the heart from ischemia/reperfusion injury but the mechanisms for this
protection are poorly understood. Caveolae, sarcolemmal invaginations, and caveolins, scaffolding
proteins in caveolae, localize molecules involved in cardiac protection. We tested the hypothesis that
caveolae and caveolins are essential for volatile anesthetic-induced cardiac protection using cardiac
myocytes (CM) from adult rats and in vivo studies in caveolin-3 knockout mice (Cav-3−/−). We
incubated CM with methyl-β-cyclodextrin (MβCD) or colchicine to disrupt caveolae formation, and
then exposed the myocytes to the volatile anesthetic isoflurane (30 min, 1.4%), followed by simulated
ischemia/reperfusion (SI/R). Isoflurane protected CM from SI/R [23.2±1.6% vs. 71.0±5.8% cell
death (assessed by trypan blue exclusion), P<0.001] but this protection was abolished by MβCD or
colchicine (84.9±5.5% and 64.5±6.1% cell death, P<0.001). Membrane fractionation by sucrose
density gradient centrifugation of CM treated with MβCD or colchicine revealed that buoyant
(caveolae-enriched) fractions had decreased phosphocaveolin-1 and caveolin-3 compared to control
CM. Cardiac protection in vivo was assessed by measurement of infarct size relative to the area at
risk and cardiac troponin levels. Isoflurane-induced a reduction in infarct size and cardiac troponin
relative to control (infarct size: 26.5%±2.6% vs. 45.3%±5.4%, P<0.01; troponin: 27.7±4.4 vs. 77.7
±11.8 ng/mL, P<0.05). Isoflurane induced cardiac protection was abolished in Cav-3−/− mice (infarct
size: 53.4%±6.1% vs. 53.2%±3.5%, P<0.01; troponin: 102.1±22.3 vs. 105.9±8.2 ng/mL, P<0.01).
Isoflurane-induced cardiac protection is thus dependent on the presence of caveolae and the
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expression of caveolin-3. We conclude that caveolae and caveolin-3 are critical for volatile
anesthetic-induced protection of the heart from ischemia/reperfusion injury.
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Introduction
Protection of the heart from ischemia/reperfusion injury can be induced by multiple stimuli
(e.g., ischemia [1], opioids [2] and volatile anesthetics [3,4]). Though many volatile
anesthetics, including isoflurane [3,4], sevoflurane [5,6], and desflurane [6] show cardiac
protection in vivo, the precise mechanism for volatile anesthetic-induced cardiac protection
has not been elucidated.

Caveolae are small (~100nm diameter), flask-like invaginations [7] of the plasma membrane
that are enriched in particular lipids (e.g., cholesterol and glycosphingolipids [8]) and structural
proteins, caveolins. There are three known isoforms of caveolin: caveolin-1, caveolin-2 and
caveolin-3 [9], each of which has scaffolding domains that interact with signaling molecules
[10,11]. Cardiac myocytes (CM) express the muscle-specific isoform caveolin-3 [12] while
other cell types in the heart express caveolin-1 and -2. Recent studies have shown: 1) the
presence and interaction of all three caveolin isoforms in adult cardiac myocytes [13,14], 2) a
signaling role for caveolin-1 in cardiac myocytes [15], and 3) that caveolins can scaffold
proteins associated with cardiac protection [16,17].

Caveolae can be disrupted using agents such as methyl-β-cyclodextrin (MβCD), which depletes
membrane cholesterol [18,19], or colchicine, which disrupts microtubules [20]. Colchicine can
abolish anesthetic-induced cardiac protection in vivo [21] although the molecular mechanism
for this effect is not known. We have recently shown that MβCD can disrupt caveolae and
attenuate ischemic- and opioid-induced cardiac myocyte protection [19] but the role of
caveolae expression and caveolin-3 in volatile anesthetic-induced cardiac protection is not
known. Therefore, in the current study we used both in vitro and in vivo approaches to test the
hypothesis that caveolae and the expression of caveolin-3 are essential for volatile anesthetic
(e.g., isoflurane)-induced cardiac protection from ischemia/reperfusion injury. Our findings
establish that caveolins and caveolae help mediate the action of a wide range of cardiac
protective agents.

