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Summary
It has been known for some time that the double-helix is not a uniform structure but rather exhibits
sequence-specific variations that, combined with base-specific intermolecular interactions, offer the
possibility of numerous modes of protein-DNA recognition. All-atom simulations have revealed
mechanistic insights into the structural and energetic basis of various recognition mechanisms for a
number of protein-DNA complexes while coarser grained simulations have begun to provide an
understanding of the function of larger assemblies. Molecular simulations have also been applied to
the prediction of transcription factor binding sites, while empirical approaches have been developed
to predict nucleosome positioning. Studies that combine and integrate experimental, statistical and
computational data offer the promise of rapid advances in our understanding of protein-DNA
recognition mechanisms.

Introduction
The DNA double-helix is extremely flexible and its detailed structure is affected by its base
sequence, environmental conditions, and interactions with other molecules. Sequence-
dependent deviations from ideal B-DNA are the rule rather than the exception and, as will be
discussed, appear to play a crucial role in protein-DNA readout mechanisms. Protein-DNA
recognition is often described in terms of direct and indirect readout [1]. Direct readout involves
the formation of specific contacts between amino acid side chains and DNA bases in such a
way that a particular DNA sequence forms an energetically favorable interface with the
residues on the surface of a given protein. Indirect readout describes the sequence-dependent
bending of the overall DNA structure so as to optimize the protein-DNA interface geometry.
Direct and indirect readout are somewhat ambiguous terms that provide conceptual
simplifications of the complexities that underlie any binding process involving
macromolecules. In this vein we have recently identified another mode of recognition involving
sequence-specific local deviations from ideal B-DNA structure which are recognized by
specific amino acids [2••].

A large and diverse set of computational approaches have been applied to the problem of
predicting DNA structure and function. These include all-atom Molecular Dynamics (MD)
[3•,4•] and Monte Carlo (MC) simulations [2••,5•,6•], based on all-atom or coarser grained
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representations, as well as bioinformatics analysis [7•]. Such approaches generate a link
between molecular structure and genome-wide analysis, a goal that has assumed increased
importance as high-throughput methods continue to provide a wealth of data about sequence-
dependent recognition. This article summarizes recent progress in molecular simulations of
DNA structure and protein-DNA interactions.

Predicting DNA structure and dynamics
Experimental data provide an incomplete structural map of free DNA

Our current knowledge of sequence-dependent DNA conformation is often insufficient to
determine whether a particular DNA deformation observed in a complex is induced by binding
or is an inherent property of a particular nucleotide sequence. In fact, the effort and complexity
of solving a structure with X-ray crystallography is significantly higher for free DNA than for
complexes, due in part to the higher flexibility of the smaller molecules. Moreover, the paucity
of NOE constraints complicates the use of NMR to solve free DNA structures although the use
of dipolar coupling has significantly improved the situation [8]. The general problem is
highlighted in Figure 1 which illustrates, for crystal structures, that the number of PDB releases
has increased rapidly for protein-DNA complexes in comparison with free-DNA structures.
Indeed, there has been only limited recent interest in studying the structure of free B-DNA,
perhaps due in part to uncertainties associated with the biological relevance of the problem.
Yet, it has become apparent that sequence-specific variations in the structure of the double-
helix play a central role in protein-DNA recognition.

Despite the limited quantity of experimental data on free-DNA structure, much has been
learned from the analysis of the data that are available. A particularly important set of
observations concerns the structural properties of A-tracts, which are runs of at least three
consecutive ApA, TpT, or ApT base pair steps [9,10]. A-tracts produce a characteristic
narrowing of the minor groove which is due to favorable interactions between functional groups
of adjacent base pairs in the major groove [11]. TpA steps are an exception to this behavior
since base stacking is minimal for this step which results in fewer structural constraints and
hence greater conformational variability. Olson and coworkers have carried out detailed
analysis of the conformational properties of DNA at the base-pair level by describing the
geometry of the ten unique dinucleotides, as seen in all available crystal structures [12,13].
Structural fluctuations observed among these dinucleotide steps were associated with
conformational variability and have formed the basis of empirical force fields for DNA [13].

Dinucleotide geometry is affected by adjacent base pairs, which is why a description at the
level of tetra-nucleotides is preferable. However, the relatively small number of available
crystal structures of free B-DNA and their lack of diversity (some sequences are easier to
crystallize than others) has the consequence that there is structural information for only 95 of
the 136 possible unique tetra-nucleotides. This situation is compounded by the fact that flanking
sequences and crystallization conditions can affect tetra-nucleotide geometry so that it is often
difficult to draw meaningful conclusions from just a single structure. The Ascona B-DNA
Consortium (ABC) [3•] and the Sarai lab [4•] have sought to complete structural knowledge
of all tetra-nucleotides through all-atom MD simulations.

