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Abstract
Protein phosphorylation-mediated signaling networks regulate much of the cellular response to
external stimuli, and dysregulation in these networks has been linked to multiple disease states.
Significant advancements have been made over the past decade to enable the analysis and
quantification of cellular protein phosphorylation events, but comprehensive analysis of the
phosphoproteome is still lacking, as is the ability to monitor signaling at the network level while
comprehending the biological implications of each phosphorylation site. In this review we highlight
many of the technological advances over the past decade and describe some of the latest applications
of these tools to uncover signaling networks in a variety of biological settings. We finish with a
concise discussion of the future of the field, including additional advances that are required to link
protein phosphorylation analysis with biological insight.
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1 Introduction
In the postgenomic era rapid advancement in the characterization of new genes and their protein
products has driven an increased demand to functionally classify these proteins. Classical
genetic, biochemical, and protein chemical approaches have been historically used to tackle
this challenge for selected biomolecules, but these methods tend to be time-consuming,
laborious, and usually require large amounts of material. Application of these approaches to
characterize thousands of proteins is therefore unrealistic. However, recently developed
proteomic methods, quickly improving with technical advancements in equipment, permit
large-scale protein analysis while maintaining molecular resolution. While these large-scale
methods do not directly provide functional characterization, they can be used to generate
hypotheses regarding the function of selected proteins. Follow-on biochemical studies can then
be performed on these proteins to validate hypotheses.
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Functional classification is further complicated by protein PTMs, which can modify enzymatic
activity, binding affinities, and protein conformation. Among PTMs, phosphorylation is
perhaps the best studied due to the association between dysregulated phosphorylation and
human pathologies [1]. Protein phosphorylation on Ser (~90%), Thr (~10%), and Tyr
(~<0.05% of protein phosphorylation) residues is reversible and its dynamic addition can
produce fast and precise changes in protein properties, which in turn affect many critical
processes, such as protein–protein interactions, cell signaling, cytoskeleton remodeling, cell
cycle events, and cell–cell interactions [2]. Protein phosphorylation analysis is still very
challenging, although breakthrough developments over the past decade have now enabled the
identification and quantification of thousands of sites from given biological samples. To put
these advancements in the field of phosphoproteomics into perspective, Fig. 1 high-lights
several of the most significant publications over the past 7 years.

Our focus in this review is on quantitative phosphoproteomics by MS. Here we discuss the
latest developments in the field, including instrumentation, reagents, and enrichment
techniques. Selected applications are highlighted to demonstrate the capabilities of these
methods, with an eye toward quantification of signaling networks and use of this information
for drug target discovery (for recent reviews, see ref. [3,4]).

2 Challenges of phosphoproteomics
Phosphoproteomic analysis is plagued by the same challenges facing all proteomic
experiments: complexity, dynamic range, and temporal dynamics. The true complexity of the
phosphoproteome has yet to be determined, but the Phosphosite database
(http://www.phosphosite.org) now lists >30 000 phosphorylation sites on >17 000 proteins,
and this number is steadily increasing as each large-scale phosphorylation analysis continues
to identify a large number of novel sites. With so many of the proteins in the cell being
phosphorylated, the dynamic range of the phosphoproteome is similar to that of the proteome
(i.e., ~109), but is further increased by substoichiometric modification. In addition, the temporal
dynamics of protein phosphorylation regulate the rapid activation and deactivation of cellular
signaling networks, further complicating analysis of the phosphoproteome. So the challenge
is not simply to identify and catalog all of the phosphorylation sites, but rather to identify the
site, quantify the stoichiometry, and monitor the temporal change in phosphorylation in
response to a variety of cellular perturbations. Performing this task on a large number of
phosphorylation sites across a broad swath of the signaling network is especially challenging,
but is required to understand the mechanisms by which protein phosphorylation controls cell
biology.

3 Enrichment methods
Phosphorylated proteins span the gamut of protein expression level, from hundreds of millions
to a few copies per cell. However, many of the phosphorylation events associated with
canonical cellular signaling pathways occur on proteins expressed at relatively low levels.
Since phosphorylation of these proteins is often substoichiometric and transient,
phosphopeptides obtained from these proteins after proteolytic digest are nearly impossible to
detect in the whole cell lysate or tissue sample, which can generate potentially millions of
peptides. Selective enrichment of phosphorylated peptides and proteins is required and has
been accomplished in a number of ways, including antiphosphotyrosine antibodies [5],
immobilized metal affinity chromatography (IMAC) [6], chemical modification, and strong
cation exchange chromatography (SCX) [7].