Materials and Methods
Preparation of CM

CM were isolated from adult Sprague-Dawley rats (Harlan –Indianapolis, IN; 250–300 g,
male). All animal use protocols were approved by the VA San Diego Institutional Animal Care
and Use Committee. These investigations conform with the Guide for the Care and Use of
Laboratory Animals published by the National Institutes of Health. Animals were heparinized
(1,000U, IP) 5 min before being anesthetized with pentobarbital (80 mg/kg IP). The hearts
were removed and placed in ice-cold cardioplegic (20 mM KCl) heart media solution (HM, in
mmol/l: 112 NaCl, 5.4 KCl, 1 MgCl2, 9 NaH2PO4, and 11.1 D-glucose; supplemented with 10
HEPES, 30 taurine, 2 DL-carnitine, and 2 creatine, pH 7.4) and then retrograde-perfused on a
Langendorff apparatus with Ca2+-free HM for 5 min at 5 ml/min at 37°C, followed by perfusion
with Ca2+-free HM containing collagenase II (210 U/mg; Worthington –Lakewood, NJ) for
20 min. After perfusion, both ventricles were removed and minced in collagenase II-containing
HM for 10–15 min. The cell solution was then washed several times to remove collagenase II
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and re-exposed to 1.2 mM Ca2+ over 25 min to produce Ca2+-tolerant CM. Myocytes were
then plated in 4% FBS on laminin (2 μg/cm2)-coated plates for 1 hr. Plating/maintenance media
was changed to serum-free medium [1% bovine serum albumin (BSA)+0.1% penicillin/
streptomycin in 199 medium (Invitrogen – Carlsbad, CA)] to remove all non-myocytes, and
CM were incubated at 37°C in 5% CO2 for 24 hr.

Immunoblot analysis
Proteins in individual fractions, whole cell lysates, and whole tissue lysates were separated by
SDS-PAGE using 10% polyacrylamide precast gels (Invitrogen – Carlsbad, CA) and
transferred to a polyvinylidene difluoride (Millipore – Billerica, MA) membrane by
electroelution. Membranes were blocked in 20 mM TBS-Tween (1%) containing 1.5% nonfat
dry milk and incubated with primary antibody overnight (Caveolin-1 and Caveolin-3, Abcam
– Cambridge, MA; GAPDH, Imgenex – San Diego, CA; p-Caveolin-1 Y14, Chemicon –
Temecula, CA) at 4°C. Bound primary antibodies were visualized using secondary antibodies
conjugated to horseradish peroxidase (Santa Cruz Biotechnology – Santa Cruz, CA) and
enhanced chemiluminescence reagent (GE Healthcare/Amersham – Piscataway, NJ). All
displayed bands migrated at the appropriate size, as determined by comparison with molecular
weight standards (Santa Cruz Biotechnology – Santa Cruz, CA).

Electron microscopy
Control CM or CM treated with MβCD or colchicine for 1 hr were immediately fixed for 2 hr
at room temperature in a solution that contained 2.5% glutaraldehyde in 0.1 M cacodylate
buffer. Cardiac tissue from caveolin-3 knockout mice was excised and perfused with the same
fixing solution, then postfixed in 1% OsO4 in 0.1 M cacodylate buffer (1 hr), and embedded
as monolayers in LX-112 (Ladd Research –Williston, VT), as described previously [22].
Sections were stained in uranyl acetate and lead citrate and visualized with an electron
microscope (JEOL 1200 EX-II or Philips CM-10). Images were taken at 8,900× and 11,500×.

