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Abstract
Texture boundary detection (or segmentation) is an important capability in human vision. Usually,
texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D
substrate. However, an interesting hypothesis emerges when we ask a question regarding the
nature of textures: What are textures, and why did the ability to discriminate texture evolve or
develop? A possible answer to this question is that textures naturally define physically distinct (i.e.,
occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth
of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments
with artificial neural networks to investigate the relative difficulty of learning to segment textures
defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by
occluding surfaces and their change over time due to the observer’s motion. It turns out that learning
is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results
showed that the neural network’s learned ability to segment texture in 3D transfers well into 2D
texture segmentation, bolstering our initial hypothesis, and providing insights on the possible
developmental origin of 2D texture segmentation function in human vision.
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1 Introduction
Detection of a tiger in the shrub is a perceptual task that carries a life or death consequence for
preys trying to survive in the jungle [1]. Here, figure-ground separation becomes an important
perceptual capability. Figure-ground separation is based on many different cues such as
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luminance, color, texture, etc. In case of the tiger in the jungle, texture plays a critical role.
What are the visual processes that enable perceptual agents to separate figure from ground
using texture cues? This intriguing question led many researchers in vision to investigate the
mechanisms of texture perception.

Beck [2][3] and Julesz [4] conducted psychological experiments investigating the features that
enable humans to discriminate one texture from another. These studies suggested that texture
segmentation occurs based on the distribution of simple properties of “texture elements,” such
as brightness, color, size, and the orientation of contours, or other elemental descriptors [5].
Julesz also proposed the texton theory, in which textures are discriminated if they differ in the
density of simple, local textural features, called textons [6]. Most models based on these
observations lead to a feature-based theory in which segmentation occurs when feature
differences (such as difference in orientation) exist. On the other hand, psychophysical and
neurophysiological experiments have shown that texture processing may be based on the
detection of boundaries between textures using contextual influences via intra-cortical
interactions in the visual cortex [7][8][9] (for computational models, see [10][11]).

In the current studies of texture segmentation and boundary detection, texture is usually defined
in 2D. However, an interesting hypothesis arises when we ask an important question regarding
the nature of textures: What are textures, and why did the ability to discriminate textures evolve
or develop? One possible answer to the question is that texture is that which defines physically
distinct (i.e., occluded or occluding) surfaces belonging to different objects, and that texture
segmentation function may have evolved out of the necessity to distinguish between different
surfaces. Human visual experience with textures can be, therefore, in most cases to use them
as cues for surface perception, depth perception, and 3D structure perception. In fact,
psychological experiments by Nakayama and He [12][13] showed that the visual system cannot
ignore information regarding surface layout in texture discrimination and proposed that surface
representation must actually precede perceptual functions such as texture perception (see the
discussion section for more on this point).

From the discussion above, we can reasonably infer that texture processing may be closely
related to surface discrimination. Surface discrimination is fundamentally a 3D task, and 3D
cues such as stereopsis and motion parallax may provide unambiguous information about the
surface. Thus, we can hypothesize that 3D surface perception could have contributed in the
formation of early texture segmentation capabilities in human vision. In this paper, through
computational experiments using artificial neural networks, we investigated the relative
difficulty of learning to discriminate texture boundaries in 2D vs. 3D arrangements of texture.
In the 2D arrangement, textures are shown on a flat 2D surface, whereas in the 3D counterpart
they are shown as patterns on two surfaces, one occluding the other which also appears to slide
due to the motion of the observer. We will also evaluate whether the learned ability to segment
texture in 3D can transfer into 2D. In the following, we will first describe in detail the methods
we used to prepare the 2D and the 3D texture inputs (Section 2.1), and the procedure we
followed to train multilayer perceptrons to discriminate texture boundaries (Section 2.2). Next,
we will present our main results and interpretations (Section 3), followed by discussion (Section
4) and conclusion (Section 5).

2 Methods
To test our hypothesis proposed in the introduction, we need to conduct texture discrimination
experiments with 2D and 3D arrangements of texture. In this section, we will describe in detail
how we prepared the two different arrangements (Section 2.1), and explain how we trained
two standard multilayer perceptrons to discriminate these texture arrangements (Section 2.2).
We trained two separate networks that are identical in architecture, one with input prepared in
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a 2D arrangement (we will refer to this network as the 2D-net), and the other with inputs in a
3D arrangement (the 3D-net).

