Figure 4. β4 may specifically co-exist with Slo3 in mouse sperm.
In A, membrane proteins from WT mouse cauda epididymal sperm were detected with anti-mSlo3 antibody as primary antibody. In B, a section from wild-type mouse testis showing well-defined seminiferous tubules is shown with normal (B1) and fluorescent (B2) illumination. Background fluorescence is limited to spaces between seminiferous tubules. A section of testis from a β4 KO mouse is shown under normal (B3) and fluorescent (B4) illumination revealing prevalent GFP fluorescence within seminiferous tubules. In C, similar comparisons are shown for sperm collected from caudal epididymis of both WT (C1, C2) and β4 KO mice (C3, C4). No significant fluorescence was detected from blood cells of β4 KO mice (C5, C6). In D, RNA - threshold cycle relationship reveals that the abundance of β4 and Slo3 mRNA in testes is similar. Each data point is an average from three experiments. The solid lines are linear fits with the slope values as follows: β-actin, −3.26; Slo1, −3.62; Slo3, −3.51; β1, −2.94; β2, −2.62; β3, −3.34; β4, −3.27. In E (testes, n = 3) and F (sperm, n = 3), the relative abundance of each tested subunit compared to Slo3 is displayed. Abundance was calculated from 2−dCt, with dCt = Ct(subunit) - Ct(Slo3). Ct(subunit) stands for the threshold cycle number of the corresponding subunit, and Ct(Slo3) is the average threshold cycle number for Slo3 obtained from three parallel experiments for either testes or sperm. Scale bars: 50 µm in B, 10 µm in C.