Immunoprecipitation (IP) of tyrosine phosphorylated proteins and peptides with high affinity
antiphosphotyrosine antibodies [8] provides good yield and specificity and has been
demonstrated on a broad variety of applications [9–12]. Several reliable antiphosphotyrosine
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antibodies are sold commercially. These antibodies primarily recognize phosphotyrosine, but
each has some bias toward the surrounding amino acids, and therefore performing the IP with
multiple antibodies may increase coverage of the tyrosine phosphoproteome. Since the fraction
of tyrosine phosphorylated protein to total protein may vary significantly from sample to
sample, experimental optimization of conditions, including relative amount of antibody to total
sample protein, is often necessary to reduce nonspecific binding while maximizing yield for
the particular sample. It is worth noting that while IP has been succesfully implemented for
tyrosine phosphorylation, anecdotal evidence indicates that the analogous pan-specific
antibodies against phosphoserine and phosphothreonine tend to be of lower affinity, and
therefore yield unsatisfactory enrichment for these subsets of phosphorylated peptides.
However, recent work by Matsuoka et al. [13] has demonstrated the potential of using multiple
phosphospecific antibodies recognizing ATM/ATR substrate phosphorylation sites to identify
and quantify hundreds of serine and threonine phosphorylation sites matching the ATM/ATR
kinase motif. Since many phospho-specific antibodies have off-target affinity, it may be that
this strategy could be applied to a variety of serine/threonine kinases, effectively supplementing
the need for high affinity pan-specific phospho-serine/threonine antibodies, and enabling
network analysis of serine/threonine phosphorylation, one motif at a time.

For many applications, the goal is to generate a global view of serine, threonine, and tyrosine
phosphorylation within the sample rather than focusing specifically on a selected subset of
phosphorylated peptides. Perhaps the most common technique to enrich for global
phosphorylation is IMAC, which is based on the high affinity of phosphate groups for metal
ions such as Fe3+ Zn2+ and Ga3+ One of the main limitations associated with IMAC-based
phosphopeptide enrichment has been the nonspecific retention of nonphosphorylated acidic
peptides, due to the weak affinity between negatively charged carboxylates and positively
charged metal ions. However, conversion of carboxylate groups to esters effectively eliminates
nonspecific retention of nonphosphorylated peptides on the IMAC column [14]. This method
has also been used in an automated platform involving online IMAC, nano-LC, and ESI-MS,
enabling reproducible detection and identification of phosphopeptides in a low-femtomole
range [15], and may be coupled with a stable-isotope labeling step for relative quantification
[14]. Since different metal ions appear to enrich for slightly different subsets of phosphorylated
peptides, maximal coverage of the phosphoproteome may be obtained by multiple analyses
with different metals, or by mixing multiple metal ions in a single IMAC enrichment step.

Within the past couple of years, titanium dioxide (TiO2) has emerged as the most common of
the metal oxide affinity chromatography (MOAC)-based phosphopeptide enrichment methods.
This technique requires significantly shorter preparation time and offers increased capacity
relative to IMAC resins with the same bed volume. Since this method exploits the same
principle as IMAC, it is similarly prone to nonspecific retention of acidic nonphosphorylated
peptides. However, loading peptides in 2,5-dihydroxybenzoic acid has been shown to reduce
nonspecific binding to TiO2, thereby improving phosphopeptide enrichment without chemical
modification of the sample [16]. Overall, TiO2 is often considered to be interchangeable with
IMAC, in that similar sample levels (e.g., micrograms of protein) can be analyzed and hundreds
of sites per sample can be identified when either technique is used as the sole enrichment
method, although each method has demonstrated differential bias and selectivity.

As an alternative to metal-ion-based enrichment strategies, SCX has been successfully used to
separate phosphorylated peptides from peptide mixtures for subsequent MS analysis [7,16,
17]. In this technique, binding to the SCX column is dependent on columbic interaction
between negatively charged resin and positively charged peptides. If sample loading is
performed under strong acidic conditions (pH ~2.7), carboxylates are rendered neutral, while
the phosphate group retains a negative charge. As a result, the total charge of phosphorylated
tryptic peptides is reduced from + 2 to + 1, and the interaction strength with the SCX resin is
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correspondingly reduced. Elution with a gradient of increasing salt concentration thus allows
phosphopeptides to elute earlier relative to nonphosphorylated peptides, providing
semiselective enrichment [7]. To reduce the nonphosphopeptide background, a second, IMAC-
based enrichment step has been performed on SCX fractions, enabling the identification of
thousands of phosphorylated peptides from given samples [7,17,18]. As another variation and
improvement of the SCX method, a mixed-bed resin comprised of a blend of anion and cation
exchangers (ACE) has been recently proposed for phosphopeptide enrichment, increasing
retention of acidic peptides, and reducing retention of basic and neutral peptides by the added
anion-exchange resin, which in turn improved the identifications of phosphopeptides by 94%
over SCX [19].