Another powerful approach that can provide information on sequence-dependent DNA
structure is hydroxyl radical cleavage [14]. The Tullius lab recently used hydroxyl cleavage to
screen, in a high-throughput manner, for sequence-dependent variations of the solvent-
accessible surface area of DNA [15••]. This method provides information on local shape and
structure effects of DNA without the need for atomic-resolution data.
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Molecular dynamics simulations
AMBER is still the only force field that has been extensively tested for free-DNA simulations
[16]. It produces structures in qualitative agreement with experiment for the Dickerson
dodecamer, DNA bending, and for the A-DNA/B-DNA transition [17]. However, use of
AMBER94 appears to result in systematic under-twisting [17], apparently due to artifactual
α/γ-flips [3•]. Sarai and coworkers report a less serious under-twisting in MD simulations with
AMBER99 [4•]. However, since a 50ns MD simulation based on AMBER99 reported the total
corruption of a double-helix, it was concluded that force field artifacts become more prevalent
in longer MD simulations [18•]. Related problems were reported in an MD study of DNA
minicircles [19].

The Barcelona modification makes improvements in AMBER through a refinement of torsional
parameters based on quantum-mechanical calculations [18•]. Long MD simulations of the
Dickerson dodecamer suggest that the Barcelona force field produces more stable simulations
[18•] and, indeed, the first microsecond MD simulation of DNA has been reported [20]. The
CHARMM force field has been applied to MD simulations of free DNA as well but its
performance has not yet been tested in long simulations [21]. Further advances in MD methods
in recent years included the development of a polarizable force field for DNA [22] and the use
of implicit solvent simulations [23–25]. However, a comprehensive validation of the Barcelona
and other force fields through large-scale comparisons to experimentally determined structures
is still required.

Monte Carlo simulations
MC simulations offer an alternate approach to CPU-expensive MD simulations. A new MC
approach uses variables that are derived from the chemical topology of DNA [26], a slightly
modified version of AMBER94, explicit ions, and a screened Coulomb potential [5•]. Although
solvation/desolvation effects are not accounted for, the force field appears to capture many
important features of sequence-dependent DNA structure. In addition, the MC algorithm is
particularly effective in sampling thus allowing it to be applied to global conformational search
and structure prediction problems. The method has been used to predict sequence-dependent
DNA bending [5•] and local intrinsic deviations from B-DNA conformation [2••], and was
employed for drug-DNA docking [27•]. Figure 2 illustrates the prediction of sequence-specific
minor groove width of the Dickerson dodecamer. In addition to the excellent agreement with
the experimentally determined minor groove width that is evident from the figure, the predicted
average helix twist of 34.7° also agrees well with experiment (X-ray 35.4°; NMR 35.3°). The
success of an approach based on a detailed description of the DNA but a crude solvent model
indicates that intramolecular interactions dominate stacking geometry, and in turn, the detailed
structure of the double-helix. This finding suggests that simplified approaches that do not
require a full all-atom description of solvent molecules may be quite effective in the prediction
of the sequence dependence of DNA conformation.

Protein-DNA interactions
Molecular dynamics simulations

MD simulations have been increasingly employed to study the dynamics of protein-DNA
binding and the interplay of direct and indirect readout. Valuable insights have been obtained
although the balance between intra- and intermolecular interactions in force fields is somewhat
uncertain and remains a challenge for the study of protein-DNA complexes [28]. Currently,
CHARMM is predominantly used in MD simulations of complexes but AMBER has been the
force field of choice for free DNA.
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MD simulations were used to study the recognition of DNA by the tumor-suppressor protein
p53 [29•,30,31]. The p53 consensus binding site is comprised of two decameric half-sites that
are separated by a variable number of base pairs. Shakked and coworkers solved the first crystal
structures of p53-tetramer binding to DNA [32••]. The DNA binding site in these structures
was composed of two half-sites separated by a two-base pair linker. Nussinov and coworkers
employed MD simulations to study the complex without base pair insertions between the half-
sites and showed that bending of the full site enhances contacts between p53 core domains
[29•]. In another MD study, it was demonstrated that alterations in the sequence of the p53
consensus site affect DNA shape and the strength of crucial p53-DNA contacts [30].

