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Abstract Localized induction of DNA damage is a

valuable tool for studying cellular DNA damage responses.

In recent decades, methods have been developed to gen-

erate DNA damage using radiation of various types,

including photons and charged particles. Here we describe

a simple ultrasoft X-ray multi-microbeam system for high

dose-rate, localized induction of DNA strand breaks in

cells at spatially and geometrically adjustable sites. Our

system can be combined with fixed- and live-cell micros-

copy to study responses of cells to DNA damage.
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Introduction

Today various microbeam irradiation techniques are widely

used, but localized induction of DNA damage in cells posed

a great challenge when Professor Christoph Cremer and

colleagues developed a microbeam instrument for studying

the spatial organization of chromosomes inside the cell

nucleus (Cremer et al. 1981). In their experiments, a small

area of the nucleus was exposed to the focused beam of a

UV-C laser. Using cytogenetic analysis, the authors identi-

fied a subgroup of cells that showed a small number of

chromosomes with heavy damage surrounded by the

majority of chromosomes that were unaffected by the micro-

irradiation. This pioneering study revealed that chromo-

somes occupy distinct territories in the interphase cell

nucleus, an observation that has contributed in a funda-

mental way to our understanding of nuclear architecture.

Since these early experiments, microbeam irradiation of

living cells has become a powerful and standard method for

studying the induction and processing of DNA lesions.

Localized irradiation activates damage signaling and repair

responses at sites where the nucleus is exposed to the

microbeam and initiates a complex choreography of events,

including protein binding and parting, modification of

chromatin, and DNA processing. Microbeam irradiation

techniques have enabled analysis of the dynamics of fluo-

rescently tagged repair proteins at damage sites and have

helped to define the temporal and spatial organization of

the DNA damage response (DDR) (Bekker-Jensen et al.

2006; Essers et al. 2006; Feuerhahn and Egly 2008).
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Results obtained using microbeam irradiation have also

provided important insights into molecular pathways con-

necting DNA repair to cell death, genomic instability, and

malignant cell transformation (Hill et al. 2006).

By taking advantage of the many different types of

photon and charged-particle sources presently available,

and the characteristic spectra of DNA lesions they induce,

an increasing variety of DNA repair processes can now be

studied with microbeams. Advanced irradiation systems

incorporate focused or collimated photon and/or charged

particle beams (Czub et al. 2006; Endo et al. 2006; Folkard

et al. 2001, 2005; Funayama et al. 2008; Garty et al. 2006;

Gerardi 2006; Greif et al. 2006; Hamada et al. 2006; Hill

et al. 2006; Nelms et al. 1998a, b; Schettino et al. 2002;

Sowa et al. 2005; Stap et al. 2008; Sun et al. 2006; Tanno

et al. 2006; Tartier et al. 2003). Recently, some of these

microbeam instruments have been combined with confocal

or wide-field fluorescence microscopes for observation of

DDR in living cells (Chang et al. 2006; Folkard et al. 2003;

Hauptner et al. 2004; Jakob et al. 2005; Kruhlak et al.

2006; Moné et al. 2001; Sowa Resat and Morgan 2004;

Walter et al. 2003). The radiation effects of the different

photon and particle sources can be summarized as follows:

UV-A photons produce singlet oxygen species that initiate

free-radical-driven reactions leading to oxidative damage

to DNA and chromatin (Dizdaroglu 1992; Marrot and

Meunier 2008) whereas UV-A exposure of pre-sensitized

cells is more effective in producing DNA double-strand

breaks (Limoli and Ward 1994). UV-B photons predomi-

nantly produce dimers of pyrimidine bases located on the

same strand, leading to distortion of DNA structure, halting

of transcription and replication (Marrot and Meunier 2008,

2004). UV-C photons induce DNA oxidation and, to a

lesser extent, pyrimidine dimers, but not strand breaks

(Perdiz et al. 2000; Rodrigo et al. 2000). X-ray photons,

alpha particles, and accelerated electrons or ions transfer

more energy at impact than UV photons. When absorbed in

the cell nuclei, these high-energy radiations produce mul-

tiple ionizations that generate single- and double-strand

DNA breaks (DSBs) and some DNA base damage (Preston

2005).

Here we describe a vertically oriented ultrasoft X-ray

multi-microbeam (MMB) system designed to induce up to

10 DSBs per second at a number of spatially and geomet-

rically adjustable sites within a large number of cell nuclei

simultaneously. We opted for DSB induction by ultrasoft

X-rays because poorly characterized chromatin damage

generated as a by-product of the Hoechst/BrdU/UV-A laser

microirradiation, used frequently for DSB induction, could

affect our results (Dinant et al. 2007; Williams et al. 2007).

