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Abstract
The accumulation of a given element is a complex process controlled by a network of gene products
critical for uptake, binding, transportation, and sequestration. Many of these genes and physiological
processes affect more than one element. Therefore, to understand how elements are regulated, it is
necessary to measure as many of the elements contained in a cell, tissue or organism (the ionome)
as possible. The elements which share components of their network vary depending on the species
and genotype of the plants that are studied and environment they are grown in. Several recent papers
describe high-throughput elemental profiling studies of how the ionome responds to the environment
or explore the genetics that control the ionome. When combined with new genotyping technologies,
ionomics provides a rapid way to identify genes that control elemental accumulation in plants.

Elements are an essential component of every living cell. As detailed in other parts of this issue,
elements are used to regulate the electrochemical balance of cellular compartments, as
cofactors in biochemical reactions, and as structural components in biological molecules and
complexes. Other elements can have deleterious effects on the cell by disrupting these and
other processes. Therefore, the physiologic and genetic networks controlling an elements
uptake, transport and accumulation are of great interest to researchers, and have been the subject
of intense study.

Alterations in the levels of any given element in a plant can be affected by a wide variety of
factors:

1. Changes in the soil chemical environment, either caused by the plant (acidification
or release of organic compounds), or by changes in the environment (rain, drought,
animal waste or decay of organic matter).

2. Changes in the morphology of the plant, including root structure and whether the plant
is in the vegetative or reproductive stage of its life cycle.

3. Changes in the plants uptake capacity brought on by the presence, absence or
regulation of channels or transporters, or, for ions that diffuse into the plant, changes
in the biochemical structure of the cell walls. Elements have to cross multiple
membranes to travel from the soil to the cells in leaves, and each membrane can have
a different composition of transporters.

4. Changes in the accumulation of chelators such as organic acids, peptides or proteins.

5. Changes in the amount of an element that is sequestered in intracellular compartments
such as the ER, mitochondria or vacuole.
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A few of these changes may exclusively affect a single element, for example, changes in a
transporter or chelator that has high specificity for that element. But most of the above changes
will affect more than one element. Therefore, experiments focused on single elements which
do not address total mineral nutrient and trace element content of the plant will not reveal the
regulatory networks involved in the homoeostasis of the ionome. These interactions among
elements (Figure 1) necessitate an understanding of how the entire elemental composition of
a cell, tissue, or organism (the ionome) responds to genetic and environmental perturbations.
Fortunately, advances in mass spectroscopy technology enable researchers to measure the
levels of dozens of elements in hundreds of samples in a single analysis. This allows us to ask
questions about the ionome as a whole, a process termed ionomics [1]. In this review, I will
discuss advantages of this approach, what has been learned about relationships between
different elements, and how this technique can be combined with conventional and emerging
genetics techniques to identify genes which control the ionome in organisms.

Ionomic Technologies
Inductively coupled plasma spectroscopy, either mass spectroscopy (ICP-MS) or optical
emission spectroscopy (ICP-OES) allows for the simultaneous measurement of dozens of
elements. Improvements in these techniques over the last few decades have overcome obstacles
that prevented previous efforts from detecting all but the most severe ionomic differences [2].
With the appropriate equipment, sample preparation for these techniques is not significantly
more onerous than for techniques that measure single elements. Most ionomic studies to date
have measured 12-20 elements [3-8] (studies mentioned in this review which measure fewer
elements have used other analysis methods). While these do not comprise the complete list of
elements that are of interest in plants, they usually comprise the major macronutrients, and
many of the micronutrients. As most alterations to the environment, physiology or genetics of
a plant will affect multiple elements, one of the elements in these subsets will likely be affected
by these alterations. This makes ionomics an excellent tool for detecting alterations in a plant's
physiology or its environment.

Even when a researcher is only interested in single elements, ionomics approaches can improve
the quality of data by measuring elemental analogs. Chemical analogs of elements of interest
like Rb for K, Sr for Ca and Se for S provide independent measurements that are highly
correlated with the element of interest. This data can be used to independently confirm that the
concentration the elements of interest is elevated or reduced in the sample and that these
changes are not due to analytical noise, or in cases where the element of interest is difficult to
measure (for example Rb and Se are easier to measure by ICP-MS than K and S) the analog
can be used as a proxy. It should be noted however that while these analogs are highly correlated
with the elements of interest, some plants may be able to discriminate between them. For
example some species of Astragalus can discriminate between S and Se [9].

