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 Introduction 

 In this paper we develop improved methods for accu-
rate estimation of lod scores for genetic linkage analyses 
 [1] , using data jointly at multiple genetic markers on 
members of extended pedigrees with substantial missing 
information. To map the genes underlying complex dis-
eases, the usual strategy has been to first localize genes
to regions on a scale of centiMorgans (cM) using data
on pedigrees. Fine-scale mapping using associations be-
tween genotype and phenotype can then identify candi-
date genes. A recent example is the study of age-related 
macular degeneration (AMD)  [2] .

  The development of genotyping technology and pub-
licly available information on human genetic variation 
such as that provided by the HapMap project  [3]  have 
made possible the direct testing of associations between 
genotype and phenotype on a genome-wide scale. Such 
genome-wide association studies (GWA) raise the possi-
bility of identifying disease-related genes from large sam-
ples of unrelated individuals, which are much more easily 
obtained than are pedigree data. However, it remains to 
be determined how far GWA studies can replace pedigree 
linkage analyses. As yet, GWA studies have provided con-
flicting results in comprehensive nationwide studies of 
Parkinson disease  [4–9]  and of obesity  [10–13] . Problems 
of population structure and of genetic heterogeneity, at 
both the locus and allelic level, impact GWA severely but 
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 Abstract 

 To detect the positions of disease loci, lod scores are calcu-
lated at multiple chromosomal positions given trait and 
marker data on members of pedigrees. Exact lod score cal-
culations are often impossible when the size of the pedigree 
and the number of markers are both large. In this case, a 
 Markov Chain Monte Carlo (MCMC) approach provides an 
approximation. However, to provide accurate results, mixing 
performance is always a key issue in these MCMC methods. 
In this paper, we propose two methods to improve MCMC 
sampling and hence obtain more accurate lod score esti-
mates in shorter computation time. The first improvement 
generalizes the block-Gibbs meiosis (M) sampler to multiple 
meiosis (MM) sampler in which multiple meioses are updat-
ed jointly, across all loci. The second one divides the compu-
tations on a large pedigree into several parts by condition-
ing on the haplotypes of some ‘key’ individuals. We perform 
exact calculations for the descendant parts where more data 
are often available, and combine this information with sam-
pling of the hidden variables in the ancestral parts. Our ap-
proaches are expected to be most useful for data on a large 
pedigree with a lot of missing data. 
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have little impact on pedigree analyses. Further, the pow-
er of linkage analysis is substantially increased by joint 
analysis of marker data at multiple polymorphic markers 
observed on members of extended pedigrees ascertained 
for multiple affected individuals  [14] . Thus it remains im-
portant to develop computationally efficient methods for 
obtaining accurate lod scores using such data.

  To obtain linkage lods scores, we assume availability 
of data on the genotypes at multiple linked genetic mark-
er loci  (Y  M  )  and trait characteristics  (Y  T  )  of some subset of 
the members of extended pedigrees. Genotyping error is 
not considered in this paper. The genetic marker model, 
including the genetic map of the marker loci and the pop-
ulation frequencies of marker alleles, is assumed known. 
We also consider a single-locus model for the trait data 
 Y  T . The parameter of interest is then the location  �  of the 
trait locus on the chromosome of the markers, with  �  = 
 G  denoting that the trait locus is not on this chromo-
some. The lod score is the log-likelihood statistic

  lod( � ) = log 10 ( L ( � )/ L ( G ))
= log 10 ( P   �   ( Y  T ,  Y  M )/ P   G  ( Y  T ,  Y  M ))
  = log 10 ( P   �   ( Y  T   �   Y  M )/ P  ( Y  T )) (1)

  since, in the absence of linkage, trait data  Y  T  and marker 
data  Y  M  are independent. On extended pedigrees with a 
substantial proportion of missing observations, a major 
challenge remains the computation of this lod score  [15] . 
Note that the subscript  �  is dropped when a probability, 
such as  P ( Y  T ), does not depend on the location of trait 
locus. 

 When exact computation is infeasible or impractical, 
Markov chain Monte Carlo (MCMC) methods provide a 
way to estimate the lod score  [16, 17] . Where there are 
multiple genetic marker loci, both exact and Monte Car-
lo methods use some form of meiosis indicators  [18]  or 
inheritance vectors  [19]  to achieve the computation. The 
inheritance of DNA at any locus can be specified by bi-
nary meiosis indicators  S  ij , with  S  ij  = 0 or 1 as in meiosis 
 i  at locus  j  the maternal or paternal DNA of the parent is 
transmitted to the offspring. Here  i  = 1, …,  m  indexes the 
meioses in the pedigree. We assume that the linked mark-
er loci  j  = 1, …,  n  are ordered along the chromosome. Let 
 S  M  denote the meiosis indicators relating to all the mark-
ers. Then the probability required for the lod score (1) 
may be written

 
M

T M T M M M
S

P Y |Y P Y | S P S |Y
                                  

(2)

  The form of equation (2) shows the challenge for exact 
computation when  m  and  n  are both large;  S  M  consists of 

 mn  binary indicators. Equation (2) also shows how Mon-
te Carlo estimation may be achieved through sampling 
 S  M  conditionally on  Y  M  and averaging the resulting val-
ues of  P   �  ( Y  T   �   S  M ) for each  �  of interest. 

 There are many ways to sample the components of  S  M  
conditionally on  Y  M  using MCMC, but among the sim-
plest and most effective are block Gibbs samplers. The 
locus (or L) sampler  [20]  jointly resamples { S  ij ;  i  = 1, …,  m } 
successively over loci  j . The meiosis (or M) sampler joint-
ly resamples { S  ij ;  j  = 1 ,…,  n } successively over meioses  i . 
These two block-Gibbs samplers may be combined to 
form the LM-sampler  [21]  which has been the mainstay 
of our MCMC lod score estimation approaches  [22] . The 
LM-sampler, together with the estimation approach indi-
cated by equation (2), forms the basis of the MORGAN 
 [23]  program  lm_markers . In comparisons with other 
software, the  lm_markers  programs has been found to be 
quite competitive for lod score estimation on extended 
pedigrees  [24] . We therefore take  lm_markers  (MOR-
GAN V2.8.1) as the base-point for comparison of the im-
proved MCMC methods presented in this paper. Our new 
programs are also implemented in the MORGAN pack-
age.

