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Abstract
Functional magnetic resonance imaging (fMRI) is a fairly new technique that has the potential to
characterize and classify brain disorders such as schizophrenia. It has the possibility of playing a
crucial role in designing objective prognostic/diagnostic tools, but also presents numerous challenges
to analysis and interpretation. Classification provides results for individual subjects, rather than
results related to group differences. This is a more complicated endeavor that must be approached
more carefully and efficient methods should be developed to draw generalized and valid conclusions
out of high dimensional data with a limited number of subjects, especially for heterogeneous disorders
whose pathophysiology is unknown. Numerous research efforts have been reported in the field using
fMRI activation of schizophrenia patients and healthy controls. However, the results are usually not
generalizable to larger data sets and require careful definition of the techniques used both in designing
algorithms and reporting prediction accuracies. In this review paper, we survey a number of previous
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reports and also identify possible biases (cross-validation, class size, e.g.) in class comparison/
prediction problems. Some suggestions to improve the effectiveness of the presentation of the
prediction accuracy results are provided. We also present our own results using a projection pursuit
algorithm followed by an application of independent component analysis proposed in an earlier study.
We classify schizophrenia versus healthy controls using fMRI data of 155 subjects from two sites
obtained during three different tasks. The results are compared in order to investigate the
effectiveness of each task and differences between patients with schizophrenia and healthy controls
were investigated.
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Introduction
Functional magnetic resonance imaging (fMRI) is a fairly new and unique tool that enables
widespread, noninvasive investigation of brain functions (Kwong et al. 1992). The difference
in magnetic susceptibility of oxygenated (diamagnetic) and deoxygenated (para-magnetic)
blood is the basis for recording temporal and spatial alterations in the blood oxygen level
dependant (BOLD) fMRI signal (Ogawa et al. 1990). There is much hope that fMRI data can
be used to characterize and/or classify brain disorders such as Alzheimer's disease,
schizophrenia, mild traumatic brain injury, addiction or bipolar disorder using the biologically
measured quantity. For this purpose, responses to various types of stimuli in both healthy
controls and patients with brain disorders have been measured, compared and analyzed.

Analyzing fMRI data for the ultimate goal of diagnosing schizophrenia is crucial in the sense
that there are complications in diagnosis and there is no gold standard. The disorder is complex
and different combinations of symptoms may be seen in some patients versus others or even
in the same patient at different points in time. For example, a patient may meet the diagnosis
via psychotic and disorganized symptoms while another patient may have predominantly
negative symptoms. The interview and history are the main factors that determine the diagnosis
and even the best expert might diagnose schizophrenia when it does not exist.

The nature of fMRI data presents numerous challenges for analysis and interpretation. FMRI
may produce spatially overlapping functional networks activated during application of
different tasks. During the same task, patients with schizophrenia might activate different brain
regions that are part of the same network, or different networks, more than controls.

Moreover, the data are four dimensional, including 3 spatial dimensions changing over time,
and includes tens of thousands of voxels that can be represented with vectors of time points.
Each subject can be characterized by the voxel values varying in time and solution requires a
very high dimensional analysis space (number of voxels × number of time points) where the
number of subjects tested is many orders of magnitude smaller than dimensionality of the space.
The data occupies only a small volume in the space because hypervolumes grow exponentially
with increasing dimensionality. This is called “the curse of dimensionality” (Bellman 1961).
The problem is difficult to solve because high dimensional space is mostly empty and
discriminative information is usually in a lower dimensional subspace (Jimenez and Landgrebe
1998, 1999).

Efficient methods and tools are needed in order to draw generalizable and valid conclusions
out of high-resolution measurements that usually include noise and redundancy due to
correlations within the data set. When dealing with such high dimensional data, it is important
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to reduce the dimensionality of the data effectively, possibly with projections from high to low
dimensional space, while preserving the class separability between healthy controls and
patients. Then, the investigation of the differences between the classes can be carried out more
effectively in a lower dimensional space and stable tools can be developed. The dimensionality
reduction (e.g. elimination of voxels) should hence be specific enough to remove the
redundancy but broad enough to keep the discriminative features of the subsets.

Most fMRI research studies that are not focused on diagnostic classification, use simple group
averaging to differentiate between subject classes. In this case, the group averages do not
necessarily explain the fMRI activation behavior across all subjects within the same class.
These findings might provide a general representation of the investigated classes but
classification problems require more difficult conditions to be satisfied since the findings
should hold for each individual subject in the classes for good prediction accuracies. In addition,
the results might not be generalizable to larger data sets and usually more advanced techniques
are required for better and valid comparisons.