The aim of this study is to apply MMB irradiation to

quantitatively study accumulation of repair-related proteins

in live cells and in cells fixed after irradiation. MMB irra-

diation also allows studying the kinetics of one or more

fluorescent repair proteins at a number of damaged areas in

a single cell nucleus. We expect that simultaneous analysis

of different fluorescence signals in the same nucleus after

MMB irradiation can provide detailed quantitative infor-

mation about the dynamics and potential interactions of

proteins at the damaged DNA.

Experiments described here show that the MMB system

produces a uniform pattern of DNA-damaged areas in the

cell nuclei and that the accumulation of repair proteins at

the damaged areas can be quantitatively analyzed using

fixed- and live-cell microscopy techniques.

Materials and methods

Setup of the multi-microbeam (MMB) soft X-ray

system

Our experimental setup consists of an X-ray source

contained in a vacuum chamber (Fig. 1), evacuated by a
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turbo-molecular pump and an in-series rotary pump,

achieving a vacuum of\10-5 mbar, as measured by Bayert

Alpert ionization gauge. The samples are irradiated in

ambient environment via a vacuum-sealed window with a

diameter of 14 mm, formed by a 2 lm-thick Mylar mem-

brane, supported by a stainless-steel grid. A 14-lm thick,

photolithographically manufactured nickel mesh filter

(Melo et al. 2008) with openings of between 2.2 and

3.5 lm in diameter, placed on top of the window, was used

as a multi-microaperture system, providing &5 9 106

microbeams/cm2. The soft X-ray source (Fig. 1) is based

on an obsolete e-beam evaporation system of vacuum

generators. In contrast to traditional sources, this system

has cylindrical symmetry. Electrons emitted by the circular

cathode are focused at the top of the cooled anode (carbon

target) by the surrounding cylindrical electrode (focusing

cage). The advantage is that the size of the focal spot can

be chosen by adjusting the distance of the top orifice of the

electrode to the top of the anode. A spot size\0.5 mm can

easily be achieved, but we increased the size to about

4 mm to prevent evaporation of the anode material and

increase the photon-emitting surface. We conducted our

experiments with 277 eV, 4.4 nm carbon K radiation

(Agarwal and Sparrow 1981) using a graphite anode. To

prevent system overheating, we connected the target to the

cooled copper anode by conductive glue. Heat radiation

from the cathode is also optically shielded by the top part

of the focusing cage.

Our samples were irradiated using an anode voltage of

3 keV and a cathode emission current of 8 mA, which can

be increased to *20 mA. Approximately 90% of the

emissions consisted of carbon K radiation (*277 eV), and

the residual part was Bremsstrahlung with a maximum

intensity at *1.6 keV, as determined from the pulse height

distribution produced by a classical proportional counter.

Cell culture and irradiation

Wild-type and 53BP1-GFP-expressing U2OS cells

(Bekker-Jensen et al. 2005) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM), supplemented with

10% FCS at 37�C in an atmosphere containing 10% CO2.

Then, 24 h before irradiation, approximately 106 cells were

plated in custom-made glass rings with Mylar bottoms as

described before (Stap et al. 2008). Cells were irradiated by

placing the dishes on top of the nickel mesh filter for the

required period of time.

Immunocytochemistry and microscopy

After irradiation, cells were fixed and stained for indicated

proteins as described before (Stap et al. 2008) using the

following antibodies: rabbit anti-RAD51 (Essers et al.

2002), mouse anti-cH2AX (05-636, Milipore), rabbit anti-

MDC1 (A300-051A, Bethyl Laboratories), goat anti-

mouse-Cy3 (115-165-166), and goat anti-rabbit-FITC

(111-095-144) (Jackson Immunoresearch). For live-cell

analysis, the mylar membrane with irradiated cells was

placed on top of a glass cover-slip, mounted into a push-to-

seal custom-made imaging chamber in CO2-independent

medium (Gibco BRL) and positioned on the stage of an

inverted Leica SP2 confocal microscope equipped with a

heated stage. Fluorescence recovery after photobleaching

(FRAP) analysis was performed using the 488-nm laser

line. Immunocytochemically stained cells were imaged

using a Leica DMRA wide-field fluorescence microscope,

and wide-field 3-D images were reconstructed using Huy-

gens Pro (Scientific Volume Imaging) and processed using

ImageJ and Photoshop CS3 (Adobe Systems). Data pro-

cessing was performed using Excel (Microsoft) and Prism

4 (GraphPad Software). Scanning electron microscopy

(SEM) images of the nickel mesh filters were obtained

using an SEM 525 (Philips).

