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Abstract
Progress curve analysis is a convenient tool for the characterization of enzyme action: a single
reaction mixture provides multiple experimental measured points for continuously varying
amounts of substrates and products with exactly the same enzyme and modulator concentrations.
The determination of kinetic parameters from the progress curves, however, requires complex
mathematical evaluation of the time-course data. Some freely available programs (e.g. FITSIM,
DYNAFIT) are widely applied to fit kinetic parameters to user-defined enzymatic mechanisms,
but users often overlook the stringent requirements of the analytic procedures for appropriate
design of the input experiments. Flaws in the experimental setup result in unreliable parameters
with consequent misinterpretation of the biological phenomenon under study. The present
commentary suggests some helpful mathematical tools to improve the analytic procedure in order
to diagnose major errors in concept and design of kinetic experiments.
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1. Introduction
Enzyme activity is characterized in terms of rates [1], but the experimental enzyme assays
measure substrate or product concentrations and not directly rates. The derivation of reaction
rates from the changing concentrations is always an approximation with implicit error, but it
is widely used in the determination of kinetic parameters because of the simplicity of its
mathematical description with differential rate equations. Thus, in the simplest case the

scheme  is assumed, where E is enzyme, S is its substrate, P is the
measured product, k1, k2 and k-1 are the respective reaction rate constants. With the quasi-
steady-state assumption the differential rate equation for this scheme is

(1)

where the subscript 0 indicates the initial value of concentration, the  is the so
called Michaelis constant [1]. If P is measured over time, typically a linear increase in P is

*E-mail: kale@puskin.sote.hu.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Europe PMC Funders Group
Author Manuscript
Cent Eur J Biol. Author manuscript; available in PMC 2009 June 25.

Published in final edited form as:
Cent Eur J Biol. 2008 December 1; 3(4): 345–350. doi:10.2478/s11535-008-0035-4.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



approximated from the initial phase of the reaction to define the rate  and using a range of
S0 a simple optimization procedure can identify the KM and k2 values in Eq.(1) [2]. This
approach offers a simple mathematical evaluation at the expense of imprecision in the linear
approximation, which necessarily is reflected in the statistical variability of the parameters
[2]. This imprecision can be overcome, if the measured data from the full time course of the
reaction (called progress curve) are used and instead of differentiating the experimental data
the model equation is integrated. Even for the simplest case given above, however, the
mathematical analysis of the progress curves is rather sophisticated. According to [3],
following integration Eq.(1) gives

(2)

The problem of using Eq.(2) for optimization stems from the fact that its inverse function
P=PM (t,KM,k2,S0,E), in which t is the independent variable, has no analytical form for P
and thus specially designed mathematical approaches should be used for the identification of
the parameters KM and k2 [3]. In order to overcome the necessity for mechanism-specific
mathematical procedures, versatile programs for progress curve analysis have been
developed (FITSIM, DYNAFIT) [4,5], in which numerical integration simulates progress
curves according to the user-defined mechanism and following multiple iterations of the
model parameters the sum of the squared differences (SSD) between the points of the
simulated and experimental curves is minimized. These programs, which are based on sound
theoretical grounds, are highly flexible and convenient for various catalytic mechanisms and
accordingly their application is tempting even for researchers with little experience in
enzyme kinetics. Despite their simplicity the analytic procedures pose certain requirements
concerning the experimental design and if these are overlooked the overall analysis can be
seriously flawed. The present survey provides an example for misuse of the progress curve
analysis and suggests some helpful tools to detect errors in the experimental setup of such
kinetic work.