2.1 Input preparation
We used three sets of texture stimuli S1, S2, and S3 for our experiments (Figure 1). Textures
in S1 were simple artificial texture images (oriented bars of orientation 0, , or  at two
different spatial frequencies); those in S2 were more complex texture images such as crosses
and circles, adapted from Krose [14] and Julesz [15]; and those in S3 were real texture images
from the widely used Brodatz texture collection [16]. For the training of the 2D-net and the
3D-net, the eight simple texture stimuli in S1 were used. For testing the performance of the
2D-net and the 3D-net, all sets of texture stimuli (S1, S2 and S3) were used.

In order to extract the primitive features in a given texture, we used Gabor filters. Previous
results have shown that Gabor filters closely resemble experimentally measured receptive
fields in the visual cortex [17] and they have been widely used to model the response of visual
cortical neurons. A number of texture analysis studies also used oriented Gabor filters or
difference of Gaussian (DOG) filters to extract local edge features [18][19][20].

We used a bank of oriented Gabor filters to approximate the responses of simple cells in the
primary visual cortex. (Figure 2 shows a summary of the process outlined below.) The Gabor
filter is defined as follows [21] (the formula below closely follows [22]):

(1)

where θ is the orientation, φ the phase, σ the standard deviation (width) of the Gaussian
envelope, ω the spatial frequency, (x, y) the pixel location, and x′ and y′ defined as:

(2)

(3)

The size of the filter was 16 × 16 (n × n where n = 16). For simplicity, only four different
orientations, 0, , and , were used for θ. (Below, we will refer to G θ,φ,σ,ω as simply G.) The
phase of the cosine was , and the Gaussian envelope width was . To adequately sample
the spatial-frequency features of the input stimuli, three frequencies, , and , were used for
ω. This resulted in 12 filters Gij, where the index over orientations was , and
that over spatial frequencies . To get the Gabor response matrix Cij for orientation
index i and spatial frequency index j, a gray-level intensity matrix I was obtained from the
images randomly selected from S1 and convolved with the filter bank Gij:

(4)

where i = 1..4 and j = 1..3 denote the orientation and spatial frequency indices of the filters in
the filter bank, and * represents the convolution operator. The Gabor filtering stage is linear,
but models purely based on linear mechanisms are not able to reproduce experimental data
[23]. Thus, half-wave rectification is commonly used to provide a nonlinear response
characteristic following linear filtering. However, in our experiments, full-wave rectification
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was used as in [24], which is similar to half-wave rectification, but is simpler to implement.
Full-wave rectification is equivalent to summing the outputs of the two corresponding half-
wave rectification channels (see, e.g. Bergen and Adelson [25] [23]). The final full-wave
rectified Gabor feature response matrix is calculated as

(5)

for i = 1..4 and j = 1..3, where |·| represents the element-wise absolute value of the matrix.

For each sample texture pair, we acquired three response matrices: the Gabor energy matrix
E, the orientation index matrix O, and the frequency index matrix F. The E matrix simply
indicates the “edgyness” at each point, which is analogous to the orientation selectivity in
primary visual cortical (V1) neurons [26]. On the other hand, O indicates which orientation is
most prominent at each point, which again has an analog in neurophysiology: the orientation
preference in V1 neurons [26]. Finally, F represents how fine the spatial feature is at each point,
for which its neural mechanism is also known [27]. Thus, the selection of these three features
are consistent with known neurophysiology of V1.

The Gabor energy response matrix E was defined as follows:

(6)

where (x, y) is the location in each matrix, and i and j are the orientation and spatial frequency
indices, and Rij the response matrix (Equation 5). The orientation index matrix O and the
frequency index matrix F were calculated as

(7)

where arg max(·) is a vector valued function which returns two indices i and j where Rij (x, y)
is the maximum, one for orientation and one for spatial frequency, which are subsequently
assigned to O(x, y) and F (x, y), respectively. Finally, each matrix was independently
normalized by dividing with its maximum value. Figure 2 shows the Gabor filter bank and the
three matrices E, O, and F of the given texture pair.

To get the 2D training samples for the 2D-net, two randomly selected textures from S1 were
paired side-by-side and convolved with the Gabor filter bank (Figure 2). The E, O, and F
matrices were then obtained using Equations 6 and 7, and then normalized as explained above.