We believe that there are important issues to consider in analyzing fMRI data for the purposes
of diagnostic classification / prediction and in the presentation of classification performances.
Possible biases affect the prediction accuracies previously reported in the field and there is still
much to be done, beginning with defining standards both in designing algorithms and in
reporting the prediction accuracies in the classification problems.

There have been numerous efforts using fMRI, sometimes in conjunction with other imaging
data, with a variety of methods to differentiate patients with brain disorders from healthy
control subjects. Promising prediction performances have recently been reported in the
literature with the claim that complex diseases can be diagnosed efficiently. We believe that
some of those results, though promising, may be biased to the specific data set used and that
generalization to other data will be difficult. In this paper we have attempted to emphasize
some commonly occurring biases and suggest some possible solutions.

We would like to note that the selection of features used in the classification is crucial. Using
selected voxels rather than brain regions might result in overfitting and the resulting findings
might be specific to the data set employed. This is so because reproducibility of fMRI
activations at a regional level tends to be more robust across test sites, techniques and subjects
than is single voxel selection (Casey et al. 1998; Tegeler et al. 1999).

A key issue in the class comparison / prediction problems is less the choice of methods
themselves than their correct application following appropriate cross validation rules. The use
of cross-validation is very important. The examples we list in “Bias in classification” indicated
that cross-validation methods should be applied correctly to obtain more accurate and
generalizable conclusions. Cross validation should be properly applied in every stage of the
analysis rather than only during the performance evaluation. Prediction accuracies with cross-
validation should accompany the results for better validation of the distinguishing features.
When the classification results are properly validated using approaches such as cross-
validation, then results will be more likely to reproduce.

We also believe that the data sets that are utilized in such research studies are at least as
important as the techniques employed. How subject selection is made and what criteria the
subjects are required to meet should be detailed in the studies. This will not only prevent
selection bias but help us interpret the results for improvements in diagnosis. The techniques
should be applied to larger data sets, which should help generalization of the results. Multiple
sites should be included in the analysis of the methods to help validation. The Function
Biomedical Informatics Research Network (Friedman et al. 2006) and MIND Clinical Imaging
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Consortium (Demirci et al. 2008) studies are two such representatives of the combined efforts
attempting to do this for fMRI data.

In this paper, in “Bias in classification,” we survey previously published work with a focus on
identifying possible biases in class comparison / prediction problems and we make suggestions
which we hope will be useful for future studies. In addition to our review on previous
classification research, we also present a projection pursuit (PP) algorithm that we apply on
fMRI data of 155 subjects obtained during three different tasks at two different sites in “A PP
analysis model and classification performance comparison on tasks.” “Tasks and data”
provides brief information about the tasks we employed and the data we used, and “Analysis
methodology” explains the PP algorithm we introduced in our earlier work (Demirci et al.
2008). In “Results and discussion,” we discuss the results we obtained using data of three
different tasks and compare them. “Extension to data from multiple sites” presents an extension
with addition of data from another site, and investigates the change in the prediction accuracy
with multiple sites and different subgroups. Finally, closing remarks are provided in
“Conclusion.”

Bias in classification
Issues regarding interpretation and bias in reporting prediction accuracy during classification
using gene expression data have been investigated earlier and are relevant to studies utilizing
fMRI data. Wood et al. (2007) argue that some genetics research is not reliable although their
presented results suggest that most complex diseases can be accurately diagnosed with an
effective selection of genetic data such as gene expression measures. Problems are often due
to a lack of reporting certain important details (number of subjects in each class, specificity,
sensitivity, etc.) related to the analysis performed. We discuss issues related to the presentation
of prediction results in recent fMRI studies and present suggestions for improvement.

We divide the possible causes for bias into two main parts, described separately here. In “Class
size biases and examples from schizophrenia fMRI literature,” we concentrate on the bias
related to data sets employed in the analyses and in “Biases in cross-validation and examples,”
we emphasize the bias that can originate due to misapplication of cross validation.