Sucrose density membrane fractionation
CM were fractionated to isolate caveolae-rich domains using a detergent-free method [23].
Cells from a 10-cm2 plate were washed twice in ice-cold PBS, scraped into 3 ml of 150 mM
Na2CO3 with 1 mM EDTA (pH 11.0), homogenized with a tissue grinder with three 10-sec
bursts, and then sonicated with three cycles of 20-sec bursts interspersed with 1 min of
incubation on ice. Whole cell lysates were equilibrated using GAPDH. 1 ml of homogenate
was mixed with 1 ml of 80% sucrose in MES-buffered saline (MBS: 25 mM MES, 150 mM
NaCl, 2 mM EDTA-MBS, pH 6.5) to form 40% sucrose and loaded at the bottom of an
ultracentrifuge tube. A discontinuous sucrose gradient was generated by layering 6 ml of 35%
sucrose prepared in MBS and then 4 ml of 5% sucrose in MBS. The gradient was centrifuged
at 175,000 g using a SW41Ti rotor (Beckman Instruments – Fullerton, CA) for 3 hr at 4°C.
Samples were removed in 1 ml aliquots to yield 12 fractions, which were analyzed for protein
content. We defined fractions 4–6 as buoyant membrane fractions (BF) enriched in caveolae
and proteins associated with caveolae. Fractions 9–12 were defined as non-buoyant fractions.

Simulated ischemia/reperfusion (SI/R) in isolated CM
CM were plated on laminin-coated 12-well plates, allowed to incubate for 24 hr, and then
subjected to various experimental conditions at 37°C. Simulated ischemia was induced by
replacing the air content with a 95% N2 and 5% CO2 gas mixture at 2 L/min in a metabolic
chamber (Columbus Instruments – Columbus, OH) and by replacing the media with a thin film
of glucose-free media (glucose-free DMEM, Invitrogen – Carlsbad, CA) covering the cells for
60 min. This was then followed by 60 min of “reperfusion” by replacing the media with normal
maintenance media and by incubating the cells with 21% O2 and 5% CO2. CM were exposed
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to isoflurane for 30-min prior to SI/R. Isoflurane concentrations were verified continuously by
sampling exhaust gas with a Datex Capnomac (SOMA Technology Inc. – Cheshire, CT).
Concentrations of isoflurane (0.7%, 1.4%, and 2.8% vol/vol in air) were chosen based on the
minimum alveolar concentrations (MAC) in rodents (where 1.4% vol/vol is equivalent to 1
MAC [24]). We have previously confirmed that 1.4% vol/vol isoflurane produces 0.165 ±
0.003 mM isoflurane in media in our metabolic chamber [15]. Cell death was quantified by
counting trypan blue-stained cells with results expressed as a percentage of total cells counted
(Figure 1). To determine the impact of intact caveolae on cardiac protection, we used MβCD
and colchicine. CM were incubated under maintenance media (control conditions) or in the
presence of MβCD (1 mM) or colchicine (30μM) for 1 hr before SI/R or isoflurane + SI/R.

In vivo ischemia/reperfusion injury
8–10 wk old caveolin-3 knockout mice (caveolin-3−/−) [13,25] or age-matched C57BL/6 mice
(controls) were studied using an in vivo ischemia/reperfusion protocol [26]. Mice were
anesthetized with sodium pentobarbital (80 mg/kg IP). A 20G catheter was then inserted into
the tracheae, and the mice were mechanically ventilated using a pressure-controlled ventilator
(TOPO Ventilator – Kent Scientific Co., Torrington, CT, peak inspiratory pressure: 15
cmH2O, respiratory rate: 100 breaths/min, inspired O2: 100%). A thoracotomy was performed
to expose the heart. Core temperature was maintained at 36°C with a heating pad and ECG
leads were placed to record heart rate. After thoracotomy, baseline was established and mice
were randomly assigned to experimental protocols. Mice received 1.4% isoflurane vol/vol in
O2, which is equivalent to 1 MAC [27] for 30 min followed by a 15 min washout. Ischemia
was produced by occluding the left coronary artery with a 7–0 silk suture on a tapered BV-1
needle (Ethicon, Inc. – Somerville, NJ). A small piece of polyethylene tubing was used to
secure the silk ligature without damaging the artery. After 30 min of occlusion, the ligature
was released and the heart was reperfused for 2 hr. Reperfusion was confirmed by observing
return of blood flow in the epicardial coronary arteries and via electrocardiography. The area
at risk (AAR) was determined by staining with 1% Evans blue (1.0 ml, Sigma – St. Louis,
MO). The heart was immediately excised and placed into 1% agarose and allowed to harden.
Once hardened, the heart was cut into 1 mm slices (McILwain tissue chopper; Brinkmann
Instruments, Inc. – Westbury, NY). Each slice of left ventricle (LV) was counterstained with
3.0 ml of 1% 2,3,5-triphenyltetrazolium chloride (Sigma – St. Louis, MO) for 5 min at 37°C.
After overnight storage in 10% formaldehyde, slices were weighed and visualized under a
microscope (Leica Microsystems Inc. – Bannockburn, IL) equipped with a charge-coupled
device camera (Cool SNAP-Pro, Media Cybernetics, Inc. – Silver Spring, MD). The images
were analyzed (Image-Pro Plus Version 4.5, Media Cybernetics, Inc. – Silver Spring, MD) and
infarct size was determined by planimetry. The AAR was expressed as a percentage of the LV
(AAR/LV). Infarct size (IS) was expressed as a percentage of the AAR (IS/AAR) [28].