Each training input in the 2D training set consisted of three 32-element vectors taken from a
horizontal strip from the E, O, and F matrices (Figure 3b, showing E, marked white). Each
horizontal strip had a width of 32, and was taken from the center of the matrix where the two
textures meet, with a varying y location randomly chosen where the E sum in that row exceeded
the mean row sum of E for that particular texture (Figure 3b). The three vectors were pasted
to form a 96-element vector , where k represents the training sample index, and the
superscript 2D denotes that this vector is in the 2D set. Finally, the target  was set either to
0 (for “no border” condition) or to 1 (for “border” condition), thus giving an input-target pair
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( ) for the 2D case. Examples of these three 32-element vectors are shown in Figure
3c (texture with boundary), and in Figure 3d (texture without boundary).

In order to generate samples for the 3D-net, occlusion cue generated from self-motion was
used as shown in Figure 4. One texture from a pair of textures occluded the other where the
texture above was allowed to slide over the other, which resulted in successive further occlusion
of the texture below. The occluding texture above was moved by one pixel at a time 32 times
and each time the resulting 2D image ( , for t = t1…t32; Figure 5a) was convolved with the
oriented Gabor filter bank followed by full-wave rectification as in the 2D case (Figure 5b).
To generate a single training input-target pair ( ) for the 3D-net, at each time step the
Gabor energy response value E(xc, yc), orientation response value O(xc, yc) and frequency
response value F (xc, yc) were separately collected into three 32-element vectors, where xc was
16 pixels away to the right from the initial texture boundary in the middle, and yc was selected
randomly as in the 2D case (the white squares in Figure 5b). Finally, the three 32-element
vectors were pasted to form a 96-element vector . Figure 5c shows examples of  (note
that the x-axis represents time, unlike in the 2D case where it is spatial position: see the
discussion section for more on this point) for a case containing a texture boundary, and Figure
5d for a case without a boundary. The target value  of the input-target pair ( ) was
set in a similar manner as in the 2D case, either to 0 (no boundary) or to 1 (boundary). When
collecting the training samples for the 3D-net where there was a texture boundary, the above
procedure was performed with two different 3D configurations. In the first configuration, the
texture on the left side was on top of the texture on the right side with self-motion of observer
from right to left. In the second configuration, the texture on the right was on top of the texture
on the left side with self-motion of observer from left to right. For an unbiased training set, the
same number of samples were collected for each 3D configuration. The “no boundary”
condition was identical to the 2D case without a boundary, since no texture boundary in 3D
means one uniform texture over a single surface.

For both the 2D and the 3D arrangements, texture patches were uniformly randomly sampled
to form a texture pair, and 2,400 “boundary” and 2,400 “no boundary” cases were generated
for each arrangement. This resulted in 4,800 input-target samples for each training set.

2.2 Training the texture segmentation networks
We used standard multilayered perceptrons (MLPs) to perform texture boundary detection.
The networks (2D-net and 3D-net), which consisted of two layers including 96 input units, 16
hidden units and, 2 output units, were trained for 2,000 epochs each using standard
backpropagation (see e.g., [28]) 2. The target outputs were set to (1, 0) for the “boundary” case,
and (0, 1) for the “no boundary” case. The goal of this study was to compare the relative
learnability of the 2D vs. the 3D texture arrangements, thus a backpropagation network was
good enough for our purpose. The hyperbolic tangent function (f (v) = tanh(v)) was used as the
activation function of the hidden layer. For the activation function of the output layer, radial
basis function (RBF) was used (φ(v) = exp(−v2)). The use of the radial basis function in standard
MLP is not common: It is usually used as an activation function of the hidden layer in radial
basis function networks, which has additional data-independent input to the output layer. In
the experiment, as shown in the previous section, an input vector to the MLP is symmetric
about the center when there is no boundary. On the other hand, an input vector to the MLP is
quite asymmetric when there is a boundary, but the mirror image of that vector should result
in the same class. This observation led us to use the radial basis function, which has a Gaussian
profile. Several preliminary training trials showed that the use of the RBF as the activation
function enabled both the 2D-net and the 3D-net to converge faster (data not shown here). For
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the training, the input vectors were generated from the texture set S1. Backpropagation with
momentum and adaptive learning rate was applied to train the weights.