Phosphorylation enrichment by SCX-based fractionation, either solely or coupled with other
enrichment steps, has successfully been applied to identify large numbers of phosphorylation
sites (in the order of thousands). However, it is worth noting that the technique, as implemented
to date, requires a large amount of starting material (tens of milligrams of protein) which makes
it inapplicable to samples that are available in small or limited quantity. In addition, SCX
fractionation decreases the complexity of the starting samples by dividing it into many
fractions, each of which requires a separate MS analysis, leading to the possibility of up to 100
MS analyses for each biological replicate. The sample requirements, analysis time, and labor
associated with each biological sample has unfortunately limited the application of this
technique such that few studies have incorporated biological replicates.

Several laboratories have taken the approach of chemically modifying the phosphate to provide
an affinity enrichment tag. For instance, the phosphate groups on serine and threonine can be
removed by β-elimination and replaced by ethanedithiol coupled to a biotin tag, making it
possible to purify modified peptides using an avidin affinity column [20]. The primary
disadvantage of this approach is that tyrosine phosphorylation does not undergo β-elimination,
and therefore these peptides are not enriched by this method. It is also possible to directly attach
an affinity tag to the phosphate through phosphoramidate chemistry (PAC). Recent
improvements in this approach have improved the yield by reducing the number of steps,
making the approach much more user-friendly [21].

Different enrichment methods may yield different pools of phosphopeptides from the same
peptide mixture, as recently shown in a comparative study conducted by the Aebersold group,
where PAC, IMAC, and two types of TiO2 methods were employed to isolate phosphopeptides
from a tryptic digest of Drosophila melanogaster Kc167 cells [22]. Performing multiple
analyses with several complementary phosphopeptide enrichment methods may be the best
way to maximize depth of coverage, albeit at the cost of increased sample consumption and
reduced throughput.

It is often the case that any single enrichment step does not provide sufficient specificity when
dealing with complex biological samples. Therefore, double enrichment, as in the above
scenario with IMAC and SCX, is often required to improve phosphopeptide analysis. In another
example, our laboratory has combined antiphosphotyrosine peptide IP with IMAC to analyze
tyrosine phosphorylation in murine adipocytes [23], human Jurkat cells [24], and in the
epidermal growth factor receptor (EGFR) signaling network in human mammary epithelial
cells (HMECs) [25,26].

4 Quantification approaches
To date much of the work in phosphoproteomics has focused on developing novel methods for
the enrichment of phosphorylated peptides/proteins and subsequent application of these
methods to identify large numbers of phosphorylation sites from given biological samples.
Data generated in these “cataloging” studies may be informative for laboratories studying
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selected proteins whose phosphorylation sites appear in the catalog, but it is often difficult to
link the information in these large-scale datasets to cellular signaling networks. In order to
identify phosphorylation events that may be regulating biological response to cellular
perturbation, quantification of phosphorylation pre- and post-cell stimulation is necessary.
Several MS-based quantification methods have been implemented for phosphoproteomics,
including stable-isotope labeling through chemical modification of peptides, stable-isotope
labeling of amino acids in cell culture (SILAC), and label-free methods.

Multiple chemical modification protocols have been utilized to incorporate stable isotopes;
among these methods, iTRAQ has become the most commonly used option due to its multiplex
capability. The iTRAQ reagent consists of four isobaric isoforms which react with primary
amines, thereby enabling quantitative comparison of four protein samples in parallel. Since the
labels are isobaric, quantification is performed in MS/MS mode by comparing peak areas of
the marker ions resulting from fragmentation of the iTRAQ label, so the same spectrum is used
for quantification and sequence identification of the phosphopeptide. As demonstrated in Fig.
2, when coupled to phosphotyrosine peptide IP and IMAC, iTRAQ has been successfully
applied for the quantification of phosphorylation states of differentially stimulated Jurkat cells
[24], adipocytes [23], and for analysis of the temporal dynamics of the ErbB signaling network
[25,26]. Recently, the eight-plex version of iTRAQ has been developed and applied to
proteome analysis [27], demonstrating the potential to further increase throughput in
quantitative proteomic analysis, but this reagent has yet to be used for the quantification of
protein phosphophorylation.