Cardiac troponin levels, a second measure of cardiac injury, were determined from a subset of
animals using a mouse cardiac Tn-I ELISA kit (Life Diagnostics – West Chester, PA). Serum
was prepared from each test group and stored at −80°C. ELISA was run per the manufacturer’s
recommended protocol and absorbance was read at 405 nm using an Infinite M500 plate reader
(Tecan – San Jose, CA). An additional group of caveolin-3−/− mice were used for electron
microscopy and immunoblot analysis. Following anesthesia with sodium pentobarbital (80 mg/
kg IP), hearts were excised and a piece of the LV apex was removed for protein analysis. The
remaining LV was used for electron microscopy.

Statistical analysis
Statistical analyses were performed by one-way ANOVA followed by the Bonferroni post hoc
test. All data are expressed as mean ± SEM. Statistical significance was defined as P < 0.05.
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Results
Isoflurane induces cardiac protection in adult CM

Adult CM were exposed to various concentrations of isoflurane and then to simulated ischemia/
reperfusion (SI/R) (Figure 2). Exposure to 0.7% and 1.4% isoflurane before SI/R decreased
cell death when compared to SI/R alone (37.4 ± 5.0%, and 23.2 ± 1.6% vs. 71.0 ± 5.8% cell
death, respectively). However, at higher concentrations of isoflurane (2.8%), cardiac protection
was not observed (64.4 ± 9.8% cell death).

MβCD and colchicine abolish caveolae formation and alter caveolin expression
Treatment of CM with MβCD or colchicine reduced the expression of caveolae (Figure 3A).
The amount of phosphorylated caveolin-1 was significantly reduced in buoyant caveolar
fractions (BF, Fractions 4–6) following sucrose density fractionation of MβCD- or colchicine-
treated cells (Figure 3B). Expression of caveolin-3 in BF was significantly reduced in MβCD-
treated cells and to a lesser extent in colchicine-treated cells after incubation with isoflurane
(Figure 3B). Expression of caveolin-3 in non-buoyant fractions (Fractions 9–12) was not
significantly altered among the experimental groups (data not shown).

MβCD and colchicine abolish isoflurane-induced cardiac protection
CM were incubated with 1% BSA + 0.1% penicillin/streptomycin (Control) or in control media
along with MβCD (1 mM), or colchicine (30 μM) and then exposed to 1.4% isoflurane (Figure
4A). The protective effect of isoflurane was abolished in CM incubated with MβCD or
colchicine (84.9 ± 5.5% and 64.5 ± 6.1% cell death, respectively). We observed no significant
increase in basal cell death with the various treatments (Figure 4B).