To determine the best learning parameters, several preliminary training runs were done with
combinations of learning rate parameters η ∈ {0.01, 0.1, 0.5} and momentum constants α ∈
{0.0, 0.5, 0.9}. MLPs with each combination were trained with the same set of inputs so that
the results of the experiment can be directly compared. Each training set consisted of 280
examples, drawn from S1 and processed by the input preparation procedure. The training
process continued for 1,000 epochs. The MLPs with other combination of parameters failed
to converge. Based on these preliminary training tests, we chose the learning parameters as
follows: learning rate η = 0.01, and momentum constant α = 0.5.

We also applied standard heuristics to speed up and stabilize the convergence of the networks.
First, each input vector was further normalized so that its vector mean, averaged over the entire
training set, is zero. Secondly, adaptive learning rate was applied. For each epoch, if the mean
squared error (MSE) decreased toward the goal (10−4), then the learning rate (η) was increased
by the factor of ηinc:

(8)

where n is the epoch. If MSE increased by more than a factor of 1.04, the learning rate was
adjusted by the factor of ηdec:

(9)

The learning constants selected above (η = 0.01, α = 0.5) were used for the second test training
to choose the optimal adaptive learning rate factors (ηinc and ηdec). Combinations of the factors
ηinc ∈ {1.01, 1.05, 1.09} and ηdec ∈ {0.5, 0.7, 0.9} were used during the test training to observe
their effects on convergence. The combination of factors ηinc = 1.01 and ηdec = 0.5 were chosen
based on these results.

After the training of the two networks, the speed of convergence and the classification accuracy
were compared. To test generalization and transfer potentials, test stimuli drawn from the
texture sets S1, S2, and S3 were processed using both 2D- and 3D input preparation methods
to obtain six test input sets (each with 4,800 inputs). These input samples were then presented
to the 2D-net and the 3D-net to compare the performances of the two networks on these six
test input sets. The results from these experiments will be presented in the following section.

3 Experiments and Results
We compared the performance of the two trained networks (2D-net and 3D-net), and also
compared the performance of the two networks over novel texture images that were not used
in training the networks.

3.1 Speed of convergence and accuracy on the training set
Figure 6 shows the learning curves of the networks during training. The learning processes
continued for 2,000 epochs. After 2,000 epochs, the average mean squared error (MSE) of the
2D-net was 0.0006 and that of the 3D-net was 0.0003. The learning curve also shows that the
3D-net converges faster than the 2D-net. The class response of the network was determined
by finding which output node (among the two) had the higher value. If the first output neuron
had a greater response than the second, the classification was deemed to be “boundary,” and
otherwise “no boundary.” The misclassification rate was computed based on the comparison
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of this classification response against the target value (ζ). The misclassification rate for the 2D-
net was 0.3%, and for the 3D-net, 0.02%. In summary, the network learned texture
arrangements represented in 3D faster and more accurately than those in 2D.

3.2 Generalization and transfer (I)
The 2D-net and the 3D-net trained with the texture set S1 were tested on texture pairs from
S1, S2 and S3. (Note that for the texture set S1, input samples different from those in the training
set were used.) The input sets were prepared in the same manner as the training samples (Section
2.1). All 6 sample sets (= 3 texture sets × 2 representations) were presented to the 2D-net and
the 3D-net. Two methods to compare the performance of the networks were used. First, we
compared the misclassification rate, which is the percentage of misclassification.
Misclassification rates were calculated for all 12 cases (= 6 sample sets × 2 networks): Figure
7 shows the result. The 3D-net outperformed the 2D-net in all cases, except for the sample set
from S1 with 2D input processing, which was similar to those used for training the 2D-net. The
result in the S1 2D experiment may suggest that transfer from 3D to 2D may have been weak.
However, what is more notable is that the 3D-net outperformed the 2D-net on the sample sets
from realistic textures in S2 and S3 prepared with 2D input processing (third and the fifth pair
in Figure 7; these are basically a 2D texture segmentation problem), where one would normally
expect the 2D-net to perform better because of the manner in which the input was prepared.
Here, the performance is not too high (near 40% misclassification), which is due to the fact
that S2 and S3 were not used in the training runs, but in our view, what is more important is the
fact that the 3D-net outperformed the 2D-net. (Using a larger, richer, realistic training set is
part of our planned future work.) These results suggest that the 3D representation can help 2D
texture segmentation under novel conditions.