For metabolic isotope labeling, cells are cultured in a medium where the natural form of an
amino acid (typically arginine or lysine) is replaced with a stable isotope form, such that
proteins expressed by the cell incorporate the heavier version of this amino acid and therefore
alter their molecular mass (see ref. [28] for the detailed, updated review of the method). This
technique is generally referred to as SILAC, and enables comparison of up to three samples in
a single analysis. Initially, SILAC was developed for mammalian cells [29], but its use has
been broadened to bacteria [30] and yeast [17]. There have also been reports of in vivo metabolic
labeling in whole organisms (Plasmodium falciparum [31], plants [32], D. melanogaster,
Caenorhabditis elegans [33], and rats [34]), but they require feeding labeled reagents to model
organisms, which makes multiple experiments cost-ineffective.

There are advantages and disadvantages to both metabolic and chemical modification-based
labeling methods. For SILAC, cells need to undergo multiple cell divisions in medium
containing stable isotope-labeled amino acids to ensure sufficient isotope incorporation for
reliable comparison between cell states. For this reason, it is not practical to apply SILAC to
generate quantitative data from primary cells or to compare tumor tissue specimens directly.
Moreover, culture conditions need to be carefully monitored to prevent interconversion
between arginine and proline, which could negatively affect quantification accuracy. However,
since cells can be mixed prior to cell lysis and sample processing, quantification error
associated with differences in these steps can be avoided, potentially leading to higher
accuracy. By comparison, postextraction methods permit quantitative analysis of a broader
variety of samples, including animal tissues and human tumors, providing the opportunity to
follow in vivo changes between healthy and diseased states, which in turn can lead to the
discovery of new drug targets. Since labeling typically occurs following enzymatic digestion,
sample handling needs to be carefully controlled to minimize variation introduced prior to
mixing differentially labeled samples.

For many applications, quantification relative to an arbitrary state is not sufficient, and absolute
quantification is desired. Typically, absolute quantification would have required the chemical
synthesis of heavy-isotope coded peptides [35] to be added to the sample as internal standards.
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Recently, however, such peptides can be biologically expressed using the method (named
QconCAT) introduced by Pratt et al. [36,37], in which Escherichia coli is transfected with a
modified gene containing the peptide of interest. The transfected E. coli is cultured in a medium
containing heavy lysine and arginine and the protein is digested following purification, yielding
the desired peptide, which can then be added to the sample. A recent review by Mirzaei et
al. [38] summarizes the current techniques for production of isotope-labeled peptide standards.

Label-free quantification may be employed as a less expensive alternative. These analyses are
typically performed either through direct comparison of two samples analyzed on the same
platform, or by spiking the sample with standard peptides and quantifying in reference to these
standards [39–41]. Unfortunately, label-free quantification does not provide the multiplex
advantage associated with SILAC or chemical modification (e.g., iTRAQ), and therefore
requires a separate MS analysis for each sample. Moreover, label-free analysis tends to have
greater quantification error compared to analysis of stable isotope-labeled samples, due to
inconsistent sample processing and chromatography across multiple analyses.

In the near future, MS-based proteomics should be increasingly focused on absolute
quantification of protein expression level and stoichiometry of major PTMs. This information
will make it feasible to directly compare data between experiments, conditions, and
laboratories. Moreover, absolute quantification will enable the development of more complex,
kinetic computational models describing the biological systems in much greater detail.

5 Instrument choice
As with all MS, optimal instrumentation for phosphoproteomic analysis is defined by the
application. For instance, in the case of global phosphoproteomics, instrument choice may be
influenced by the facile neutral loss of phosphoric acid (98 Da) from serine and threonine
phosphorylation, often resulting in uninterpretable MS/MS spectra. To circumvent this
problem, with a quadrupole ion trap (IT) it is possible to perform MS3 on the neutral loss peak
from the MS/MS spectrum; this strategy has been successfully implemented for several large-
scale phosphoproteomic studies [42]. The facile neutral loss problem may also be addressed
by using a quadrupole TOF instrument, as the intensity of the neutral loss peak is diminished
by multiple collisions in a high-pressure quadrupole, yielding an increase in sequence-specific
fragmentation and improved phosphopeptide identification. More recently, electron capture
dissociation (ECD) [43] and, especially, electron transfer dissociation (ETD) [44] have been
demonstrated to be particularly useful for the analysis of labile PTMs including serine and
threonine phosphorylation, providing good sequence coverage even for large peptides and
proteins.