Class size biases and examples from schizophrenia fMRI literature
Classifiers typically use the observations obtained from a training data set and develop the
most effective predictive function selecting the most suitable features to assign class
memberships to a test (validation) data set. The prediction accuracy is then based on the
performance of the classifier in the assignment of the members in the test set. When the results
from such an analysis are reported, it is important to present the classification performance for
each individual class. Wood et al. (2007) indicates the need to present prediction accuracy
separately for each class (e.g., sensitivity and specificity) especially when the classes contain
unequal numbers of samples. An overall estimated prediction accuracy does not give
information on the performance for each class. In two-class problems this corresponds to
presenting both specificity and sensitivity so that the performance of the classifier on both
subsets can be interpreted. An overall estimated error rate can still be reported using the
proportions of each class in the whole data set.

Another important point in the design of classifiers is the number of subjects used in the training
set. The conclusions based on classifiers estimated using a small sample size will likely not
represent all the characteristics of the whole population. These classifiers may highlight the
distinguishing characteristics of the smaller set but miss the more important properties of the
whole population. This is especially so in a disorder such as schizophrenia which is defined
using clinical symptom reports.
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We now present several examples of studies that offer valuable approaches for using fMRI to
diagnose brain disorders, though they also suffer to varying degrees from the biases just
described.

Often, detection performances on classes are not reported separately. Ford et al. (2002)
combined structural and functional magnetic resonance imaging (MRI) data for classification
purposes. They extracted hippocampal formation by applying a mask and then extracted the
functional and structural data within the mask. The high dimensional data were then projected
onto a lower dimensional space and Fisher's linear discriminant (FLD) analysis was used to
maximize the ratio of between-class and within-class variability considering the training set.
The prediction accuracy of the classifier was tested using a total of 23 subjects (15
schizophrenia patients and 8 healthy controls) with a leave-one-out method. One of the subjects
were removed from the whole set for validation purposes (K=1, 1-fold cross-validation) and
the rest of the subjects were used as training data. A maximum classification accuracy of
83-87% was presented, which is reasonable. However, it would also be informative to know
prediction performances on both classes separately, especially in this case where the number
of subjects in the two groups differ. For example, for this particular set, 85% overall prediction
performance could possibly be obtained with 100% detection performance on schizophrenia
patients and only a 57% detection performance on healthy controls (43% false alarm), which
would indicate a poor performance on healthy controls.

In a similar study, Ford et al. also proposed to use principal component analysis (PCA) to
represent subjects in a lower dimensional space with maximal variance and uncorrelated
samples, based on the idea that fMRI activation patterns show differentiations among healthy
controls, patients with schizophrenia, Alzheimer's disease and mild traumatic brain injury. The
FLD classifier was applied to fMRI brain activation maps in this lower dimensional space to
differentiate patients from healthy controls (Ford et al. 2003). The prediction accuracy of the
schizophrenia patients varied between 60% and 80% for different numbers of principal
components on a set of 25 subjects (10 healthy controls and 15 patients with schizophrenia).
Specificity and sensitivity performances were not reported separately. The authors
appropriately pointed out that their results should be interpreted cautiously because of the small
data set.

Detailed subject selection criteria are also important to include in research studies. Job et al.
(2006) investigated whether structural changes in the brain over time provide a better indication
of disease than behavioral measures for the prediction of schizophrenia and asserted that
reduction in gray matter, especially in the temporal lobe, helps predict schizophrenia. It is
mentioned that the Edinburgh High Risk study prospectively examined 150 young people with
a high risk of developing schizophrenia based on familial history over a 10 year period. Twenty-
one of these subjects developed schizophrenia and 60 had transient, partial or isolated psychotic
symptoms on at least one occasion. In their research study, they selected 65 high-risk subjects
from this set, 8 of whom developed schizophrenia an average of 2.3 years after their first scan.
They concluded that they had only a limited number of subjects and the findings required an
independent replication for validation. We believe a more detailed explanation on how the
selection was made would be beneficial and further strengthen the validation of the results.

Shinkareva et al. (2006) identified the groups of voxels showing temporal dissimilarity using
an RV-coefficient (Robert and Escoufier 1976) (a measure of temporal dissimilarity) and
worked directly with fMRI time series data from brain regions of interest. They presented a
prediction accuracy of 85.71% using a leave-one-out cross-validation on 14 subjects (7
schizophrenia patients and 7 healthy controls) using functional activity in brain frontal areas
during a Stroop task, which involved presentation of task relevant (color) and task irrelevant
(emotional meaning) attributes of different words. The results seemed promising. This set of
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14 subjects was selected among a group of 32 available subjects (16 schizophrenia patients
and 16 healthy controls). Providing more information on the selection procedure and why only
7 participants, but not more, from each subclass were used would be useful in interpreting the
results. We were motivated by the effectiveness of the temporal data used and the method
employed. When we carried out a similar analysis on a set of more than 100 subjects, we were
not as successful.