As another measure of performance, we compared the absolute error (= |target − output|) for
each test case for the two networks. The results are shown in Figure 8. The plot shows the mean
absolute errors and their 99% confidence intervals. The results are comparable to the
misclassification rate results reported above. The 3D-net consistently outperformed the 2D-
net for the sample sets from S2 and S3, and the differences were found to be statistically
significant (t-test: n = 4, 800, p < 0.02) except for S2 2D (p = 0.47) where it was found to be
no worse than the 2D-net. However, the 2D-net outperformed the 3D-net for the sample set
from S1 (Figure 8 first pair from the left). Again, since S1 processed in 2D was used for training
the 2D-net (although the samples were different), this was expected from the beginning.

3.3 Generalization and transfer (II)
The main goal of our work was to understand the nature of textures, and from that emerged
the importance of 3D cues in understanding the texture detection mechanism in human visual
processing. To emulate 3D depth, we employed motion cues to provide depth. This imposes
potential limitations on our work, which is that additional information in 3D input may have
become available to the 3D-net; some form of temporal information that 2D inputs does not
have. For example, in the 3D case, sliding of one texture over another produces richer local
textures near the boundary than in the 2D case, where the boundary has a fixed local texture.
This can be seen as an unfair advantage for the 3D-net. One way of addressing this issue may
be to normalize (or equalize) the information content in the 2D vs. the 3D input preparation,
which may allow us to more fairly assess the differences between the two modes of texture
processing. This can be done by generating 2D textures by altering their overlap location rather
than always putting them together in the center.

We conducted an identical set of experiments described in the previous sections with the only
difference being the difference in the 2D input set preparation. We used the same procedure
prescribed in Section 2.1, except that the 2D texture boundary in the middle was made by
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allowing the texture boundary to be defined not only by abutting the two input patches side-
by-side, but also by slightly overlapping one over the other as in Figure 4b (but on the same
flat plane). The amount of overlap was randomly varied from 0 to 32 in the horizontal direction.

The misclassification rate and MSE results are shown in Figures 9 and 10. The results are
consistent with (or, even stronger than) the previous results. An interesting observation is that
the performance of the 2D-net became worse, which is somewhat counter to our expectations
given our rational for conducting this experiment provided earlier in this section. Our
observation is that the added variety of the possible combination of texture features near the
boundary resulted in the increase in the number of representative patterns to classify as
“boundary,” thus the network had a harder time learning all these different characteristic
patterns (i.e., there were too many equivalence classes to learn). In summary, the results
presented here and in the previous section support our main hypothesis.

3.4 Separability of 2D vs. 3D representations
In order to better understand the reason why the 3D representation is superior to its 2D
counterpart, we analyzed the two representations using Linear Discriminant Analysis (LDA;
see e.g., [29]). Figure 11 shows the results on representations drawn from input data set S1.

The training sets with 2D and 3D input processing were projected onto their linear discriminant
eigenvectors. In each case, samples from the “no boundary” case and the “boundary” case are
shown as two separate classes. It is clear from the plots that the the 3D-processed training set
is easier to separate than the 2D one since it has less overlap near the class boundary.

It seems that the flatness of Gabor filter bank responses (especially that of E: see Figure 4c,
for example) in one half of each response profile (either the left side or the right side) in the
3D case with texture boundary gives more separability than different textural responses in the
2D case. The 3D representations were generated from motion and occlusion cues, thus, the
analysis above suggests that motion and 3D arrangement of textures can allow us to separate
two texture surfaces more easily than with spatial features limited to 2D, and this may be one
of the causes underlying the higher performance on the 3D set shown in the results sections.

4 Discussion
Since the early works of Julesz [4] and Beck [2] on texture perception, many studies have been
conducted to understand the mechanisms of the human visual system underlying texture
segmentation and boundary detection in both psychophysical research and in pattern
recognition research. In most cases their main concerns have been about the texture perception
ability of human in 2D. The work presented in this paper suggests an alternative approach to
the problem of texture perception, with a focus on boundary detection. First, we demonstrated
that texture boundary detection in 3D is easier than in 2D. We also showed that the learned
ability to find texture boundary in 3D can easily be transferred to texture boundary detection
in 2D. Based on these results, our careful observation is that the outstanding ability of 2D
texture boundary detection of the human visual system may have been derived from an
analogous ability in 3D.