2. Relevance of the reaction rate constants optimized by progress curve
analysis

In order to achieve versatility of the application, the available programs operate with
reaction rate constants, e.g. in the scheme shown in the Introduction the values of k1, k-1 and
k2 are varied in the course of the optimization procedure. This is a sound approach, if the
user is aware of the fact that these constants are operational tools in the iterations and the
relevance of their optimized values requires expert evaluation, which depends on the
concrete experimental setup. For instance, if the experiment does not provide any direct
information on the changes of the ES intermediate concentrations (as it stands for the
majority of kinetic measurements), the time course of P generation is not sufficient to
identify the absolute values of the rate constants. A simple inspection of the catalytic scheme
in the Introduction indicates that different ratios of the rate constants for the formation and
decomposition of the ES complex can result in the same concentration of the complex with
consequent identical time course of P formation, which is actually measured. Thus,
following optimization of the rate constants the task of the expert should be to formulate the
relevant constant ratios, to which the experimental setup is sensitive.

For illustration of the issue mentioned above we will take an example from the recent
literature. Progress curve analysis is applied in a study on the interactions of various mutants
of pancreatic secretory trypsin inhibitor and trypsin [6]. The authors of this report worked
with the scheme shown in the Introduction and claim that they have identified the k1, k-1 and
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k2 rate constants for trypsin in the absence of inhibitor (“The k1, k-1 and k2 rate constants
were fixed values, which were determined from separate progress curves generated in the
absence of inhibitor”). Using these constant values, the authors combine the basic scheme
with a reaction of reversible enzyme-inhibitor interaction and try to estimate the rate
constants of this superimposed process.

To further analyze the basic scheme, one can use the data of the control curve from Figure
4B of [6] as mean values of experimental progress curves (this is the control curve, in which
the final product concentration approaches best the initial substrate concentration). Because
the authors do not provide any information about the variance of their assay, one can assume
that the deviation of the final P from the initial S in Figures 4A and 4C of [6] indicates the
scale of the experimental uncertainties and accordingly we model the error of the experiment
with flat standard deviation (SD) at each data point as shown in our Figure 1. Using

numerical integration of the differential rate equations for the scheme ,
progress curves are simulated with different rate coefficients k1, k-1 and k2. Progress curves
gained with three different sets of rate constants are shown in Figure 1. Although there is a
six-order of magnitude difference in the k-1 values (between 0.005 and 1000 s-1) and an
order of magnitude difference in the k1 values (between 1.35 and 13.4 μM-1.s-1), the three
simulated progress curves are indistinguishable by visual inspection. It is noteworthy that
these three sets of rate constants were gained with the help of a SSD minimization procedure
using the Nelder-Mead simplex direct search method [7], in which the optimization criterion
was set at the level of 1 relative SD span for the mean normalized SSD (each member of the
SSD was normalized by division with the modeled SD for the respective time point and the
sum was divided by the number of time points). All three sets of fitted rate constants satisfy
this criterion despite the significant differences in their values. Thus, neither the visual, nor
the numeric inspection of the simulated processes can discriminate between multiple sets of
rate constants, each of which satisfactorily describes the time course of the reaction. This
example argues against the validity of the cited claims that the reaction rate constants have
been determined and as a direct consequence their further application in enzyme-inhibitor
assays is profoundly questionable.

3. Relevance of the Michaelis constant optimized by progress curve
analysis

If the expert re-evaluation of the optimized rate constants from Figure 1 is performed as

discussed in the preceding section, the Michaelis constant  can be calculated
from the three sets of parameters. The three combinations of rate constants used in Figure 1
yield remarkably similar KM values: 85.06, 83.71 and 82.98 μM. Does this mean that if
once all three rate constants cannot be defined, working with a single substrate concentration
progress curve analysis still allows at least reliable determination of KM and k2? The answer
is definitely ‘no’ in real experiments. The authors of FITSIM emphasize that ‘the number of
varied parameters should be equal to, or less than, the number of experimental progress
curves entered for correct convergence and well-determined final parameters to be obtained’
[4]. Other authors also warn against using a single time-course for determination of KM and
k2 [8]. An alternative analysis of the data in Figure 1 supports these recommendations.