  In this paper, we describe two ways in which MCMC 
sampling may be improved in order to obtain more ac-
curate lod score estimates more efficiently. Our first im-
provement is a generalization of the block-Gibbs meiosis 
(M) sampler in which multiple meioses are updated joint-
ly, across all loci. The simplest proposal is to update some 
randomly chosen subset of  k  meioses, which can be 
achieved in time of order  k 2 k  using the factored Hidden 
Markov Model (HMM) method  [25] . Alternative propos-
als are to update specific subsets, such as the two meioses 
of an individual, the maternal and/or paternal meioses in 
a sibship, or the meioses of a 3-generation pedigree seg-
ment. Where the number of such meioses is too large for 
simple computation a restricted sampling of such updates 
has been implemented, similar to that of Thomas et al. 
 [26] . These proposals have been implemented in the pro-
gram  lm_multiple  released in version 2.8.2 of MORGAN 
package  [23] .

  The second method augments the latent state space 
with the haplotypes of a few ‘key’ individuals. Sobel and 
Lange  [27]  describe two sets of latent variables, descent 
graphs and descent states. Descent graphs are equivalent 
to the meiosis indicators  S ij   which define the descent of 
DNA at every locus  j . Descent states specify in addition 
the haplotypes of founders: the alleles carried on each 
founder chromosome. The founder allelic types and the 
meiosis indicators together determine the genotypes of 
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all individuals. Thus use of descent states makes compu-
tations simpler, but the much larger and more constrained 
space impairs the mixing performance of the MCMC. 
Our approach specifies the haplotypic states not of the 
founders but of key pedigree members who divide the 
pedigree. Segments of the pedigree are then independent 
conditional on these haplotypes, permitting either exact 
computation and independent realizations or MCMC 
methods to be performed on each segment and the results 
combined. Both the multiple-meiosis sampling and the 
augmentation with haplotypes of key individuals are im-
plemented in the program  lm_haplotype  within the 
framework of the MORGAN version 2.8 package  [23] . 
The program  lm_haplotype  is not yet publicly released.

  In this paper we first provide the details of these gen-
eralizations of our MCMC methods. We then compare 
the performance of the three MORGAN  [23]  programs 
 lm_markers ,  lm_multiple  and  lm_haplotype , using simu-
lated data at 10 linked markers on a 52-member pedigree. 
In our simulations and in the paper, we use sex-averaged 
genetic maps, but this is for ease of presentation only. As 
with all MORGAN programs  [23] , these three programs 
can equally use gender-specific maps. On an extended 
pedigree, with a substantial portion of missing data, and 
when marker loci are tightly linked, the  lm_markers  pro-
gram can perform poorly. We show how  lm_multiple  im-
proves estimation of a multipoint lod score, and  lm_hap-
lotype  provides further improvement. For comparison 
with exact results using VITESSE  [28] , we use just 4 mark-
ers on the full 52-member pedigree. We also compare the 
results for all 10 markers on a 14-member subset of the 
pedigree, using MERLIN  [29] . We show that, using our 
new programs, MCMC is both an accurate and a compu-
tationally efficient approach to computation of multi-
point lod scores.

  Methods 

 Meiosis Indicators, Recombination, and Genetic Maps 
 We first review the probability model and conditional inde-

pendence structure of the meiosis indicators  S  ij . This structure 
underlies all multilocus computations and sampling methods. At 
any single locus  j , the meiosis indicators  S  ij ,  i  = 1, …,  m  are inde-
pendent. However, for each meiosis  i , the  S  ij ,  j  = 1, …,  n  are depen-
dent. In meiosis  i ,  recombination  occurs between two loci  j  and  l  
if  S  ij   0   S  il . That is, the genes segregating to the offspring are from 
different grandparents. At any two loci  j  and  l , the pairwise dis-
tribution of ( S  ij ,  S  il ) is determined by the recombination rate   �   jl  
between the two loci. That is,

   P ( S  ij   0   S  il ) =   �   jl , for each  i  = 1, …,  m  and 0  ̂     �   jl   ̂   1/2.

  For loci that are close together on a chromosome,   �   jl  is close to 0. 
For independently segregating loci, such as loci on different chro-
mosomes,   �   jl  = 1/2. Although, in reality and in our software, re-
combination rates may differ between male and female meioses, 
for simplicity we use sex-averaged rates in this paper. 

 To define the joint distribution of  S  ij  over  j  = 1, …,  n , an addi-
tional assumption is required. In this paper, we assume absence 
of genetic interference so that { S  ij } j   = 1, …,   n  are independent Markov 
chains ( i  = 1, …,  m ). In this case, the Haldane map function  [30]  
provides the conversion between the genetic distance between  j  
and  l  and the recombination rate   �   jl . Let  S   .   j  = ( S  1  j , …,  S  mj ) denote 
the meiosis indicators and Y  .   j  denote the observed marker geno-
type data at locus  j  over the whole pedigree. At locus  j , condition-
al on meiosis indicators S  .   j , the observed data Y  .   j  are independent 
of observed data and meiosis indicators at other loci.

  This hidden Markov structure permits use of the factored 
HMM method  [25]  to obtain the forward cumulative probabili-
ties  �  j ( S   .   j ) =  P ( S.      j   �   Y   . 1 ,…,  Y.      j ) for  j  = 1, …,  n  in time of order  mn 2 m . 
Then  S   .   n  may be resampled from  �  n ( S   .   n ). For  j  =  n  – 1, …, 1,  S   .   j  may 
be successively resampled from  P ( S   .   j   �   S   .   j   + 1 ,  Y   . 1 ,…,  Y   .   j ), which may 
be written as

1 1
1 1

1 1
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  since  S.      j   + 1  is independent of  Y.    1 , …,  Y   .   j  conditional on  S   .   j  due to 
hidden Markov structure. 