Our results allow us to challenge one common notion that many other texture boundary
detection studies share. In that view, intermediate visual processing such as texture perception,
visual search and motion process do not require object (in our context, “3D”) knowledge, and
thus perform rapidly; and texture perception is understood in terms of features and filtering,
so the performance is determined by differences in the response profiles of receptive fields in
low-level visual processing. A similar point as ours was advanced by Nakayama and his
colleagues [12][13]. In Nakayama’s alternative view on intermediate visual processing, visual
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surface representation is necessary before other visual tasks such as texture perception, visual
search, and motion perception can be accomplished (Figure 12). Such an observation is in line
with our results indicating that 3D performance can easily transfer into a 2D task. (Note that
there is yet another possibility, where all of these visual tasks are processed concurrently at the
same stage, but we do not have enough evidence to either accept or reject such a proposal.)

Even though we briefly discussed why we think the 3D representation turned out to be better
than 2D (in Section 3.4), further analysis may be helpful in determining exactly what aspect
of the 3D representation contributed to the results. The basis of the difference between the 3D
and the 2D representations in this paper was the occlusion cue due to self-motion of the
observer. (Note that the cue only provided the “rank” in depth, and not the “magnitude.”)
However, self-motion induces a more complex effect known as motion parallax, which not
only gives occlusion cues but also relative difference in displacement (or relative speed) of the
objects in the scene as a function of the distance of the observer from those objects [30]. We
would like to clarify that our results, even though they are based on self-motion, do not account
for (or utilize) the relative speed cue present in motion parallax. An important point here is that
there is a much richer set of information in 3D than the simplistic occlusion cue used in our
model, and that the use of such extra information (also including stereo cues) may further assist
in texture segmentation. These 3D cues carry the most important piece of information, that
“these two patches of patterns are different,” thus providing the initial basis of discriminability
(i.e., a supervisor signal) in texture segmentation.

Also, as pointed out in the text (Section 2.1), the 3D representations we generated (the 96-
element vectors) is defined over time, as opposed to the 2D ones defined over space. How is
it possible that generalization can happen across such seemingly incompatible representations?
One clue can be found in spatiotemporal receptive fields in the visual pathway (e.g., in the
lateral geniculate nucleus: [31]). These LGN neurons not only respond to spatial patterns but
also to patterns defined over time which have temporal profiles similar to the spatial profiles.
It is tempting to speculate that these spatiotemporal receptive fields may hold key to relating
the transfer effect exhibited by our neural network model to texture segmentation in humans.
Also, this line of reasoning suggests that it may be productive to investigate the role of motion
centers in the visual pathway (such as MT) in texture segmentation.

Finally, one potential criticism may be that we only used S1 for training. Would a contradictory
result emerge if S2 or S3 was used to train the networks? We are currently investigating this
issue as well, but we are confident that our main conclusion in this paper will hold even in such
different training scenarios.

5 Conclusion
We began with the simple question regarding the nature of textures. The tentative answer was
that textures naturally define distinct physical surfaces, and thus the ability to segment texture
in 2D may have grown out of the ability to distinguish surfaces in 3D. To test our insight, we
compared texture boundary detection performance of two neural networks trained on textures
arranged in 2D or in 3D. Our results revealed that texture boundary detection in 3D is easier
to learn than in 2D, and that the network trained in 3D solved the 2D problem better than the
other way around. Based on these results, we carefully conclude that the human ability to
segment texture in 2D may have originated from a module evolved to handle 3D tasks. One
immediate future direction is to extend our current approach to utilize stereo cues and full
motion parallax cues as well as monocular occlusion cues used in this paper.
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Fig. 1.
Texture stimuli. Three texture sets S1, S2, and S3 are shown from the top to the bottom row.
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Fig. 2.
Gabor filter bank. The process used to generate feature matrices is shown. The texture I is first
convolved with the Gabor filters Gij (for I = 1..4, j = 1..3), and the resulting responses are
passed through a full-wave rectifier resulting in Rij. Finally, we obtain the Gabor energy matrix
Eij, orientation index matrix Oij, and frequency index matrix Fij.
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Fig. 3.
Generating the 2D input set. The procedure used to generate the 2D training data is shown.
(a) Input with a texture boundary. (b) Orientation response calculated from (a). Only the E
matrix is shown. The 32-pixel wide line marked in white indicates where an input vector was
sampled. (c) The response profile from the 32-pixel wide area marked with a white rectangle
in (b). The three curves represent the profiles in the E, O, and F matrices. (d) A similarly
calculated response profile in a different input texture, for an area without a texture boundary
(note the identical periodic peaks, unlike in (c)).
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Fig. 4.
Generating the 3D input set. (a) A 3D configuration of textures and (b) the resulting 2D views
before, during, and after the movement are shown. As the viewpoint is moved from the right
to the left (t1 to t32) in 32 steps, the 2D texture boundaries in (b) (marked by black arrows)
show a subtle variation.
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Fig. 5.
Generating 3D input set through motion. (a) Texture pair images resulting from simulated