Monte Carlo simulations
MC simulations, based on a coarse-grained model that was derived from sequence-specific
elastic properties of DNA, have been applied to study the binding of the Lac repressor to its
operator. It was found that nucleotide sequence affects the conformation of the DNA loop in
the Lac repressor-DNA complex [33]. Similarly, non-specific binding of the nucleotide protein
HU to circular DNA was studied, and it was shown that HU proteins induce local DNA bending
and untwisting [6•]. Interest in the mechanism of nucleosome packaging in chromatin has led
to the development of a coarse-grained model that accounts for histone tail and inter-
nucleosomal linker flexibility. This model treats the nucleosome as a rigid core with uniformly
distributed charges, and stresses the role of the positively charged histone tails in packaging
of oligonucleosomes [34].

Minor groove recognition exploits shape and electrostatic potential
Recent work on Hox proteins revealed that subtle sequence-dependent local variations in minor
groove geometry provide a mechanism through which different proteins in the same family
can recognize small differences in nucleotide sequence [2••]. Crystal structures were
determined for ternary complexes involving the homeodomains of one of the eight
Drosophila Hox proteins, Scr, and its Exd co-factor, and DNA. One complex contained a DNA
binding site, fkh250, that was specific for Scr, while the other contained a consensus DNA site,
fkh250con*, that binds other Hox proteins as well. Both complexes have the homeodomain
recognition helices of the Scr protein and its Exd co-factor bound in the major groove, which
is the main source for binding affinity. However, as shown in Figure 3, two side chains, His-12
and Arg3, are seen in the crystal structure of the complex with the fkh250 site whereas they
are disordered when presented with the fkh250con* site. Binding studies suggest that both side
chains play a key role in determining in vivo specificity [2••]. The specific recognition of the
fkh250 sequence appears to be related to the narrow minor groove in the His-12/Arg3 binding
site whereas the groove is much wider in the equivalent region of the fkh250con* sequence. MC
simulations indicate that this difference in shape is a property of the free DNA.

Calculations using the DelPhi program [35] indicated that the effect of minor groove width on
binding can be traced to the electrostatic potential of the DNA. Narrow grooves produce
enhanced electrostatic potentials due to electrostatic focusing effects originally discovered for
enzyme active sites [36]. The effect of minor groove shape on electrostatic potential offers a
new mode of protein-DNA recognition. Specifically, sequence-dependent variations in DNA
shape can exploit corresponding variations in electrostatic potential to tune binding affinities,
even among closely related members of the same protein family.

Prediction of protein-DNA binding sites
Transcription factor binding sites

All-atom calculations of protein-DNA binding energies have been used to predict the
nucleotide sequence recognized by a particular protein. Most such studies start with a protein-
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DNA complex of known structure. Mutations are then computationally introduced into the
base sequence and/or the protein and changes in binding affinity are calculated. In one such
study, it was shown that either direct or indirect readout mechanisms dominate in certain
protein-DNA complexes, and, if identified, can enable reliable DNA binding site predictions
[37•]. A similar approach characterized the role of intermolecular interactions and the elastic
properties of DNA in protein-DNA specificity [38]. Deformation energies, derived from either
energetic parameters associated with different base pair steps [39•,40] or from all-atom
conformational energies [41], have also been shown to increase the accuracy of affinity
predictions. Overall, structure-based predictions of binding specificity seem to work quite well
if a template with an appropriate docking geometry is available, at least in the case of zinc-
finger proteins [42,43•].

Studies of this type are of potentially great importance since they offer a fundamentally new,
non-statistical approach for the prediction of transcription factor binding sites. Their success
will depend on continued improvements in the ability to calculate the sequence dependence of
DNA conformation and protein-DNA interaction energies. Complexities in these areas result
in part from the absence of a force field specifically designed for protein-DNA interactions
and from the fact that the protein-DNA interface is not always closely packed and may contain
water molecules that need to be taken into account. Indeed there have been only limited reports
of the prediction of protein side chain conformations in the protein-DNA interface. This
problem constitutes an important challenge although there have been recent reports of
promising advances [43•,44,45]. All-atom predictions can provide fundamental insights, but
they also suffer from inaccuracies in the force field and, in addition, they are generally too slow
for genome-wide analysis. This problem can be reduced by using knowledge-based constraints
on protein-DNA contacts to predict transcription factor binding sites [46••].

Nucleosome positioning
There is much interest in understanding how and predicting where nucleosomes are positioned
on the genome. The wrapping of nucleosomal DNA around the histone core requires
deformations in the double-helix. Helical parameters [47] were employed to describe inter-
base pair translations and rotations that can accommodate this distortion and to suggest a
structural mechanism that leads to the formation of a superhelical pitch [48••]. This is an
important development because bending in circular DNA was understood on a base-pair level
but the superhelical pitch was not. Knowledge of the specific dinucleotide deformations that
are necessary for nucleosome formation made it possible to predict experimentally identified
binding sites with a three-base pair or higher accuracy [49].