 Multiple Meiosis Sampler 
 Except on small pedigrees, the number of meioses m is too 

large for the above exact forward computation and backwards 
sampling to be feasible. Thus, only a small subset of the total set of 
meioses can be sampled jointly. MCMC procedures resample a 
subset of the indicators  S  ij  conditional on the data and current val-
ues of the remaining indicators. An MCMC iteration (or  scan ) con-
sists of a sequence of such resampling steps repeated until all the 
indicators have been resampled. In the sampling implemented in 
the programs  lm_markers  and  lm_multiple  only inheritance vec-
tors at marker loci are resampled. Thus each MCMC scan provides 
the next realization of SM. Once a sequence of realizations of  S  M  is 
obtained, equation (2) then provides a Monte Carlo estimate of the 
lod score as a function of the location of the trait locus.

  At each MCMC iteration, our programs first randomly deter-
mine whether the scan is to be by locus (L-sampler) or by meiosis 
(M-sampler). Our new multiple meiosis (MM) sampler is a gener-
alization of the M-sampler of Thompson and Heath  [21]  in which 
meioses are updated singly. For a subset  I  of meioses, we write  
S   .   j  = ( S  Ij , S –  Ij ), where  S  Ij  ( S  –  Ij ) denotes meiosis indicators in (not in) 
subset  I  at locus  j . Instead of one meiosis  i , MM-sampler jointly 
resamples { S  Ij ;  j  = 1, …,  n } successively over subsets  I  of meioses 
conditionally on { S  –  Ij ;  j  = 1, …,  n } and the marker data  Y  M . The 
factored HMM structure holds for this subset of meioses, so that 
the method of Fishelson and Geiger  [25]  can be applied for the 
calculations.
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  We have defined several possible subsets  I : their benefits for 
MCMC mixing performance are considered further in the Dis-
cussion. Specifically, we consider subsets  I  such as
 1   random update:  a random subset of the meioses, or 
2   individual update:  both maternal and paternal meioses for an 

individual, or 
3   complete sib update:  all the meioses from parents to children 

in a nuclear family, or 
4   complete 3-generation update:  all the meioses from grandpar-

ents to parents and from parents to children in a 3-generation 
family, which is defined as a nuclear family together with any 
grandparents present in the pedigree. 
 At each MCMC iteration of sampling inheritance indicators, 

a sampling type of a random update, individual update, sib update 
or 3-generation update is chosen according to probabilities  p  r ,  p  i , 
 p  s  and  p  3 , where  p  r  +  p  i  +  p  s  +  p  3  = 1. If a random update is chosen, 
then a random integer will first determine the size of this subset 
of meioses. For example, if the allowed maximum number of mei-
oses in a subset is 8, then a number will be selected from the inte-
gers from 1 to 8 each with probability 1/8. This number of meioses 
will be selected randomly from the overall set of meioses and the 
indicators are updated according to its posterior distribution. 
Then a second integer from 1 to 8 will be randomly selected and 
a second subset of meioses randomly selected from the remaining 
meioses (excluding the ones previously selected), and so on until 
all the meiosis indicators are updated. If an individual update is 
chosen, the two meioses of each individual are updated jointly for 
each individual of the pedigree in a random order. Similarly, if a 
sib or 3-generation update is chosen, then the meioses included in 
these subsets are jointly updated, with the subsets being updated 
in random order. The subsets in a sib update are disjoint while the 
subsets in a 3-generation update can overlap since the grandpar-
ents in a 3-generation family can be parents or children in other 
3-generation families.

  Restricted Multiple-Meiosis Updates 
 The computational time is exponential in the number k of 

meioses in subset  I . When  k  is too large, it could be computation-
ally expensive or even impossible to do a complete sib or 3-gen-
eration update. In this case, a restricted sib or 3-generation update 
is possible.

  For the  restricted sib update , consider  I  to be the set of meioses 
from parents to children in a nuclear family. Write  I  = ( I  m ,  I  f ), 
where  I  m  and  I  f  are the maternal and paternal meioses in subset  I . 
Given a current realization of meiosis indicators  s  I   .   = ( s  I  1 , …,  s  In ), 
for each locus  j  = 1, …,  n , we define  X  j  to be an indicator function 
of flipping paternal (or maternal) meiosis indicators or not in the 
next updating proposal. Specifically, we have

0 if ,

1 if 1 ,

2 if , 1

3 if 1 , 1

m m f f

m m f f

m m f f

m m f f

I j I j I j I j

I j I j I j I j

j
I j I j I j I j

I j I j I j I j

S s S s

S s S s
X

S s S s

S s S s

  Similarly, when the complete 3-generation update is impractical, 
a restricted 3-generation update can be applied. Consider  I  to be 
the set of meioses in a three generational family of grandparents, 

parents and children. Let  s  I  = ( s  Im ,  s  If ,  s  Ic ) be the current realization 
of meiosis indicators in subset  I , where  s  Im  and  s  If  are the maternal 
and paternal meiosis indicators from grandparents to parents, 
and  s  Ic  are meiosis indicators from parents to children. For  j  = 
1, …,  n , we define  X  j  to be the following 

 
0 if

11 if m f f m c c

Ij Ij
j

I j I j I j I j I j I j

S s
X S s ,S s ,S s

  That is, there are two restricted choices to update meiosis indica-
tors in I: (1) the same as current realization (2) swapping maternal 
and paternal meiosis indicators for meioses from grandparents to 
parents and flipping all the meiosis indicators for meioses from 
parents to children. 

 We show in the Appendix that { X  j } j   = 1 , …,  n  is a Markov chain 
for the case of restricted sib update. An analogous result holds for 
the case of the restricted 3-generation update. Hence, given data 
 Y   .   j  and fixed  S  –  Ij  for  j  = 1, …,  n , we retain the HMM structure with 
the { X  j } j   = 1 , …,  n  replacing the much larger space of  S  Ij . Since each 
 X  j  takes only 2 or 4 values, it is possible to jointly sample  X  = 
( X  1 , …,  X  n ) for all the marker loci in time of order  n  instead of the 
previous  nk 2 k . The total number of choices over all  n  loci is then 
4 n  or 2 n  at each resampling step, providing a wide space of poten-
tial updated meiosis indicators. Updates similar to our restricted 
updates were proposed by Thomas et al.  [26] , for a single marker 
locus. However, they did not demonstrate how all the loci can be 
updated jointly.