motion:  for each t = t1..t32. (b) The response matrix of the texture pair: . The location
sampled for the input vector construction is marked as a white square in each frame. (c)
Response profile obtained over time near the boundary of two different texture images (marked
by the small white squares in b). Take note of the flatness of the profile on the left half of the
plots, which is quite different from the 2D case. (d) A similarly measured response profile
collected over time, using a different input texture, near a location without a texture boundary
(note the periodic peaks).
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Fig. 6.
Learning curves of the networks. The learning curves of the 2D-net and the 3D-net up to 2,000
epochs of training on texture set S1 are shown. The 3D-net is more accurate and converges
faster than the 2D-net (the 3D-net reaches the asymptotic value of the 2D-net near 750 epochs),
suggesting that the 3D-processed training set is easier to learn than the 2D set.
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Fig. 7.
Comparison of misclassification rates. The misclassification rates of the different test
conditions are shown. Six sets of experiments are shown (indicated under the x axis), each
conducted on test examples generated from one of the data sets S1, S2, or S3, using either a
2D- or a 3D representation (3 × 2 = 6 test input sets). For example, “S1 2D” means the 2D
representation for the S1 data set. Each test input set was used to evaluate the 2D-net (white
bars) and the 3D-net (black bars) trained on S1. In all cases, the 3D-net shows a lower
misclassification rate compared to that of the 2D-net, except for the 2D representation of S1
(S1 2D). (See the text for the interpretation of the results.)
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Fig. 8.
Comparison of output errors. The mean error in the output vs. the target value in each trial and
its 99% confidence interval (error bar) are shown for all test cases (the plotting convention is
the same as Figure 7). In all cases, the differences between the 3D-net and the 2D-net were
significant (t-test: n = 4, 800, p < 0.02), except for S2 2D (p = 0.47) where the performance
was comparable. Note that for the 2D representation of S1, 2D-net < 3D-net.
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Fig. 9.
Comparison of misclassification rates. The misclassification rates of the different test
conditions are shown (the plotting convention is the same as Figure 7). In all cases, the 3D-net
shows a lower misclassification rate compared to that of the 2D-net, except for the 2D
representation of S1.
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Fig. 10.
Comparison of output errors. The mean error in the output vs. the target value in each trial and
its 99% confidence interval (error bars) are shown for all test cases. The same plotting
convention was used as in Figure 7. In all cases, the differences between the 3D-net and the
2D-net were significant (t-test: n = 4800, p < 10−8). Note that for the 2D representation of
S1, 2D-net < 3D-net.
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Fig. 11.
Comparison of Linear Discriminant Analysis (LDA) Projection of 2D- and 3D-processed Data.
The LDA projections for the 2D- and the 3D-processed data are shown. (Only half the dataset,
1,200 in each class for each representation, is shown to avoid clutter.) (a) LDA projection of
the 2D training set is shown. The x and the y axes represent the linear discriminant axis and
the input sample index. Each input sample is plotted either as “•” (for “border”) or “×” (for
“no border”). The two classes overlap over a large region in the middle. (b) The same, as in
(a), for the 3D training set is shown. The overlap region is much smaller than in (a). (c) The
probability density along the linear discriminant eigenvector projection (projection onto the
x-axis in a) is shown for the 2D training set. The “border” case is plotted as a solid curve, and
the “no border” case as a dotted curve. There is a large overlap near 0. (d) The same, as in
(c), for the 3D training set is shown. The overlapping area in the middle is much smaller than
in (c).

Oh and Choe Page 22

Neurocomputing. Author manuscript; available in PMC 2009 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Two views of intermediate visual processing. (a) In the traditional view, texture perception,
visual search, motion perception depend on feature processing in early cortical areas. (b) In an
alternative view, surface representation must precede intermediate visual tasks [13]. (Adapted
from [13].)

Oh and Choe Page 23

Neurocomputing. Author manuscript; available in PMC 2009 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