The occupancy of nucleosomes at different positions along the yeast genome was
experimentally analyzed in vivo [7•]. It was found, based on statistical analysis of the
periodicity and phase relationship of certain dinucleotides in nucleosomal DNA, that
nucleosome sites can be predicted with approximately 50% accuracy [7•,50]. However, a
similar analysis of C. elegans nucleosomes singled out different positional preferences for
dinucleotides at nucleosomal DNA [51] than found in the yeast study [7•]. Despite many
advances, there is still much controversy in this area. Current approaches are based on the
properties of dinucleotides, but it is likely that more molecular detail is required for solving
the nucleosome positioning problem.

Conclusions
Protein-DNA recognition is the result of a complex interplay of physical interactions that act
at varying levels of nucleotide sequence specificity. At the simplest level, there are non-specific
electrostatic interactions between positive regions on a protein surface and the negatively
charged DNA that bring a protein to the vicinity of DNA and may facilitate diffusion along its
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surface (see e.g. recent discussion in [52•,53,54]). At the next level, there can be family-specific
recognition of particular nucleotide sequences; for example the binding of the recognition helix
of many Hox proteins to the major groove of DNA. This recognition is specific to an entire
family but is non-specific in the sense that major groove binding alone is not sufficient to
distinguish one Hox protein from another. We have seen here that finer grained recognition
occurs in the minor groove through the recognition of differences in electrostatic potential
mediated by differences in minor groove shape. On the protein side, shape is recognized by
the specific placement of basic amino acids in conformations that enable them to interact
optimally with subtle changes in electrostatic potential [2••]. The binding mechanisms of Hox
proteins appear then to be cooperative, with family-wide major groove binding providing much
of the affinity while protein-specific minor groove binding provides much of the protein-level
specificity.

Mechanistic details will likely vary among families but, as is true in so many other cases,
biological systems seem to exploit whatever is available to achieve specificity. This reality
complicates any attempt to come up with simple rules for protein-DNA recognition, and poses
challenges to detailed simulations, since individual contributions are often relatively small. On
the other hand, the identification of the range of possible mechanisms and their association
with the strategies used by individual families has the potential to lead to the development of
new computational approaches that can be applied to specific problems. In this article we have
focused on one such mechanism involving the effect of DNA sequence on the detailed structure
of the double-helix.

The insights gained from studies of the conformational properties of specific sequences, both
in free DNA and in complexes, should provide invaluable insights in the development of fast
algorithms that can predict specificity on a genome-wide scale. Such approaches should prove
to become important complements to new high-throughput methods that probe protein-DNA
binding specificity. More generally, the integration of structural information, simulation
technologies, binding data, and bioinformatics approaches will play an increasingly important
role in our understanding of the remarkable ability of the seemingly uniform double-helix to
accomplish so many tasks that rely on subtle variations in its structure and composition.
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Figure 1.
Histogram of number of released crystal structures of Protein-DNA complexes and free DNA
organized by Protein Data Bank release date
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Figure 2. Sequence-dependence of minor groove shape for Dickerson dodecamer
– Ideal B-DNA (A) and the Dickerson dodecamer, PDB code 1duf (B), differ in minor groove
shape as shown by the color coding of the molecular surface (green for convex, black/grey for
concave surfaces). (C) The intrinsically narrow minor groove in the center of the Dickerson
dodecamer is predicted by MC simulations using ideal B-DNA as a starting conformation. The
X-ray data represent an average of the 15 available crystal structures, symmetrized based on
the palindromic sequence CGCGAATTCGCG in order to remove crystal packing effects. The
NMR data represent an average of 10 structures that included dipolar coupling data in their
structure determination. Minor groove width is calculated with the CURVES program [55].
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Figure 3. Recognition of minor grove shape and electrostatic potential by a Hox homeodomain
- Crystal structures of Scr bound to its specific fkh250 sequence, PDB code 2r5z (A), and the
Hox consensus sequence fkh250con*, PDB code 2r5y (B). Color coding of the molecular surface
reveals, for the fkh250 site, an extended region with a narrow minor groove, which binds
His-12, Arg3, and Arg5. In contrast, the minor groove of the fkh250con* site is only narrow at
the local region that binds Arg5. A mesh of the -8kT/e isosurface illustrates that the electrostatic
potential, as calculated with DelPhi [35], is more negative in the minor groove of the fkh250
site than in the fkh250con* site. MC simulations of the free binding sites indicate the distinct
minor groove shape to be an intrinsic feature of the free binding sites (see text). Molecular
shape and electrostatic isosurface representations were generated with GRASP2 [56].
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