Instead of the rate constants, in the alternative analysis the KM and k2 are iterated using the
integrated model Eq.(2) and our recently published optimization procedure [3]. As shown in
Figure 2, at least two pairs of parameters meet the convergence criterion to simulate the
progress curve with a normalized SSD less than 1. The difference in their values spans three
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orders of magnitude and there is no straightforward indicator for which pair is the better
estimate. The lack of singularity stems from the poor experimental design: working with one
starting substrate concentration it is very difficult (even impossible) to identify systematic
uncertainties [9].

4. Monte Carlo simulation as a diagnostic tool in progress curve analysis
When biological processes are formalized in mathematical terms, measured experimental
data are used to derive model parameters as general characteristics of the process under
study. A legitimate requirement in biological modeling is to provide not only the best
estimate of the parameters, but also a statistical measure of their variability. However, even
in the case of the simplest models the statistical distribution of the parameters can be
described only with complicated and model-specific analytic weighting procedures for
conversion of the uncertainties of the measurement into confidence intervals of the
parameters. An alternative robust approach for determination of statistical variance of model
parameters is the Monte Carlo simulation and its variants [10,11]. The principle of this
approach is that the measured data define the distribution of the sampled quantity (e.g.
product concentration in different points of the progress curve) and thereafter a computer
performs a great number (1000-1500) of virtual experiments: it draws random samples from
the modeled distribution of experimental data and estimates the synthetic model parameters
on the basis of these quasi-experimental points. The synthetic sets of parameters are flipped
around the original model parameters. The mean of the gained 1000-1500 points determines
the best guess for the needed model parameters, whereas their distribution, which reflects
the uncertainties of the experiment, determines their multidimensional “root” confidence
intervals (for further details see [12,13]).

In addition to the typical application of Monte Carlo simulations described above, their
inclusion as a routine supplement of progress curve analysis can be of special benefit for
screening the adequateness of interpretation of the model parameters. For example, Monte
Carlo simulation with the data and the optimization approach of Figure 1 would explicitly
show that the experimental setup is not sensitive to the values of the three rate constants.
Figure 3 illustrates that with these experimental data the fitting procedure to a model with
three parameters converges successfully with ranges of k1 and k-1 values spanning orders of
magnitude. Using two different sets of initial parameter values, the difference between the
lower and upper limit for the 95% confidence interval of k-1 is 10230-fold in Figure 3B and
5-fold in Figure 3D, whereas concerning k1 the same difference is 2-fold in Figure 3A and
6-fold in Figure 3C. Inspection of the variability of the measurement in Figure 1, which lies
within the typical limits for biological experiments, supports the conclusion that this large
variance of the model parameters cannot be attributed to poor reproducibility of
experimental data and is probably due to inadequate modeling. Remarkably the 95%
confidence limits of k2 vary only by 50% of the best estimate value in all cases (Figure 3A-
D), which clearly indicates that this rate constant is probably the only one among the model
parameters, which can be reliably determined with the applied evaluation procedure. Thus,
performing multiple cycles of automated optimization with Monte Carlo simulation
eliminates any potential bias originating from the small number of the manually initiated
iterations and sheds light on otherwise hidden shortcomings of the user-defined model.

Even if the model turns to be adequate, Monte Carlo simulations can help the identification
of additional shortcomings in the experimental design, e.g. insufficiency of measured data.
This issue is exemplified by Figure 4. Running the optimization with largely different initial
values for KM and k2 can result in successful convergence with different sets of parameters
as shown by the two model curves in Figure 2. Monte Carlo simulation with the same initial
conditions (Figure 4) demonstrates that the difference in the two optimized sets of
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parameters does not stem from experimental uncertainties: the two 1000-member sets of
synthetic parameters lie three orders of magnitude apart, whereas the variations within each
set are less than 50% of the best estimates of the respective parameter. This is a clear-cut
indicator that the model is apparently adequate and the measured data are of good quality,
but the experimental design is flawed and does not provide sufficient data for unambiguous
determination of the model parameters. This problem can be solved with analysis of
additional progress curves measured at different substrate concentrations.