  Haplotype Sampler: Combination of Exact and Approximate 
Calculations 
 Conditional on the complete haplotypes at marker and trait 

loci of individuals who divide the pedigree into subsets of indi-
viduals, data on the different pedigree subsets are independent. 
The conditional independence of pedigree segments given the 
haplotypes of individuals who divide the pedigree is the basis of 
the Elston-Stewart algorithm  [31]  for likelihood computations on 
pedigrees. However, here we have multiple marker loci, so our 
method of computation on each pedigree segment is based on the 
Lander-Green approach  [19] . We augment the space of hidden 
variables with the haplotypes of such ‘key’ individuals. If a subset 
separated by a ‘key’ individual is small, exact computation is fea-
sible. In genetic studies, data are more often available for extant 
individuals at the bottom of the pedigree, constraining the hap-
lotypes of immediate ancestors. It is therefore practical and effi-
cient to do exact calculation on small subpedigrees of current in-
dividuals, taking as a ‘key’ individual the ancestor who connects 
the subpedigree to the remainder of the pedigree.

  The haplotypes used to augment the space of hidden variables 
include the trait locus in addition to the marker loci. Without loss 
of generality, assume the trait locus  T  is between the  d th and  d +1st 
marker loci. Then, for each meiosis  i , { S  ij } j   = 1 , …,  d , T , d +1,…, n  is a Mar-
kov chain, and the trait data depend only on the trait model and 
the inheritance at the trait locus. That is, the HMM structure and 
all the computational and sampling methods of the previous sec-
tions follow exactly as before, with the trait locus now being in-
cluded.

  For example, in the pedigree segment shown in  figure 1 , let  
Y  1  = ( Y  1  T ,  Y  1  M ) and  Y  2  = ( Y  2  T ,  Y  2  M ) be the observed marker and 
trait data of ‘key’ individuals C and D, and  H  1  and  H  2  be the pairs 
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of haplotypes of C and D who are offspring of the couple A and B. 
The total pedigree is then divided into three parts. The first de-
scendant pedigree consists of C, C’s descendants and all relatives 
of C’s spouses. The second descendant pedigree is defined analo-
gously for D. Finally, the ancestral pedigree consists of the re-
mainder of the pedigree, including C and D themselves. Let  Y  (  p  ) , 
 S  (  p  )  be data and meiosis indicators involved in the ancestral pedi-
gree,  Y  (1) ;  S  (1)  ( Y  (2) ,  S  (2) ) be data and meiosis indicators in the 1st 
(2nd) descendant pedigree. Note that, since the key individuals 
themselves are in both descendant and ancestral pedigree seg-
ments,  Y  1  is included in both  Y  (1)  and  Y  (p) , and  Y  2  is included in 
both  Y  (2)  and  Y  (  p  ) . Then the probability distribution of the ob-
served data  Y  can be written as

                                                                                                        (3)

1 2

1 2

1 2
1 2 1 2 1 2

,

1 2
1 1 2 2

1 2

,

, , , , , ,

, , ,

, ,
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H H

p p

p p

H HS

P Y P Y Y |Y Y H H P Y H H

P Y |Y H P Y |Y H P Y S
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  Notice that in equation (3) the first term  P   �  ( Y  (1)   �   Y  1 ,  H  1 ) and sec-
ond one  P   �  ( Y  (2)   �   Y  2 ,  H  2 ) are the same type, which only involves 
data in descendant pedigrees. The term  P   �  ( Y  (  p  ) ,  S  (  p  ) ) considers an-
cestral pedigree only. The last term    P ( H  1 , H 2   �   Y  (  p  ) ,  S  (  p  ) ) is a con-
nection between descendant and ancestral pedigrees. We analyze 
these terms and explain in detail how to calculate them in the fol-
lowing four paragraphs. 

 First, consider the term  P   �  ( Y  (1)   �   Y  1 ,  H  1 ), or equivalently 
 P   �  ( Y  (2)   �   Y  2 ,  H  2 ). This part is independent of  S  (  p  ) , the meiosis indi-
cators in the ancestral pedigree. Now

1
1 1

1 1 1
1 1 1

, .
P Y

P Y |Y H P H |Y
P H P Y | H

  The probability for the first descendant part  P  � ( Y  (1) ) can either be 
calculated exactly or, if it is too large, estimated by MCMC. For a 
fixed genetic map,  P   �  ( Y  (1) ) is calculated only once summing over 

all possible values of  H  1  and  H  2 . The prior probability,  P ( H  1 ), of 
the ordered haplotype pair  H  1 , is assumed to be the product of the 
allele frequencies at each marker/trait locus. The multilocus pen-
etrance probability  P ( Y  1   �   H  1 ) is a product over the marker and 
trait loci, 1 or 0 for genotypic data, or a more general penetrance 
for discrete or quantitative trait data. When  P ( Y  1   �   H  1 ) = 0, 
 P  � ( Y  (1)   �   Y  1 ,  H  1 ) is defined to be 0. The haplotype pair  h  1  can be 
sampled according to the posterior distribution  P  � ( H  1   �   Y  (1) ). 
When the number of possible haplotypes is not large, the full dis-
tribution  P  � ( H  1   �   Y  (1) ) can be calculated exactly. However, when 
the exact calculation is infeasible, we have
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(4)

  Equation (4) indicates that we can first sample  s  (1)  conditional on 
 Y  (1) . We then sample  h  1 , locus by locus, conditional on  Y  (1)  and a 
realization of  S  (1) . 

 Second, consider the term  P   �  ( Y  (  p  ) ,  S  (  p  ) ) in equation (3). We use 
MCMC to sample  s  (  p  )  conditional on data  Y  (  p  )  using the new MM-
sampler to improve mixing. Now

   P   �  ( Y  (  p  ) ,  S  (  p  ) ) =  P ( S M   
(  p  )     �   YM   

(  p  )   ) P   �  ( ST   
(  p )       �    S M   

(  p  )     ) P ( YT   
(  p )       �  ST   

(  p )       ) P (  YM   
(  p  )    ).