Compared to serine or threonine phosphorylation, the phosphate attached to tyrosine is
relatively stable and usually does not produce a neutral loss in MS/MS mode, although loss of
80 Da may be seen from some tyrosine phosphorylated peptides. In fact, MS/MS spectra of
tyrosine phosphorylated peptides tend to resemble nonphosphorylated peptides, although
fragmentation N- and C-terminal to phosphotyrosine typically produces a characteristic
immonium ion of m/z 216.0426. Since this fragment ion is specific to tyrosine phosphorylation,
precursor ion scanning coupled with subsequent MS/MS analysis of the selected precursor ions
has been used to identify these pTyr-containing peptides from complex mixtures.

Instrument choice is further affected by the chosen quantification method. SILAC experiments
require high resolution and high mass accuracy because the number of species in the MS spectra
are doubled (or tripled), leading to increased complexity and increased frequency of
overlapping peaks. Although many of the initial SILAC experiments were analyzed on a
quadrupole TOF instrument, most of these studies are now conducted on instruments with
quadrupole IT fragmentation and Fourier-transform based detection (e.g., LTQ-FTMS or LTQ-

Nita-Lazar et al. Page 6

Proteomics. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Orbitrap) due to increased MS/MS acquisition speed in the IT and increased MS acquisition
mass accuracy and resolution in the FT mass analyzer. Choice of instrumentation for iTRAQ-
based quantification is more restrictive due to the low m/z ratio of the iTRAQ marker ions.
Quadrupole IT instruments have traditionally not performed well for these experiments because
fragmentation in a quadrupole IT is typically performed at a Q-value of 0.25–0.3, leading to
loss of the low mass region of the MS/MS spectrum. The hybrid quadrupole TOF mass
spectrometer has been the instrument of choice for iTRAQ-based quantitative
phosphoproteomic analyses due to the high resolution and mass accuracy (low ppm range) in
both MS and MS/MS mode, providing accurate detection of the charge state and unambiguous
assignment of the monoisotopic mass. Importantly, high-resolution MS/MS spectra obtained
on this instrument have improved quantification accuracy by separating iTRAQ marker ions
from contaminant ions at the same nominal m/z ratio [45]. The recent development of C-Trap-
based fragmentation on the LTQ-Orbitrap now enables triple quadrupole-like fragmentation
and high resolution, high mass accuracy detection in the orbitrap mass analyzer, potentially
providing a viable alternative to quadrupole TOF instruments for iTRAQ-based quantification
of phosphorylated peptides [46].

Given the large array of available enrichment and quantification techniques and the possible
combinations of these approaches with various types of MS, it is worth reviewing how these
options have been implemented to interrogate the phosphoproteome.

6 Phosphoproteomics in the EGFR network
In canonical growth factor signaling, stimulation of cell surface receptors first triggers
activation of the receptor and subsequently transmits the signal to a large number of
intracellular effecter molecules. The EGFR network is one of the most extensively studied
areas of signal transduction, and the one which best exemplifies oncogenic aberrations in
cellular signaling [47]. EGFR is a member of ErbB family of RTKs which comprises four
receptors (EGFR, HER2, HER3, and HER4) and 13 polypeptide ligands, each of which
contains a conserved epidermal growth factor (EGF) domain. This complex signaling network
has been one of the primary targets for phosphoproteomic analysis. In fact, one of the first
studies to address quantitative dynamics of phosphorylation at the network level was performed
in the EGFR system. In this study, a monoclonal antiphosphotyrosine antibody was used to
immunoprecipitate SILAC-labeled tyrosine phosphorylated proteins and their binding
partners. These proteins were enzymatically digested to peptides and analyzed by LC-MS/MS,
resulting in the identification of ~80 signaling proteins, including many known EGFR
substrates and several novel effectors [9]. The relative intensity of SILAC-labeled peptides
was used to quantify temporal dynamics within the network following EGF stimulation of
HeLa cells. However, since enrichment for tyrosine phosphorylation was performed at the
protein level and enzymatic digestion produces a broad variety of tryptic peptides, most of
which represent nonphosphorylated sections of the immunoprecipitated proteins, very few
phosphorylation sites were identified in this study, and therefore much of the key signaling
information is missing. In fact, since phosphorylation often happens at multiple tyrosine
residues within a single protein, and different phosphorylation sites on a single protein are often
differentially regulated with individual functions, quantification of each phosphorylation site
in the global signaling network is critically important.