5. Concluding remarks
The technical development since the introduction of progress curve analytic programs like
FITSIM and DYNAFIT [4,5] makes possible the everyday application of computer-
intensive procedures for a wide audience of researchers in enzyme kinetics. Thus, Monte
Carlo simulations can be performed on desktop computers within reasonable timeframe even
for complex reaction schemes. In addition to reliable description of the confidence intervals
of the model parameters, their implementation as a routine utility in progress curve analysis
would automate tasks, which are available as separate optional tests in the widely used
analytic programs. For example, a test for the sensitivity of the experimental data to the
fitted kinetic parameters can be performed with FITSIM [4], but some of its users skip it [6],
which results in unreliable interpretation. A routine Monte Carlo simulation (Figure 3)
would warn the user in similar situations that a re-evaluation of the experimental design and
the model is warranted. However, it should be emphasized that a computer cannot substitute
completely the expertise of the user, e.g. the insufficiency of data illustrated in Figure 4 can
be easily missed, if the optimization is not started from largely different initial values of the
model parameters, which should be suggested by the expert user. In summary, Monte Carlo
simulations can reduce the risk for misuses of progress curve analysis, but do not eliminate
the necessity for careful expert inspection of the final analytic output.
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Figure 1.
Progress curve of trypsin catalyzed reaction analyzed by numerical fitting of reaction rate
constants. The concentration of released p-nitroaniline in the course of action of 10 nM
trypsin on 140 mM N-CBZ-Gly-Pro-Arg-p-nitroanilide substrate is shown as mean
(symbols, values taken from the control curve of Fig. 4B of [6]) and SD (bars, values
modeled from the final P in the three control curves in Fig. 4 of [6]). Lines represent
simulated progress curves for P according to the scheme using the following combinations
of reaction rate constants: green, k1=1.42 μM-1.s-1, k-1=6.78 s-1, k2=114 s-1; red, k1=1.35
μM-1.s-1, k-1=0.005 s-1, k2=113 s-1; grey, k1=13.4 μM-1.s-1, k-1=1000 s-1, k2=112 s-1.
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Figure 2.
Progress curve of trypsin catalyzed reaction analyzed by optimization of the Michaelis and
the catalytic constants. The data are the same as in Figure 1, but the integrated equation

is used for fitting the parameters KM and k2 as described in [3]. Lines represent simulated
progress curves for P using the following combinations of parameters: red, KM=84.4 μM,
k2=113.3 s-1; green, KM=19.9 mM, k2=14020 s-1.
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Figure 3.
Reaction rate constants estimated by Monte Carlo simulation of progress curves. The mean
and SD values of P in Figure 1 are used to define the distribution of the source data. The
reaction rate constants k1, k-1 and k2 are optimized as described in the text for Figure 1 in
1000 synthetic cycles. The initial values used in the optimization procedures are k1=1
μM-1.s-1, k-1=0.005 s-1, k2=0.114 s-1 for panels A and B; k1=100 μM-1.s-1, k-1=1045 s-1,
k2=1077 s-1 for panels C and D. The estimated synthetic parameters are shown by symbols
in green (for pairs within the 95% minimal-volume region) or blue (for pairs out of this
confidence region).
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Figure 4.
Michaelis and catalytic constants estimated by Monte Carlo simulation of progress curves.
The mean and SD values of P in Figure 1 are used to define the distribution of the source
data. The Michaelis constant KM and the catalytic constant k2 are optimized as described in
the text for Figure 2 in 1000 synthetic cycles. The initial values used in the optimization
procedures are KM=20 mM, k2=14000 s-1 for panel A and KM=200 μM, k2=200 s-1 for
panel B. The estimated synthetic parameters are shown by symbols in green (for pairs within
the 95% minimal-volume region) or blue (for pairs out of this confidence region).
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