  Thus we may sample  s  (  p  )  = ( sM   
(  p )   ,  sT   

(  p )  ) by first sampling  sM   
(  p )    from   

P  � (  S M   
(  p  )        �   YM   

(  p )    ) and then  sT   
(  p )  from  P   �  ( ST   

(  p )     �   sM   
(  p )    ). The trait-locus pen-

etrance probability on the ancestral pedigree,  P ( YT   
(  p )         �   sT   

(  p )    ), can be 
easily calculated for a given sT   

(  p )  . The last term  P ( YM   
(  p )    ) is free of 

parameter � and the values of  S  (  p  ) ,  H  1  and  H  2 . Thus to obtain a lod 
score, it is not necessary to calculate this term. 

 Finally, consider the term  P ( H  1 ,  H  2   �   Y  (  p  ) ,  S  (  p  ) ) in equation (3). 
Similarly to equation (4), this probability can be easily calculated 
locus by locus

1 2 1 2

1

, , , ,
.

p p p p
nT T T T j j j j

p p p p
jT T j j

P H H Y | S P H H Y | S

P Y | S P Y | S

  To summarize, we estimate the likelihood of equation (3) by 
first sampling  h  1      �    P   �  ( H  1   �   Y  (1) ) and  h  2   �   P   �  ( H  2   �   Y  (2) ); then 
 sampling   sM   

(  p )       �   P ( SM   
(  p )     �   YM   

(  p )    ), and  sT   
(  p )     �   P   �  ( ST   

(  p )   �   sM   
(  p )    ); finally cal-

culating

1 2
1 1 2 2

1 1 1 1 1 2 2 2 2 2

, ,
.

p p p p
T TP Y | S P H h H h | Y s P Y P Y

P Y | H h P H h P Y | H h P H h

  The average of this quantity over MCMC realizations provides an 
estimate of  P   �  ( Y   �   YM   

(  p )    ), which is proportional to the likelihood

  L( � ) =  P   �  ( Y ) =  P   �  ( Y   �   YM   
(  p )       ) P ( YM   

(  p )       ).

  Of course, this method is not limited to the special case of two 
‘key’ individuals who are siblings. One can choose any small 
number of individuals anywhere in the pedigree as ‘key’ individ-
uals. However, different choices of ‘key’ individuals can make a 
difference in the efficiency of estimation. As a guideline, one 

A B

C D

(Y(1), S(1)) (Y(2), S(2))

Y1, H1 Y2, H2

(Y(p), S(p))

  Fig. 1.  An example of part of a complete pedigree, which includes 
ancestors and collateral relatives of individuals  A  and  B , and de-
scendants and siblings of individuals  C  and  D . The two children 
 C  and  D  of the couple  A  and  B  are chosen as ‘key’ individuals, di-
viding the pedigree into three subpedigrees. For further details, 
see text. 
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should choose individuals whose descendants have enough infor-
mation to at least partially restrict the space of haplotypes of each 
key individual. Additionally, the procedure is much more effec-
tive if exact computation is used on the descendant pedigree seg-
ments. Thus, the number of each individual’s descendants should 
be not large so that the computation of the exact haplotype distri-
bution is infeasible.

  The methods of this section have been implemented in the pro-
gram  lm_haplotype . In this program, a subset of ‘key’ individuals 
must be predefined by users. Then the program  lm_haplotype  will 
automatically divide the whole pedigree into parts and calculate 
each part exactly or approximately according to the size of each 
part and the maximum number of meiosis allowed for exact cal-
culations. When Monte Carlo approximation is necessary, the 
MM-sampling of  lm_multiple , rather than the M-sampler of  lm_
markers , is applied. The final results are then combined as de-
scribed above and estimates of lod scores are returned.

  Results 

 Set Up for Simulation and Analysis 
 We illustrate our methods on the single pedigree, 

 ped52 , shown in  figure 2 . The pedigree has 52 individuals 
in 5 generations: 12 individuals are founders, 32 are ob-
served, 12 are affected, and 20 are unaffected. There are 
80 meioses to be sampled. Data were simulated at 10 
linked marker loci, labeled from 1 to 10, at chromosomal 
positions (0, 10, 20, 28, 29, 31, 40, 50, 60, 61) cM. Each 
marker locus has 4 alleles, with allele frequencies (0.4, 0.3, 
0.2, 0.1). The trait locus is simulated at position 30 cM. 
Note that the trait locus is in a region of tightly linked 

markers: markers 4, 5 and 6 and the trait locus present a 
particular challenge for MCMC methods. The trait locus 
has 2 alleles with frequencies (0.5, 0.5). An affectation 
status with penetrances (0.95, 0.6, 0.05) is simulated. In 
the analysis, trait-locus genotypes are unobserved, but 
affectation status is available for each of the 32 observed 
individuals. The assumption of ‘known’ phenotypes of 
unaffected individuals results in a stronger linkage signal 
compared to many real data analyses, where often only 
the more clearly defined ‘affected’ phenotype is specified. 
However, this fact has no (in  lm_multiple ) or little (in 
 lm_haplotype ) effect on the mixing performance of 
MCMC.

  All the programs were run on a Dell Precision 360 
workstation with Pentium 4 (3 GHz) processor, 2 GB 
memory and Red Hat Enterprise Linux 4 WS system. In 
all three MCMC programs, we use 3K (3,000) sequential 
imputation realizations to obtain the initial realization of 
meiosis indicators  S  M . The value chosen is the realization 
that gives the highest value of  P ( Y  T   �   S  M ). In  lm_markers  
and  lm_multiple , the probabilities for L and M sampling 
are 0.5 and 0.5 respectively. Sampling is by scan in both 
 lm_markers  and  lm_multiple . When  lm_multiple  selects 
an M-sample scan, the probabilities for individual, sib, 3-
generation and random updates are 0.3, 0.3, 0.2 and 0.2 
respectively. In the random update, the number  k  of meio-
ses jointly updated is uniformly distributed from 1 to 8. In 
the sib and 3-generation updates, the maximum allowed 
number of meioses for complete updating is 8. That is, 
when the number of involved meioses in these updates is 

304 3040

202 2020

  Fig. 2.  Ped52 pedigree used for simulation 
of data. The individuals in grey are not ob-
served – both marker genotype and affec-
tation status are missing. The white indi-
viduals are unaffected and the black ones 
are affected. 
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greater than 8, restricted updates are applied. For  lm_hap-
lotype , whenever MCMC sampling is necessary on either 
ancestral or descendant parts of the pedigree,  lm_multiple  
is used with the same parameter values as above.