Caveolin-3 is required for isoflurane-induced cardiac protection
Electron micrographs of caveolin-3−/− mouse hearts revealed the absence of caveolae in cardiac
myocyte sarcolemmal membranes (Figure 5A). The absence of caveolin-3 protein in the hearts
of caveolin-3−/− mice was verified by Western immunoblot analysis; these mice had normal
levels of caveolin-1 (Figure 5B). To assess the role of caveolin-3 in the protection from
ischemia/reperfusion injury, we treated C57BL/6 mice or caveolin-3−/− mice with 1.4%
isoflurane for 30 min, followed by 15 min washout and then exposed the mice to ischemia/
reperfusion (Figure 5C). The ability of isoflurane to protect from ischemia/reperfusion injury
was abolished in caveolin-3−/− mice compared to control animals [45.3 ± 5.4% and 26.5 ±
2.6% infarct size/area at risk (AAR)] even though there was a similar AAR in both groups of
animals (Figure 5D; 53.2 ± 3.5% vs. 53.4 ± 6.1% AAR). Cardiac troponin I levels were
significantly attenuated by isoflurane treatment in wild-type mice compared to control mice
subjected to ischemia/reperfusion (27.7 ± 4.4 and 77.7 ± 11.8 ng/mL); however, isoflurane
failed to reduce cardiac troponin I levels in caveolin-3−/− mice, a level similar to control
caveolin-3−/− mice was observed (102.1 ± 22.3 and 105.9 ± 8.2 ng/mL).

Discussion
The current data show that the presence of caveolae and the expression of caveolin-3 in CM
are essential for isoflurane-induced cardiac protection from ischemia/reperfusion (I/R) injury.
Treatment with MβCD and colchicine, agents that decrease the number of caveolae and the
amount of phosphorylated caveolin-1, produced an attenuation of isoflurane-induced
protection in CM exposed to SI/R. Consistent with these findings, caveolin-3 knockout mice
devoid of CM caveolae lack isoflurane-induced cardiac protection from I/R injury.

Volatile anesthetics are short chain halogenated alkanes and ethers that interact with cell
membrane lipids and are thought to interact with membrane-bound proteins to produce cellular
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effects [29]. Volatile anesthetics produce cardiac protection in a number of species, including
man [5]. It is not clear whether volatile anesthetics act via specific receptors or via
“nonspecific” membrane effects to alter effector molecules that mediate cardiac protection.
Isoflurane administration can activate opioid and adenosine receptors and blockade of these
G-protein-coupled receptors can abolish cardiac protection produced by isoflurane [30].
Volatile anesthetics affect several signaling pathways implicated in preconditioning, including
Src tyrosine kinase (Src), the phosphatidylinositol-3-kinase(PI3K)/protein kinase B/glycogen
synthase kinase 3 beta pathway [31], protein kinase C (PKC) [32,33], and mitogen-activated
protein kinases (MAPK), including extracellular signal-regulated kinase 1 and 2 (ERK1/2)
[34] and p38 MAPK [35]. In addition, volatile anesthetics modulate ATP-sensitive potassium
channel activity [32,33], the generation of reactive oxygen species, and mitochondrial
permeability transition pore opening [36]. Of note, many of those signaling molecules and
effector systems can either interact directly with the scaffolding domain of caveolin or are
known to localize to caveolae [16,17,37].

Caveolae and caveolins organize signaling molecules and facilitate rapid, precise, and
coordinated signal transduction [38,39]. Furthermore, caveolae sequester many signaling
proteins important in cardiac protection including the proteins activated by isoflurane.
Caveolins, the structural components of caveolae, can function as chaperones and provide
direct temporal and spatial regulation with numerous cardio-protective signaling molecules via
their scaffolding domain including endothelial nitric oxide synthase (eNOS), Src, PKC, G-
protein α, PI3K, and ERK1/2 [16,38,40]. Interestingly, caveolins can inhibit the activity of
some of these signaling proteins such as eNOS and ERK1/2 [41–43]. However, at the same
time caveolins can promote signaling via enhanced receptor-effector coupling or enhanced
receptor affinity when caveolins are up regulated or overexpressed [44,45]. This has led to the
concept of a “caveolar paradox” in which caveolins may produce direct allosteric inhibition of
molecules such as eNOS under basal conditions but facilitate increased signaling upon agonist
stimulation through compartmentation [44,46]. We have recently shown that isoflurane
increases the recruitment and phosphorylation of Src kinase and caveolin-1 into myocardial
caveolar fractions. We have also shown that this phosphorylation of Src and caveolin-1 are
required for isoflurane-induced cardiac protection [15]; isoflurane increased the
phosphorylation of caveolin-1 in a Src-dependent manner and caveolin-1 knockout mice were
not able to be protected from myocardial ischemia/reperfusion injury by isoflurane.
Importantly, myocytes isolated from these animals have normal caveolae (unpublished
observations). The current results confirm and extend these findings by showing that two
different pharmacological approaches that disrupt caveolae and reduce caveolin-1
phosphorylation also attenuate isoflurane-induced protection of CM. In addition, the current
data involving the use of caveolin-3−/− mice define a requirement for caveolin-3 in isoflurane-
induced cardiac protection.