Results

Geometrically and spatially tunable MMB irradiation

elicits normal DNA damage response

Many DSB repair-related proteins accumulate in the

vicinity of the damaged DNA, forming so-called ionizing

radiation-induced foci (IRIF) at damage-containing chro-

matin within minutes after exposure of cells to IR (Lukas

et al. 2005). Among the earliest events triggered by DSBs

is phosphorylation of histone H2AX by the ATM kinase

(Foster and Downs 2005). Phosphorylated H2AX (cH2AX)

was present at confined areas of U2OS cell nuclei at

30 min after irradiation by MMB (Fig. 2a). MMB irradi-

ation also induced accumulation of the damage-mediator

MDC1 (Stewart et al. 2003) and repair-protein RAD51

(Tashiro et al. 2000) at the exposed areas (Fig. 2a). These

results indicate that MMB irradiation elicits a normal DDR.

We then measured the dose-rate of the MMB by

counting the number of individual cH2AX IRIF in exposed

areas after different irradiation periods (Fig. 2b). Exposure

time of between 5 and 15 s was linearly correlated with the

numbers of cH2AX IRIF (Fig. 2b), allowing estimation of

irradiation time for experiments requiring induction of

large numbers of DSBs, when scoring of individual IRIF is

impossible.

Our irradiation setup provides a possibility to control the

geometry and distribution of irradiated areas by using

metal mesh filters of various parameters (Fig. 2c). Indeed,

when we applied mesh filters with opening diameters of

2.2 and 3.5 lm, we detected cH2AX presence at confined
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circular areas of the expected diameter (Fig. 2c). Impor-

tantly, few cH2AX IRIF were present outside of these

areas. We conclude that MMB allows precise control over

irradiation dose, distribution, and geometry of the exposed

areas.

MMB irradiation is suitable for analysis of DDR

in living cells

Live-cell analysis can provide valuable information about

the cellular response to DSBs. UV laser microirradiation

of presensitized cells is a frequently used method for

DSB induction in combination with live-cell microscopy.

However, the broad spectrum of DNA damage induced by

this approach includes large numbers of UV-specific

lesions, and the deposited dose is difficult to estimate.

DNA damage induced by ultrasoft X-rays is well charac-

terized and does not include UV-specific lesions (Gobert

et al. 2004; Goodhead et al. 1981; Griffin et al. 1998;

Hawkins 2006; Hill et al. 2001; Nikjoo et al. 1999; Yokoya

et al. 1999; de Lara et al. 2001).

Microscopical observation of MMB-irradiated U2OS

cells expressing GFP-tagged 53BP1, one of the early DSB

markers (Bekker-Jensen et al. 2005), revealed accumula-

tion of this protein at damaged chromatin consistent with

the geometry of the mesh filter used (Fig. 3a). We then

applied the technique of fluorescence recovery after

photobleaching (FRAP) (van Royen et al. 2009) to visu-

alize the dynamics of 53BP1-GFP at damaged chromatin.

We bleached the 53BP1-GFP fluorescence at three out of

seven irradiated areas in a single cell. Subsequent imaging

revealed recovery of the fluorescence at the bleached

regions of interest (ROIs) and concomitant loss of fluo-

rescence at the nonbleached ROIs (Fig. 3b, c), confirming

the dynamic character of the interaction of 53BP1 with

damaged chromatin. Next, we quantified the dynamics of

53BP1 by estimating its residence time at damaged chro-

matin (Fig. 3d). To achieve this, we irradiated cells using a

metal mesh filter that produces an average of one irradiated

circular area of 5 lm in diameter per cell. Then, 20 min

after irradiation, we bleached the GFP signal at the dam-

age-containing chromatin areas by exposing them to five

Fig. 2 Induction of DNA double-strand breaks by multi-microbeam

irradiation. a MMB irradiation induces DSB responses. U2OS cells

were irradiated for 6 min through a metal mesh filter with openings of

2.2 lm in diameter, fixed 30 min later, and stained for DNA (blue),

cH2AX (red), and Rad51 (green, left panel) or MDC1 (green, right
panel). Inset shows magnification of a single irradiated area. Scale
bar 10 lm. b The number of DSBs induced by MMB irradiation

depends linearly on irradiation time. Left panels show U2OS cells

irradiated for 5, 10, or 15 s through a metal mesh filter with openings

of 2.2 lm in diameter, fixed 5 min later, and stained for DNA (blue),

cH2AX (red), and MDC1 (green). Right panel shows numbers of

cH2AX foci representing individual DSBs per exposed area in cells

from b. c The geometry of exposed areas can be controlled by

applying metal mesh filters of various parameters. Cells were

irradiated for 6 min using filters with openings of 2.2 lm (left) or

3.5 lm in diameter (right), fixed 5 min later, and stained for DNA

(blue) and cH2AX (red). Upper panels show mesh filters used,

imaged by a scanning electron microscope. Lower panels show

stained cells irradiated using the respective filters. Scale bar 2.2 lm

(left panel) and 3.5 lm (right panel)
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pulses of the 488-nm laser set to 100% emission. Subse-

quently, we imaged the cells for 10 min at 10-s intervals.