Elemental to Element relationships
Critical to the understanding of how the ionome is regulated is an understanding of the overlap
between networks. While some relationships between elements may exist regardless of the
tissue, species or environment under study, many associations will vary with a combination of
these factors. For example, an investigation of arsenite uptake in rice discovered that Si
transporters are one method of arsenite uptake into plants [10]. This is in contrast to arsenate,
which can enter plants via phosphate transporters [11] (for more detail see Verbruggen et al.,
this volume). The element that As is sharing a transporter with is therefore dependent on the
speciation of As, which is a function of the soil environment, mainly pH and oxidative capacity,
where the plant is growing.
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While some shared elemental network components can be predicted by analysis of properties
like the binding and transport properties of a transporter, in practice, living systems are so
complex that most relationships cannot be predicted easily from chemical or biological
principles (the exception being chemical analogs, described above) and must therefore be
determined experimentally. While the interaction of genotype and environment is clearly a
critical driver of alterations in the ionome, most studies to date looking at relationships between
elements have focused on identifying either genetic or physiological correlations in isolation.

Genetic Interactions
Lahner et al [7] and Chen et al [5] performed large (>2000 plants) ionomic screens of
mutagenized populations of Arabidopsis thaliana grown on soil and Lotus japonica grown in
liquid culture, respectively. In both studies, the majority of mutants identified differed
significantly in more than one element. Chen et al. [4] also performed a screen of 45 natural
Lotus japonica accessions. Principle component revealed several groups of positively
correlated elements: [As, Fe, Na, Zn and Mo], [Mg and Ni], and [Mn, Ca, and Sr]. Baxter et
al. [12] recently cloned one of the mutants identified by Lahner et al. study. Although the
molecular function of the gene is yet to be characterized the phenotype demonstrates the
complex physiological interactions that affect the ionome and the potential for novel biological
discovery via high-throughput elemental screening. Loss of function of the gene causes an
increase in the amount of suberin in the roots, likely in the casparian strip. This increase in root
suberin causes a decrease in transpiration. The change in permeability and transpiration is
accompanied by decreases in leaf Ca, Mn and Zn and increases in S, K, As and Mo. The
direction of the change in these elements is interpreted as evidence for which primary path they
take to the xylem: elements which enter through the apoplast are less able to pass through the
casparian strip while elements which enter through the cell to cell symplastic pathway become
more concentrated in the slower moving xylem sap. This demonstrates how a single
physiological change in the plant can impact the concentrations of multiple elements in the
plant, even if they don't directly share transporters or chelators.

The tissue specificity of ion balance was also recently highlighted in a study of the seed ionome.
Vreugdenhil et al. [13] measured Na, Mg, P, K, Ca, Mn, Fe and Zn in seeds of an A. thaliana
Cvi × Ler Recombinant Inbred Line (RIL) population. In this experiment the levels of K, Ca,
Mg, Mn and Zn were all significantly correlated with P. The strong correlation is expected
because the main form of these cations in seeds is as a complex with the P containing compound
phytate. In Arabidopsis, phytate is only found in the seeds, suggesting that this particular set
of correlated elements is unlikely to be found in other tissues.

Environment Interactions
Baxter et al [3] measured the shoot ionome of Col-0 (the sequenced accession of A. thaliana)
under conditions that induced known Fe deficient or P deficient responses. Fe deficient
conditions produced significantly elevated concentrations of Mn, Co, Zn and Cd and decreased
concentrations of Mo (Figure 1, Black arrows). P deficient conditions produced significantly
increased concentrations of B, Zn and As and decreased concentrations of P, Cu and Co (Figure
1 blue arrows). Several known physiological responses to low Fe [14] are likely responsible
for the ionomic signature: 1) The rhizospehere is acidified, which makes Mn, Fe, Co, Zn, and
Cd more soluble and Mo less soluble, 2) Ferro-chelate reductase activity is upregulated as well
as 3) The IRT1 transporter which has a lower specificity for Fe than other transporters and
takes up Mn, Co, Zn and Cd. The molecular determinants of the alterations in the ionome
caused by fluctuations in P are largely unknown. An increased uptake of As can occur through
P transporters which are upregulated by P starvation. Nevertheless, even in the absence of a
physiologically specified model, the ionomic signatures were robust enough that logistical
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regression models using ion levels as parameters could predict the Fe or P nutritional status of
the plants. Changing the concentration of other components of the nutrient solution did not
cause the models to incorrectly predict the Fe or P status of the growth conditions, suggesting
that the models describe signatures are specific to Fe and P deficiency and robust to changes
in the environment. This is a breakthrough because it demonstrates the nutritional status of a
plant can be measured without measuring the element itself. This approach opens up the
possibility of high-throughput profiling of the ionome to determine nutritional status for
difficult to measure elements, and other physiological states. The two signatures do share two
elements, and due to the formation of FePO4 precipitates, Fe and P homeostasis are intertwined.
In fact, one response of A. thaliana to P deficiency (short roots) has recently been shown to
actually be the result of Fe toxicity [15].