  To choose the ‘optimal’ key individuals for  lm_haplo-
type , 50 short  lm_multiple  runs (each of length 5K MCMC 
scans) are performed on some subpedigrees of  ped52 . For 
example, individuals 202, 2,020 and their descendants 
would be one such subpedigree ( fig. 2 ). Another example  
subpedigree would be individuals 304, 3040 and their de-
scendants. The idea is that special attention should be 
paid to the subpedigrees that give significant contribu-
tion to the overall lod scores but have large variation 
among independent runs. Using this method, we find 
that in this example, the subpedigree that might be the 
source of large variation is the one consisting of individ-
uals 202, 2020 and their descendants. There are 14 indi-
viduals and 20 meioses in this subpedigree. For  lm_hap-
lotype , we then choose individual 202 as the key individ-
ual and sample her haplotype, conditional the data on 
this subpedigree. The computation time for this prelimi-
nary analysis is not included in  table 2 .

  Ped52 with 4 Markers 
 Our aim is to obtain accurate MCMC lod score esti-

mates for large pedigrees with multiple markers. How-

ever, on  ped52  we first consider markers 3, 4, 6, 7 only 
 (ped52-4) , in order to make possible a comparison with 
exact computations.

  The exact lod scores are calculated using VITESSE 
 [28]  and is shown in  figure 5  (dashed line). The differ-
ences between exact lod scores and estimated ones from 
50 runs using the three MCMC programs  lm_markers , 
 lm_multiple  and  lm_haplotype  (30K MCMC scans for 
each run) are shown in  figure 3 . For  lm_markers  ( fig. 3 a), 
there are two clear separate clusters of estimates, indicat-
ing poor MCMC mixing. Therefore, the estimated lod 
scores are not accurate and reliable in this case. To deter-
mine whether a longer run can overcome this mixing 
problem, we choose 10 runs from the upper cluster and 
10 runs from the lower one and extend the number of 
MCMC scans from 30K to 1M (1,000,000) for each run. 
All the 20 runs are still in their original cluster after such 
a long run, although the between-run variation of lod 
scores within each cluster does decrease compared to the 
lod score estimates based on 30K MCMC scans (results 
not shown). This indicates that the  lm_markers  sampling 
procedure has negligible chance of moving between sub-
sets of  S  M  that provide lod scores in different clusters in 
this example.

   Figure 3 b shows that  lm_multiple  successfully over-
comes the mixing difficulties and obtains lod scores 
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  Fig. 3.  Differences between exact lod scores and MCMC estimates for ped52 with 4 markers at positions 20, 28, 
31 and 40 cM. The exact lod scores are calculated using VITESSE. From left to right, the three MCMC programs 
used in estimation are  lm_markers (a) ,  lm_multiple (b) ,  lm_haplotype (c) . For each program, the number of 
runs is 50. For each run, the number of scans is 30K. 
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varying around true lod-score curve.  Figure 3 c shows 
that  lm_haplotype  not only overcomes the mixing diffi-
culties of  lm_markers , but also has smaller variation 
compared to  lm_multiple . In the worst scenarios of bad 
choices of key individuals,  lm_haplotype  performs at 
least as well as  lm_multiple  (results not shown).

  To see how the number of MCMC scans affects the fi-
nal estimates, we also did 50 short runs (10K scans per 
run), 50 long runs (30K scans per run) and 50 extremely 
long runs (1M scans per run). For a given position, we 
consider two measures of accuracy and precision of the 
estimated lod score: the  discrepancy  which is the mean 
(over runs) of the absolute difference from the truth, and 
the  range  which is the difference between maximum and 
minimum over runs. For each program, these 2 statistics 
are calculated at three positions: marker-3, marker-6, and 
marker-7. The results are shown in  table 1 .

  From  table 1  we see that for  ped52  with 4 markers, 
both  lm_haplotype  and  lm_multiple  have much smaller 
discrepancy than  lm_markers . For example, for the long 
runs at marker-6,  lm_haplotype ,  lm_multiple  and  lm_
markers  have discrepancies 0.057, 0.082, 0.439 respective-
ly, which are 6, 8 and 45% of the true lod score 0.965 at 
this position. With extremely long runs, the discrepan-

cies for these three programs decreased to 0.012, 0.014, 
0.335 respectively. However, the discrepancy for  lm_
markers  (0.335) is still too large to be reliable. This shows 
that  lm_markers  can not overcome the mixing difficul-
ties even with extremely long runs (1M scans). Moreover, 

Table 2. Comparison of programs: computation time in seconds 

Pedigree Exact # of MCMC 
scans

MCMC programs

mrk mul hap

ped52-4 VITESSE 10K 49 137 145
(19,000) 30K 128 404 420

1M 4,112 12,467 12,530

ped14-10 MERLIN 10K 17 34 38
(2) 30K 46 98 106

ped52-10 – 10K 86 317 332
30K 223 931 945

Each MCMC computation time is an average over the cor-
responding set of 50 runs of table 1. The computation time of
VITESSE and MERLIN are shown in parentheses in the exact 
column.

Table 1. Comparison of programs: lod score accuracy and variation

Pedigree Position (lod) # of MCMC
scans

Discrepancy Range

mrk mul hap mrk mul hap

ped52-4 Marker-3 (0.568) 10K 0.217 0.073 0.050 0.827 0.342 0.248
30K 0.249 0.044 0.032 0.754 0.245 0.163
1M 0.156 0.008 0.008 0.675 0.042 0.034

Marker-6 (0.965) 10K 0.405 0.143 0.095 1.231 0.594 0.487
30K 0.439 0.082 0.057 1.195 0.504 0.299
1M 0.335 0.014 0.012 1.091 0.081 0.071

Marker-7 (0.776) 10K 0.140 0.040 0.028 0.554 0.176 0.131
30K 0.162 0.023 0.017 0.510 0.148 0.095
1M 0.093 0.004 0.004 0.472 0.023 0.020

ped14-10 Marker-3 (0.224) 10K 0.012 0.006 0.004 0.056 0.032 0.024
30K 0.007 0.004 0.003 0.038 0.021 0.014

Marker-6 (0.646) 10K 0.027 0.012 0.007 0.135 0.065 0.041
30K 0.020 0.008 0.006 0.122 0.042 0.031

Marker-7 (0.636) 10K 0.018 0.010 0.006 0.108 0.055 0.039
30K 0.016 0.006 0.004 0.120 0.034 0.026

The number 10K means 10,000 and 1M means 1 million. The numbers included in parentheses in the position column are exact 
lod scores calculated by VITESSE or MERLIN at these positions. mrk, mul and hap represent lm-markers, lm-multiple and lm-hap-
plotype respectively.
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 lm_haplotype  and  lm_multiple  also have smaller range 
than  lm_markers  in most cases.