To address the need for site-specific quantification, Zhang et al. [26] performed time-resolved
temporal analysis of EGFR signaling network by quantitative MS using iTRAQ. In this study,
proteins from whole cell lysate were proteolyzed to peptides and labeled with iTRAQ prior to
mixing. Tyrosine phosphorylated tryptic peptides were then enriched, first by IP with an
antiphosphotyrosine antibody, and then by IMAC to eliminate nonspecifically retained
nonphosphorylated peptides. As a result, 104 tyrosine phosphorylation sites from 76 proteins
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were identified with temporal phosphorylation profiles at four time points of EGF stimulation.
Site specific monitoring of protein phosphorylation in this study provided explicit detail
regarding the regulation of proteins within the signaling network, including differential
regulation of multiple sites on given proteins, and identification of phosphorylation “modules”,
clusters of sites with selfsimilar temporal profiles.

Peptide IP has now been successfully implemented in a variety of phosphoproteomic studies,
including a recent large scale analysis to identify phosphotyrosine signaling networks in lung
cancer cell lines and tumors [48]. In this study, oncogenic tyrosine kinase signaling was
characterized by analysis of tyrosine phosphorylation in 41 nonsmall cell lung cancer (NSCLC)
cell lines and over 150 NSCLC tumors, resulting in the identification of a total of 4551 sites
of tyrosine phosphorylation on greater than 2700 different proteins. Bioinformatic analysis of
the dataset identified a subset of NSCLC tumors and cell lines exhibiting high tyrosine
phosphorylation, possibly due to the presence of abnormally activated or overexpressed
tyrosine kinases. Potential “driver” tyrosine kinases were identified by a ranking process to
identify unusually high levels of tyrosine kinase activity in a subgroup of patients. Among the
18 tumors with highest EGFR rank, nine tumors were confirmed to have an activating mutation
in the kinase domain. Based on this success, a similar approach was used to identify other
candidate driver tyrosine kinases in the remaining tumors, including the fusion tyrosine kinase
EML4-ALK, as also recently reported by Soda et al. [49]. This example demonstrates that MS-
based phosphoproteomic discovery capabilities are highly complementary to the genomic
cDNA screening technology that was used to originally identify this transforming fusion
tyrosine kinase.

7 Global phosphoproteomics
With advances in MS and phosphopeptide separation methodologies, the scale of global
phosphoproteomic studies has increased significantly since the first large-scale global analysis
of the yeast phosphoproteome [14] only 5 years ago. For instance, Olsen et al. [50] recently
quantified global phosphorylation changes in EGF stimulated HeLa cells by combining SILAC
for relative quantitation with SCX and TiO2 chromatography for phosphopeptide enrichment.
Enriched phosphopeptides were analyzed by more than 100 LC-MS/MS runs to identify over
6600 phosphorylation sites on 2240 proteins with their annotated subcellular (nuclear vs.
cytosolic) localization. This information represents the largest global phosphorylation dataset
available to date for the EGFR signaling network, and covers a broad spectrum of
phosphorylation events, from EGFR autophosphorylation to phosphorylation of terminal
effector molecules such as transcription factors. However, even this dataset is still far from
comprehensive, as many well characterized phosphorylation sites were not identified in this
analysis. For instance, the low number of pTyr sites (103) in the dataset is likely due to the
large dynamic range associated with simultaneous analysis of serine, threonine, and tyrosine
phosphorylation. Given the large number of previously uncharacterized phosphorylation sites
and the massive size of this dataset, extraction of biological hypotheses is not trivial. However,
it is likely that improved functional characterization of the EGFR signaling network may arise
from linking this dataset to other complementary datasets [51] (e.g., Friedman and Perrimon’s
work RNAi-based screening to identify components in the RTK–Erk network [52]).