While these results show great promise for understanding how the ionome is regulated, clearly
more work is needed. Changes in the mineral nutritional environment of plants growing in the
field are not likely to be confined to a single component. The Fe and P models of Baxter et al.,
[3] would need to be recalibrated, perhaps adding or dropping elements, if the growth media
were changed more significantly (eg. using a completely different type of soil or switching to
liquid culture). As we move forward, more complex experiments that alter multiple
components of the environment and integrate multiple genotypes will be required to elucidate
the molecular underpinnings of these models.

Gene × Environment Interactions
In a recent study of ionomic variation, Neutron activation was used to measure the levels of
up to 42 elements in 670 plant species collected from 29 sites [8]. For the macronutrients K,
Mg and Ca, genetic variation at the family level had the largest contribution to the variance,
while local effects, site to site variation, dominated for most of the other elements. In this study,
significant correlations were observed between Ca and Mg as well as the Ca analogs Sr and
Ba, and between K and its analogs Rb and Cs. Since these plants were sampled from their
native habitat, the environment at each site contributed to the selection of which species were
growing there, confounding the contributions of site and phylogeny in the observed variation.

Two recent studies have analyzed the combined effects of genotype and environment on the
ionome by profiling structured genetic populations under different environments. Ghandilyian
et al [16] measured Mg, P, K, Ca, Mn, Fe and Zn in the seeds of three different Arabidopsis
RIL populations. For two of these populations, they also analyzed multiple tissues from plants
grown in two different environments: soil and hydroponics. Most of the significant element to
element correlations within a RIL population were only found in one environment. They also
found very few strong correlations between the same element in different tissues, suggesting
that there are tissue-specific factors controlling elements. In the seeds they identified several
quantitative trait loci (QTL) hotspots, with QTLs for multiple elements (including one that
colocalized with a phytate QTL), however most of the QTL locations in the leaves were for
single elements. They also found, consistent with the poor reproducibility of element to element
correlations, that there was very little correspondence between the QTLs identified in different
environments. Broadley et al [17] attempted to identify gene by environmental interactions by
measuring Ca and Mg in 355 cultivars of Brassica oleraeca, 71 F1 hybrid lines and a double
haploid mapping population in the field and greenhouse under two different external phosphate
conditions. Ca and Mg were highly correlated with each other, and had several colocalized
QTL, but were found to not significantly vary between P conditions.

Ca and Mg
Comparison of the above studies points out an interesting contradiction in the inferred
relationship between Ca and Mg. As noted above, in survey data Watanabe et al [8] and
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Broadley et al. observed significant correlations between Ca and Mg. Analysis of ionomic data
for A. thaliana accessions and RIL populations in the PiiMS database
(www.ionomicshub.org) [18] also shows strong correlations between Ca and Mg. For plants
grown in soil therefore, Ca and Mg seem to be highly correlated in the leaves despite the fact
that many known Ca transporters do not transport Mg. Contrasting with this result, the mutant
screends of Lahner et al., [7] and Chen et al., [5] isolated many mutants where either Ca or
Mg, but not both, was significantly altered (for example esb1). One explanation for this
contradiction is that while mutant lines with altered Ca and Mg ratios are viable, they may have
reduced fitness and fail to survive multiple generations with strongly affected Ca:Mg ratios.
The extremely low Ca:Mg ratios of serpentine soils adaptation to these soils have been posited
as a driver of speciation [19] suggesting that the Ca:Mg ratio is extremely important for plant
viability. Interestingly, in a screen for Arabidopsis mutants that can grow on a serpentine-like
Ca:Mg ratio, Bradshaw et al. [20] isolated a line with a T-DNA insertion in a Ca/H+ antiporter,
Cax1. The cax1-1 line does not have altered Ca concentrations in leaves when grown on soil
[21], but the cellular Ca distribution may be altered.