  For a given number of MCMC scans, the computation 
time for  lm_haplotype  is about the same as for  lm_mul-
tiple  and about three times the time for  lm_markers  ( ta-
ble 2 ). That is, a short run (10K scans) of  lm_multiple  or 
 lm_haplotype  uses about the same computation time as 
a long run (30K scans) of  lm_markers . By comparison, 
note that exact computation using VITESSE  [28]  takes 
much longer time to compute the lod scores at the same 
points as the MCMC programs estimate them ( table 2 ). 
On this pedigree, four 4-allele markers is the limit of 
computation feasibility for VITESSE, showing the im-
portance of having accurate and reliable MCMC meth-
ods.

  For the three MCMC programs, a fair comparison 
with respect to time is thus of the long run results using 
 lm_markers  with the short run results using  lm_multiple  
and  lm_haplotype .  Table 1  shows that even short runs 
(10K scans) of  lm_haplotypes  and  lm_multiple  perform 
much better than long runs (30K scans) of  lm_markers , 
with both smaller discrepancy and smaller range over 

runs. Notice that, in this example, more MCMC scans of 
 lm_markers  do not necessarily increase accuracy or de-
crease variability because of poor mixing of the Markov 
chain. However, increasing the number of MCMC scans 
for  lm_haplotype  or for  lm_multiple  does decrease both 
the discrepancy and the range.

  Ped14 with 10 Markers 
 To use all 10 markers and to compare the performance 

of these with exact calculation, we can use only a small 
part  (ped14–10)  of the pedigree. We consider the right 
part of  ped52  consisting of founders 202, 2,020 and their 
descendants: 14 individuals in total (see  fig. 2 ). MERLIN 
 [29]  can compute exact lod scores on this subpedigree. 
For each of the three MCMC programs, the discrepancy 
and range at marker-3, at marker-6, and at marker-7 are 
shown in  table 1 . Comparing the long run results from 
 lm_markers  with short run results from  lm_multiple  and 
 lm_haplotype , we find that the latter two programs al-
ways have smaller discrepancy and less variation ( table 1 ). 
In fact, in this example,  lm_markers  requires about 50% 
more computation time for 30K MCMC scans than do 
the other two programs for 10K scans ( table 2 ).

  A further comparison of the accuracy of MCMC esti-
mates as compared to exact results from MERLIN is 
shown in  figure 4 . For all three MCMC programs, and for 
both short and long runs, this figure shows the empirical 
CDF (over 50 runs) of absolute error in lod score at the 
true trait locus (position 30 cM, at the midpoint between 
marker-5 and marker-6). For example, consider the num-
ber of runs (out of 50) with this error less than or equal 
to 0.025, which is 4.8% of the true lod score of 0.518. For 
short and long runs, respectively, this number is about 27 
and 38 for  lm_markers , 38 and 47 for  lm_multiple , and 43 
and 49 for  lm_haplotypes . In this example,  lm_markers  
does not have the obvious mixing problem that it had on 
the full pedigree; there are no distinct clusters of lod score 
estimates among the 50 short or long runs. However,  lm_
multiple  and  lm_haplotype  still perform better, providing 
more accurate estimates with less variability in shorter 
time.

  Ped52 with 10 Markers 
 We estimate the lod score for the complete  ped52  ped-

igree with all 10 markers  (ped52-10)  using these three 
MCMC programs. As before, we obtain 50 independent 
long runs (30K MCMC scans) for each program. Now, no 
comparison with exact results is possible, so the discrep-
ancy measure is not obtainable. The lod score ranges at 
marker-6, for  lm_markers ,  lm_multiple  and  lm_haplo-
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  Fig. 4.  Empirical CDF of errors of lod scores at true trait locus us-
ing  lm_markers ,  lm_multiple  and  lm_haplotype . 
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type , are 0.466, 0.059, and 0.032, respectively. As before 
we get the smallest range for  lm_haplotype  and the largest 
range for  lm_markers . Comparing with the correspond-
ing results for  ped52-4  ( table 1 ), we see that there is much 
less between-run variation in the lod score using all 10 
markers.

  To check how the between-run variation in the lod 
score is affected by markers included in the analysis, we 
estimate the lod score for the complete  ped52  pedigree 
with 5 markers of 3, 4, 5, 6, 7  (ped52-5) . Exact results are 
not possible here. Using the results from 50 independent 
long runs (30K MCMC scans) for each program (results 
not shown), the lod score ranges at marker-6, for  lm_
markers ,  lm_multiple  and  lm_haplotype , are 0.307, 0.031, 
and 0.021, respecitvely. The between run variations are 
not only less than the ones for  ped52  using 4 markers, but 
also less than the ones for  ped52  using all 10 markers. 
This shows that marker-5 plays an important role in es-
timating lod scores at marker-6.

  Finally, the lod-score curve is estimated for  ped52-10  
using our best program  lm_haplotype  with 1M scans 
( fig. 5 ). For comparison,  figure 5  shows also the exact lod 
scores for  ped52-4  and the estimated lod scores for  ped52-
5 . The estimated lod score curve for  ped52-5  is the average 
over the 50 long runs using  lm_haplotype . It takes about 
2 hours to get the MCMC-based  ped52-10  lod score curve. 
Based on the consistent performance of  lm_haplotype  for 
 ped52-4  and  ped14-10 , we are confident that this lod-score 
curve is reliable. The maximum lod score 1.972 is ob-
tained at marker-6 for  ped52-10 , which is more than the 
maximum lod score of 1.771 from  ped52-5  and about 
twice of the maximum lod score from  ped52-4 . This 
shows that the increase in maximum lod score is mainly, 
but not entirely, due to the marker data at marker 5. For 
extended pedigrees with many missing data, we thus see 
that joint use of data at multiple markers increases the 
power to detect linkage.