We then measured the average GFP fluorescence intensi-

ties at the bleached regions and normalized them as

described earlier (Bekker-Jensen et al. 2005). To obtain

residence time of 53BP1 at damaged chromatin, we fitted

the obtained data to the following equation (Bekker-Jensen

et al. 2005):

y tð Þ ¼ Y1 1� exp �t=s1ð Þð Þ þ Y2 1� exp �t=s2ð Þð Þ

Residence time of the damage-associated fraction

of 53BP1-GFP (s1) was 145 ± 5 s, more than 3.5 times

longer than that reported before for 53BP1-GFP at

chromatin after UVA laser microirradiation in BrdU

presensitized cells (Bekker-Jensen et al. 2005). Whether

this discrepancy reflects physiological differences in

protein dynamics at UV- and IR-irradiated chromatin

requires further investigation.

Discussion

We constructed a vertical ultrasoft X-ray multi-microbeam

source for simultaneous, localized irradiation of large

numbers of cell nuclei. The purpose of this instrument is

to induce large amounts of DNA damage by ionizing
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Fig. 3 Dynamics of 53BP1-GFP at areas of DNA damage induced by

the MMB system. a U2OS cells expressing 53BP1-GFP were

irradiated for 6 min through a metal mesh filter with openings of

2.2 lm in diameter and mounted under a confocal microscope. The

indicated area of the selected cell was then bleached, and the cell was

imaged for 20 min at intervals of 10 s. The gallery shows images

captured at indicated times after bleaching. The perimeter of the cell

nucleus is indicated by the dotted line. Scale bar 10 lm. b
Quantification of the fluorescence intensities measured at the different

ROIs in the cell (a) at indicated times after bleaching. The

fluorescence intensities at each ROI were normalized to the intensities

at the respective ROI before bleaching. c Quantification of average

fluorescence intensities at bleached (1–3) and non-bleached (4–7)

regions at indicated times after bleaching. Error bars indicate

standard deviations. d Quantification of recovery of 53BP1-GFP

intensity at damaged chromatin areas after photobleaching. The graph

represents normalized average intensity of the bleached areas

obtained from measurement of 10 cells. The black curve represents

nonlinear fit obtained as described earlier (Bekker-Jensen et al. 2005).

Error bars represent standard deviation
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radiation at several sites in the cell nucleus. This allows

detection of repair-related proteins that accumulate at the

damage sites at low concentrations. Using custom-made

metal mesh filters, we were able to obtain a uniform pattern

of DNA damage-containing areas. We could observe the

irradiated samples under a live-cell confocal microscope

and perform FRAP analysis at the individual exposed sites.

This procedure will allow evaluation of the dynamics and

interactions of several fluorescently labeled repair proteins

simultaneously in a single cell as an alternative to UV laser

microirradiation.

The MMB ultrasoft X-ray irradiation system is still in

the initial phase of development. We intend to incorporate

the MMB into an upright confocal fluorescence microscopy

system equipped with a water-dipping objective. This will

allow real-time observation of fast DDR events, such as

accumulation of the Ku or DNA-PKcs proteins (Mari et al.

2006; Uematsu et al. 2007). However, for this purpose, a

higher dose-rate is required as accumulation of these fac-

tors reaches the maximum within the first minute after laser

microirradiation. Our current setup offers rates of up to

10 DSB per second, which can be further increased

by shortening the distance between the source and cells

(currently approximately 14 cm) and by raising the anode

voltage to 5 keV (currently 3 keV).

Ionizing radiation is widely accepted as the reference

inducer of single- and double-strand breaks in studies

focused on DSB repair. In contrast, UV or multi-photon

laser microirradiation is difficult to control and reproduce

between different experimental setups and generates large

amounts of UV-specific lesions and possibly other types of

DNA damage (Dinant et al. 2007; Kong et al. 2009).

Therefore, the relatively well-defined spectrum of DNA

damage induced by ultrasoft X-rays generated by our setup

presents a direct advantage over laser microirradiation

techniques. Recently, we used the MMB to confirm the

recruitment of the HP1 protein to DSB-containing chro-

matin, which was first observed using UV laser microir-

radiation (Luijsterburg et al. 2009).

The metal mesh filters that form the multi-microaperture

structure provide broad control over the spatial distribution

of induced DNA damage. For instance, sparsely distributed

openings could be used to study ‘‘bystander effects’’ in

neighbors of cells exposed to irradiation. Currently, an area

of about 150 mm2, containing approximately 2 9 105

cells, can be irradiated at the same instant. However, some

experiments require irradiation of a limited area of the

sample so that several irradiation conditions can be tested

in one dish. This can be easily achieved by using metal

mesh filters with openings restricted to a small area. In the

near future, we will upgrade the MMB system to make it

compatible with a-particle and UV radiation sources and

soft X-ray sources of other photon energies.
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