8 Reproducibility of phosphoproteomics
One of the principal limitations with each of the above studies has been the irreproducibility
of MS-based data, such that replicate analyses of the same sample (or analysis of biological
replicates) will typically identify only 60–70% of the same phosphorylation sites. Much of this
irreproducibility stems from operating the mass spectrometer in a nonbiased “discovery” mode,
in which the instrument continuously repeats a cycle consisting of a full-scan mass spectrum,
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followed by fragmentation of a certain number of the most abundant peaks for peptide and
phosphorylation site identification. This mode enables identification of novel phosphorylation
sites, but the semiautomated peak selection process is inherently irreproducible (see, for
example, a study of peptide/protein identification reproducibility by MS [53]), making it
difficult to directly compare multiple datasets. Recently we have developed an approach
combining “discovery” mode analysis of selected biological samples with high reproducibility
multiple reaction monitoring (MRM)-based “monitoring” mode for quantification of hundreds
of selected phosphorylated peptides [45]. This method was applied to investigate the temporal
dynamics of 226 phosphorylation sites at seven time points of EGF stimulation of HMECs.
Because preselected phosphopeptides are specifically monitored in MRM mode, the number
of peptides reproducibly identified from four replicates increased from 34% in discovery mode
to 88% in monitoring mode. This combined method should be applicable to a variety of
biological systems, and will enable reproducible network-wide quantification of cell
perturbation effects across a broad variety of stimulation conditions.

9 Phosphoproteomics and systems biology
Computational and systems biology approaches have become increasingly important in the
analysis of phosphoproteomic data. To provide higher meaning to the data, quantification of
both the phosphorylation network and the corresponding biological response must be collected.
Bioinformatics and mathematical modeling can then be applied to build hypotheses connecting
phosphorylation information to cellular phenotypes. In the past, identification of key elements
in signaling networks has largely been accomplished in a subjective way through the manual
comparison of fold –change phosphorylation and cell behavior. Recently, mathematical
modeling methods such as partial least squares regressions (PLSR) have been implemented to
objectively correlate phosphoproteomic data with cellular response to stimulation. For
instance, Wolf-Yadlin [25] et al. and Kumar et al. [54] applied PLSR to the quantitative MS
data describing the effects of HER2 overexpression on phosphotyrosine signaling in HMECs
stimulated by EGF or heregulin (HRG). Cell migration and proliferation were collected under
the same conditions and PLSR was used to integrate the data types. The final model described
a set of signaling molecules that are most relevant for the changes in migration induced by
HER2 overexpression. This type of modeling can provide insight into the functionality of
unknown proteins, which can be further tested by biological experiments.

As described above, the value of phosphoproteomic datasets significantly increases when these
data are used to generate hypotheses as to the function of selected phosphorylation sites, and
even more when these hypotheses are experimentally validated. For instance, Kratchmarova
et al. [55] interrogated tyrosine-phosphorylation mediated signaling networks following EGF
or PDGF stimulation of mesenchymal stem cells. Interestingly, although most of the network
responded similarly to these two stimulations, activation of the PI3K pathway was exclusive
to PDGF stimulation. Since EGF stimulation of these cells drives osteoblast differentiation,
the authors hypothesized that PDGFR-associated PI3K activation could be key to controlling
biological response to differential growth factor stimulation. Indeed, this hypothesis was
validated by small molecule inhibition of PI3K followed by PDGF stimulation to drive
ostoblast differentiation.

Another example of biological validation of MS-based phosphoproteomic data was provided
recently by Huang et al. [56] in the quantitative phosphoproteomic analysis of the EGFRvIII
signaling pathways in U87MG glioblastoma cell lines. Clustering of phosphorylation data
identified previously unknown crosstalk between EGFRvIII and c-Met, a receptor tyrosine
kinase that is well known to drive malignancy in various cancers. Since EGFRvIII and c-Met
may signal cooperatively to drive tumor growth, U87GM cells expressing EGFRvIII were
treated with the EGFR kinase inhibitor AG1478 and the c-Met inhibitor PHA665752. Either
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compound alone had minimal cytotoxic effect, but the combination of the two compounds
significantly increased cytotoxicity at lower doses, indicating that EGFRvIII utilizes other
receptor tyrosine kinases to potentiate oncogenic signaling. This finding has recently been
corroborated through the analysis of glioblastoma cell lines and tumors using
antiphosphotyrosine antibody arrays [57].