Caveolin-3, the predominant isoform in CM, mediates interactions with cytoskeletal elements
(including α-tubulin and filamin [14]) and is responsible for caveolae formation in these cells.
A role for caveolin-3 in cardiac protection has not been investigated. Previous studies have
shown that caveolin-3 overexpression prevents cardiac hypertrophy in isolated neonatal
myocytes and may be beneficial in preventing pathological cardiac remodeling via the
inhibition of Erk signaling [47]. Caveolin-3 co-localizes with opioid receptors, which can
contribute to cardiac protection from ischemia [19]. The current data indicate that a decreased
number of myocardial caveolae are found in caveolin-3−/− mice even though caveolin-1
expression is normal and that such mice lose the ability to undergo isoflurane-induced cardiac
protection from ischemia/reperfusion injury. Collectively, these and previous data implicate a
role for both caveolin-1 and -3 and the presence of caveolae in cardiac protection from
ischemia/reperfusion injury.
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Our results showing the absence of cardiac protection at higher concentrations of isoflurane
(2.8%) are in contrast to past studies in a dog model in vivo [48] and in an adult rat CM in
vitro [49] in which a concentration-dependent increase in cardiac protection was observed with
isoflurane. However, Kehl et al [48], who examined the cardiac protective effects of isoflurane
in an in vivo dog model, only used a maximum concentration of isoflurane of 1.6%. Although
Zaugg, et al [49], showed increased cardiac protection at 2.8% isoflurane compared to lower
concentrations, those studies utilized different methods of isoflurane delivery (bubbling) and
simulated ischemia (mineral oil layering), and did not investigate simulated reperfusion injury,
which is believed to be a major contributor to cell death following myocardial ischemia [50].

A limitation of our study is the exclusive use of isoflurane as a cardiac protective agent. Unlike
isoflurane, sevoflurane is unable to increase phosphorylation of caveolin-1 in rat lung
endothelial cells [51] which supports the possibility that there may be different effects of
volatile anesthetics on post-translational modifications of caveolin in the myocardium. Further
investigations utilizing other volatile agents such as sevoflurane or desflurane are necessary to
clearly determine the role of caveolae and caveolin-3 in a generalized mechanism of action of
volatile anesthetics in cardiac protection.