  Discussion 

 We have developed new MCMC methods for accurate 
estimation of multilocus likelihoods using pedigree data. 
MCMC methods make linkage analysis feasible for large 
pedigree data when exact computational methods cannot 
be applied  (ped52-10) . Even in the case that exact compu-
tation is feasible, MCMC methods can give reasonable 
results using much less computational time  (ped52-4) .

  Compared to the  lm_markers  method, our new MCMC 
methods improve the accuracy of lod score estimates and 

decrease the variation of lod score estimates between 
runs. The procedure  lm_multiple  outperforms  lm_mark-
ers  by jointly considering multiple meioses, and  lm_hap-
lotypes  outperforms  lm_multiple  by additionally consid-
ering haplotypes of some individuals.

  By updating jointly over loci, a single meiosis sampler 
(M-sampler) avoids problems of poor mixing due to tight 
linkage  [21] , but inheritances in different meioses are 
jointly constrained by data. Further, although the L-sam-
pler and hence also the LM-sampler are irreducible, the 
M-sampler alone can never be guaranteed irreducible. 
Clearly, the random, individual, complete sib and 3-gen-
eration updates improve mixing; they may sometimes 
even ensure irreducibility of the sampler. Often the joint 
updating of meioses within nuclear families may be suf-
ficient to improve mixing, whereas the random update 
could (in principle) choose meioses whose inheritances 
are independent given the data. In this extreme case, the 
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  Fig. 5.  The solid line is the estimated lod score curve for ped52-10 
using  lm_haplotype  with 1M scans. The dot-dashed line is the es-
timated lod score curve for ped52-5 at positions 20, 28, 29, 31, 40 
cM and dashed line is the exact lod score curve for ped52-4 at po-
sitions 20, 28, 31, 40 cM. The vertical dotted line at 30 cM repre-
sents the position of simulated trait locus.     
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MM-update process is equivalent to M-sampler updates 
of this block of meioses but requires longer computation 
time. However, as shown by the example of Sobel and 
Lange  [27] , two meioses well separated in the pedigree 
may be jointly constrained by the data on descendants, 
causing reducibility of single-meiosis updates. Thus it 
seems advisable to always give positive probability to the 
updating of randomly chosen subsets, and not restrict the 
process only to local sib or even 3-generation updates.

  In  lm_multiple,  the probabilities for random, individ-
ual, sib and 3-generation updates are pre-defined. High-
er probability of complete sib and 3-generation updates 
may provide better estimates of lod scores because the 
meiosis indicators are jointly updated according to full 
conditional distribution. However, it remains to be inves-
tigated whether the gains outweigh the additional com-
putational burden. Similarly, for  lm_haplotype , exact cal-
culations can be done for small parts of the pedigree. 
However, exact calculation is computationally intensive 
and the choice of how much exact computation to do is 
always a compromise between accuracy and time.

  In  lm_haplotype , the choice of key individuals has ef-
fects on both the performance of MCMC and the compu-
tation time required. In principle, any individual can be 
a key individual. However, we would like to do as much 
exact calculation as possible since this computation can 
be done once only, and the more exact computation is 
done the smaller the Monte Carlo variation in the lod 
score estimate. Thus we prefer to choose a key individual 
that has a deeper descendant pedigree provided exact 
computation can still be done on this sub-pedigree. In the 
current analysis, we use short runs in partial pedigrees to 
find the underlying problematic part of the pedigree. Al-
though this worked well here, more theoretical explora-
tion is needed to support generalization. An automated 
procedure to choose optimal key individuals is also desir-
able.

  All the three simulation studies are based on data from 
simple structured pedigree  ped52 . For complicated pedi-
gree with loops,  lm_markers  and  lm_multiple  can be used 
without any modification, although loops may result in 
poor mixing in some cases. To use  lm_haplotype , a little 
bit more modification in likelihood equation in equation 
(3) is needed, when some key individuals and their de-
scendants actually form a loop. More investigation is 
needed on the effect of loops on MCMC mixing perfor-
mance.

  The examples of this paper have used microsatellite 
type markers, but increasingly data are available for large 
numbers of dense SNP markers. For a given number of 

MCMC scans, both  lm_markers  and  lm_multiple  have 
computation time linear in the number of marker loci  n . 
The program  lm_haplotype  is also linear in  n  in the case 
that the haplotypes of key individuals are sampled con-
ditional on realizations of meiosis indicators in sub-ped-
igrees. Wijsman et al.  [24]  have shown that  lm_markers  
can obtain accurate lod score estimates using dense sim-
ulated SNP marker data. In an analysis of the real SNP 
data of GAW15  [32] ,  lm_multiple  shows better perfor-
mance than  lm_markers . Therefore, we are optimistic on 
the general performance of  lm_multiple  using dense SNP 
data. More work is needed to evaluate the performance of 
 lm_haplotype  on SNP data.

  Although it is always very challenging to deal with 
real, large pedigrees with multiple tightly linked marker 
loci and a lot of missing data, our new methods are prom-
ising in improving the performance over previous MCMC 
methods.
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  Appendix 1 

 1. Proof of Markov Property in Restricted Sib Update 
 For  j  = 1, …,  n , let  s    *  Ij  = (s *  I m j , s *  I f  j ) be one of the four possible 

choices based on current realization  s  Ij  (flip or not for paternal or 
maternal meiosis indicators). Then for  k  j   D  {0, 1, 2, 3},
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  where  g ( k ) is a function of  k . This indicates that { X  j } j   = 1, …,   n  is a 
Markov chain. Thus, using the HMM algorithm of Baum and 
Petrie  [33]  and Rabiner  [34] , we are able to sample  P ( X ) jointly 
over  n  marker loci using block Gibbs sampling method in time of 
order  O ( n ). 
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