Identifying Genes Using Ionomics
As shown above, elements are rarely correlated with the same sets of other elements across
tissue, environment or genotype. It is therefore unlikely that we will find sets of elements which
are controlled by all of the same genes. To fully understand the complex regulation of the
ionome, we will need to find the genes that control the accumulation and distribution of each
element.

Ionomics should make the process of finding genes responsible for ionomic variation more
efficient, as it allows for simultaneous mapping experiments to be conducted on the same
segregating populations. In induced mutant populations, where a single mutant locus is mapped
in each line, a multi-element phenotype is easier to map because the multiple correlated
measurements will increase the confidence in classifying individuals as mutant or wildtype.

Natural variation in elemental levels has also led to gene identification [22-24]. In populations
developed to identify natural alleles such as RILs, introduced above, using multiple elements
to find loci has not been used. As the parents of these populations are chosen for their diversity,
there are likely to be multiple loci controlling each element. As such, each element has been
treated as an individual trait and scans for colocalized QTL have been used to determine which
elements a given locus controls. This variation, however, creates some difficulty in mapping
mutants. Typically mutants are mapped by crossing the mutagenized line to an accession with
a large number of genetic differences from the mutant parent. Alleles from the outcross parent
often affect one or more of the elements being mapped and make mapping more difficult by
adding segregating variance and contributing to poor penetrance of the original mutant ionomic
phenotype. For this reason the mapping partner needs to be considered carefully. For example,
if an A. thaliana mutant in the Col-0 background were crossed to Ler, Mo could not be used
in mutant identification due to the confounding affects of segregation at the Ler MOT1 locus
[22]. Fortunately, technological improvements permit simultaneous measurements of
thousands of markers, allowing any accession to be used as the outcross partner to rapidly map
the causal locus.

Panels of diverse germplasm have been assembled in many plant species. The development of
high throughput genotyping platforms and association mapping methodologies [25] has the
potential to accelerate the process of identifying new loci which control the ionome. Utilizing
panels of natural accessions that have been genotyped to extremely high resolution, association
mapping has the potential to identify all of the common alleles which affect a trait, and narrow
the mapping interval significantly when compared to QTL mapping. For example, in A.
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thaliana, due to the decay of linkage disequilibrium, association mapping should narrow the
mapping window to ∼20kb [26]. With the narrower intervals, traits with associations that are
colocalized are more likely to indicate a single locus controlling both traits than a colocalized
QTL. As ionomics moves forward, the ionomic profiling of these diversity panels should begin
to identify and describe the molecular basis of natural variation in elemental uptake and
homeostasis.

Future Directions
With the exception of the broad survey of Watanabe et al., [8] most of the ionomics studies to
date have been limited to a small number of species. Like most areas of study, for a full and
useful understanding of the ionome we will need to expand these efforts to more species, as
different species and families likely have different elemental uptake mechanisms. Guelke et al
[27] showed that the isotope fractionation of Fe changes from stems to leaves to seeds in Fe
uptake strategy I plants, but remains stable in strategy II plants. This indicates that there are
different numbers of oxidation and reduction cycles in these plants, suggesting that in addition
to the different uptake mechanisms, these species have fundamentally different Fe translocation
and homeostasis mechanisms. Given how many elements are interrelated with Fe in the strategy
II plant A. thaliana, these differences are likely to have implications for the entire ionome.
Extending these analysis methodologies to crop plants as in Broadley et al. could allow the
direct identification of nutritionally improved lines. From a basic research perspective, the rich
dataset linking variety performance with field location from the agronomic discipline can be
used to understand gene by environment interactions.

Conclusions
Elemental accumulation is a complex process that impacts almost every aspect of plant growth,
development and survival. Mass spectroscopy technology has progressed to the point that
multiple elements can easily be measured in a high throughput manner. Measuring multiple
elements allows researchers to explore the dynamics of the ionome as a whole, not just
individual elements in isolation. It also makes gene identification experiments more efficient,
which should allow new genetic mapping techniques to identify hundreds of new loci that
control this complex system.
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Figure 1.
Genetic, physiological and chemical interactions between elements. Arrows denote
interactions discussed in the text. It should be noted, however, that this is only a subset of
known elemental interactions. Solid Black: Elements in the Fe model from Baxter et al. [3].
Solid Blue: Elements in the P model from Baxter et al. [3]. Solid Grey: Chemical Analogs.
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