Based on the current results, we conclude that caveolae and caveolin-3 are essential for the
protection of the heart from ischemia/reperfusion injury and in particular, for isoflurane-
induced cardiac protection. The results thus suggest that treatments designed to enhance
expression of caveolins and caveolae in CM have the potential to prevent ischemic damage in
the heart and perhaps other tissues.
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Figure 1. Simulated ischemia/reperfusion (I/R) model
Adult cardiac myocytes were rod-shaped and viable with oxygen exposure alone averaging
3.5% cell death. Cell death increased with ischemia and reperfusion averaging 46% and 87%
cell death, respectively.
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Figure 2. Effect of isoflurane on simulated ischemia/reperfusion (SI/R) of adult cardiac myocytes
(CM)
CM were plated and treated with various concentrations of isoflurane prior to exposure to SI/
R. Cell death was determined by trypan blue staining. CM under control conditions had
minimal cell death. Optimal protection was observed at 1.4% isoflurane. No protection was
observed at 2.8%. n = 6 for all groups. ** P < 0.01 compared to SI/R, *** P < 0.001 compared
to SI/R.
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Figure 3. Impact of MβCD and colchicine on expression by cardiac myocytes (CM) of caveolae,
caveolin-3 and phosphocaveolin-1 and on response to isoflurane
A. Electron micrographs of CM reveal caveolae at the surface of the plasma membrane in cells
under control conditions (black arrows). MβCD- and colchicine-treated myocytes have no
visible caveolae n = 2 per group (magnification = 11,500×). B. Whole cell lysates (WCL) were
normalized via expression of GAPDH prior to sucrose density fractionation. Sucrose gradient
fractions of 1.4% isoflurane (Iso) exposed CM revealed decreased expression of pCaveolin-1
(p-Cav-1 Y14) and Caveolin-3 (t-Cav-3) in the buoyant fraction (BF = fractions 4–6) of
MβCD- and colchicine (Colch)-treated cells. Densitometry revealed a significant decrease in
p-Cav-1 Y14 in both MβCD- and colchicine-treated groups, whereas t-Cav-3 expression was
only significantly decreased in the MβCD group. n = 3 per group. * P < 0.05 compared to Iso,
** P < 0.01 compared to Iso.
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Figure 4. Cardiac protection by isoflurane in the presence and absence of caveolae disruption
A. Cardiac myocytes were exposed to control conditions, simulated ischemia/reperfusion (SI/
R), or SI/R + isoflurane (Iso) in the presence or absence of MβCD and colchicine. MβCD- and
colchicine (Colch)-treated groups were incubated with MβCD (1 mM) or Colch (30 μM) in
maintenance media (1% BSA) for 1 hr, the latter of which was used for control cells. Cells
were then incubated with air or 1.4% isoflurane for 30 min. SI/R was then produced by aerating
a metabolic chamber with 95% N2 + 5% CO2 and changing to glucose-free media, which results
in oxygen and glucose deprivation (OGD). This incubation was then followed by “reperfusion”
with placement of cells in normal maintenance media at 21% O2 and 5% CO2 for 1 hr. All
experiments were performed at 37°C. B. Isoflurane-induced cardiac protection was diminished
in the presence of MβCD or Colch. n = 6 in all groups. *** P < 0.001 compared to SI/R + Iso
+ MβCD, †††P < 0.001 compared to SI/R + Iso + Colchicine.
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Figure 5. Absence of isoflurane-induced cardiac protection in caveolin-3 knockout mice
A Electron micrographs of cardiac tissue from caveolin-3 knockout (Cav-3−/−) mice reveal an
absence of caveolae in the sarcolemmal membrane (8,900×). B. Western blot analysis
confirmed the absence of caveolin-3 protein in the hearts of the Cav-3−/−mice but with similar
levels of caveolin-1 (Cav-1), n = 6 in all groups. C. In vivo anesthetic (isoflurane)-induced
cardiac protection protocol. D. Isoflurane-induced cardiac protection was abolished in
Cav-3−/− mice, as shown by no significant decrease in infarct size (IS)/area at risk (AAR) when
compared to control Cav-3−/−; however, a significant decrease in IS was noted between Control
+ Isoflurane vs. Control and Cav-3−/− + Isoflurane, n = 6 in all groups. ** P < 0.01 compared
to Control. ††P < 0.01 compared to Cav-3−/− + Isoflurane. E. Following ischemia/reperfusion
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injury cardiac troponin I levels in Cav-3−/− mice were elevated when compared to control. In
addition, no significant decrease in troponin I levels were observed in Cav-3−/− mice following
isoflurane-induced cardiac protection, whereas, a significant decrease was noted in control
mice that received isoflurane. Troponin I was also decreased in Control + Isoflurane vs.
Cav-3−/− + Isoflurane, n = 4–6 for all groups. * P < 0.05 compared to Control, ** P < 0.01
compared to Cav-3−/− + Isoflurane.

Horikawa et al. Page 16

J Mol Cell Cardiol. Author manuscript; available in PMC 2009 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