10 Phosphoproteomics and drug development
As described above, quantitative MS-based phosphoproteomics has been applied to identify
oncogenic kinases which may serve as potential drug targets. To validate this hypothesis, cells
are often treated with selected kinase inhibitors with the goal of altering cellular phenotype,
but it is often difficult to establish whether the effect was due to on-or off-target effects of the
compound. In order to determine the mechanism of action, it may be necessary to quantify the
specificity of the inhibitor, a nontrivial task. To address this challenge, Bantscheff et al. [58]
developed a kinase capturing bead (“Kinobead”) consisting of multiple immobilized broad-
selectivity kinase inhibitors. On application to cell lysate, a large number of kinases (and other
purine-binding proteins) are retained on the Kinobeads due to the interaction with the kinase
inhibitors. To obtain a quantitative target profile of a selected compound, cells or cell lysate
are treated with the compound at varying concentrations prior to affinity isolation with the
Kinobead. Kinases inhibited by the selected compound exhibit decreased binding to the
Kinobead and therefore yield decreased signal by quantitative (iTRAQ-based) MS. Combining
this approach with phosphorylation analysis can yield a profile as to the phosphorylation status
of the kinases bound to the selected compound, potentially identifying whether the compound
binds to the active or inactive isoform of the kinase. After establishing the specificity of the
inhibitor, it will then be possible to regather quantitative phosphoproteomic data to determine
the effect on the cell signaling network of inhibiting the selected targets of the inhibitor. The
workflow for this approach is outlined schematically in Fig. 3. Following through this iterative
process, one could begin to build out downstream signaling networks directly or indirectly
affected by a selected kinase in the context of various human pathologies.

11 Conclusions
What does the future hold for quantitative phosphoproteomics by MS? The field is in a rapid
state of flux, including new enrichment strategies, novel quantification reagents, and new
instrumentation. With each improvement it becomes possible to identify and quantify
increasing numbers of phosphorylation sites, digging deeper and deeper into the elusive
comprehensive phosphoproteome. However, as many of the above applications demonstrate,
size of the dataset is not always the most important metric. Instead, understanding the biological
implications of many of the phosphorylation sites is critical, since the ultimate goal of most of
these studies is to increase insight into cellular signaling and biological control. Linking
phosphorylation data to other quantitative phenotypic endpoints is a crucial step in this
procedure, and one that has been often ignored in the effort to gather larger data sets. Going
forward, the combination of MS, phenotypic characterization, mathematical modeling, and
selected perturbations should provide rapid advancement in our understanding of the
complexities of cellular signaling network, information that will enable the development of
better therapeutic agents with fewer off-target effects.

Abbreviations
EGFR, epidermal growth factor receptor; HMEC, human mammary epithelial cells; IMAC,
immobilized metal affinity chromatography; IP, immunoprecipitation; NSCLC, nonsmall cell
lung cancer; PLSR, partial least squares regressions; SCX, strong cation exchange; SILAC,
stable-isotope labeling of amino acids in cell culture.
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Figure 1.
Timeline of selected milestones in quantitative phosphoproteomics during the last decade. Each
publication has been selected based on implementation of a new method or application of
recently developed methodology to uncover novel aspects of signaling networks.
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Figure 2.
Example workflow of the quantitative phosphotyrosine analysis experiment using iTRAQ
labeling. Proteins are extracted from four biological samples (cell lines, stimulation time points,
tissue samples), modified and digested. For quantification, the resulting peptides are labeled
with iTRAQ reagent and combined. The mixture is then subjected to two steps of enrichment
for tyrosine phosphorylated peptides: IP with antiphosphotyrosine antibodies and IMAC.
Phosphorylated peptides eluted from the IMAC column are analyzed by LCMS/ MS, typically
on a quadrupole TOF mass spectrometer. Each MS/MS spectrum contains both sequence-
specific fragmentation events for identification of the peptide and phosphorylation site as well
as the low-mass iTRAQ marker ions to quantify phosphorylation across the four samples.
iTRAQ quantification is normalized to the supernatant to eliminate variation resulting from
the preparation process.

Nita-Lazar et al. Page 15

Proteomics. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Signaling network analysis by mass spectrometry, drug-target discovery, and kinase inhibition.
Mass spectrometry-based phosphoproteomics is used to quantify signaling networks in various
cell states resulting from multiple perturbations (e.g., cytokine stimulation, RNAi, small
molecule inhibitors). Computational modeling is used to link this information to quantitative
phenotypic measurements, thereby identifying key nodes in the signaling network. To validate
this model, compounds are developed to target these nodes, and the phenotypic effect is
monitored. The specificity of the compounds can then be tested by the Kinobead assay to
quantify on- and off-target effects. Changes in the signaling network can then be quantified to
establish kinase–substrate relationships given the established targets of the compound.
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