Calhoun et al. (2008) combined temporal lobe and default mode components after an
application of independent component analysis (ICA) on the fMRI data obtained during an
auditory oddball task to discriminate subjects with bipolar disorder, chronic schizophrenia and
healthy controls. 21 chronic schizophrenia patients, 14 bipolar Type I outpatients and 26
healthy controls were used in this analysis. The two spatially independent brain modes
(temporal lobe and default mode) were concatenated into a single image. An adaptive step was
employed to reduce the number of voxels used and subjects were represented in a reduced
dimensional space. Each individual was assigned one of three class memberships with a leave-
one-out approach based on the Euclidian distance between the individual and group means.
Randomly selected subjects from each group were excluded from the whole data set, the
classifier was designed using the remaining participants and tested on the three subjects. An
average sensitivity and specificity of 90% and 95% were reported, respectively.

Separately, we applied a PP technique to decrease the dimensionality of fMRI data obtained
during an auditory oddball task on 70 subjects (34 schizophrenia patients, 36 healthy controls)
from New Mexico site of the MIND Research Network (Demirci et al. 2008). The technique
included various data reduction stages including an application of an ICA and selection of
different brain activation networks. Promising overall prediction accuracies varying between
80%-90% were obtained. We propose that including data from different sites would help
validation of these results because each site brings variabilities like operators, scanning
equipment and parameters, and population distribution.

Good examples of classification of 3D medical images were presented and corresponding
performances were compared by Pokrajac et al. (2005). They used activation contrast maps of
18 subjects (9 Alzheimer's disease patients and 9 healthy controls) and highly activated regions
were extracted utilizing an activation cut-off threshold. Statistical distance based techniques
(Mahalanobis distance and KL divergence) and maximum likelihood methods were used for
classification. The prediction accuracies obtained with a leave-one-out cross-validation varied
between 68% and 80%. Best performance was achieved with k-means (k = 3) maximum
likelihood approach with a 80% detection accuracy.

Other promising results were reported in Kontos et al. (2004). They applied Hilbert space filling
curves on 3D fMRI activation contrast maps to transform them into a linear domain preserving
the locality of the voxels during transformation. Nine healthy controls and 9 patients with
Alzheimer's disease were analyzed. Neural networks were employed as a classification tool
and almost 100% classification accuracy was achieved using a leave-one-out cross-validation.
Wang et al. (2004) applied similar techniques on the time series domain to determine the
discriminative spatial patterns in the fMRI data. They found accuracies above 90%.

Causes of bias in prediction problems are not limited to the data set employed, but could be
due to the misapplication of the verification methods. In “Biases in cross-validation and
examples,” we describe further possible causes and provide examples of this type from recent
literature.
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Biases in cross-validation and examples
Prediction performance of classifiers is usually measured using cross-validation but are likely
to be biased when cross-validation is used in a way that provides a measure of generalizability
error (Wood et al. 2007). K-fold cross-validation evaluates the prediction accuracy by splitting
the data into K folds, separating one of these to be used as test fold, and utilizing the rest of the
folds as training folds. In this case, the estimated parameters, and model should be computed
using only the training folds and the prediction performance of the designed system be
evaluated on the test fold. The operation can then be repeated K times where each of the folds
is used as a test fold, and the average performance is then the unbiased estimate of the classifier.
Using the full set of data during the design of the model and not building it from scratch for
each different test group biases the results (Simon 2004; Wood et al. 2007). A two-level cross-
validation method is proposed where the data set is divided into portions in two consecutive
steps where the second division ensures that the model parameters for the classifier are unbiased
(Wood et al. 2007).

Simon pointed out the difficulty of designing an effective classifier using gene expression data,
due to the fact that candidate predictors have a dimensionality that is orders of magnitude
greater than the number of subjects available (Simon 2004; Simon et al. 2003). This problem
presents unique challenges as the solution requires analysis of tens of thousands of noisy data
points in a very high dimensional space, and turning them into dependable and understandable
conclusions. He also raises the issue that research done in this field is usually based in only
one institution and microarray assay's conducted in one laboratory. In spite of these restrictions,
he also agrees that prediction accuracy of the classifiers should be presented along with certain
criteria. He supports using k-fold cross validation methods and agrees that this is more efficient
than split-sample validation. The validity of the classifier should be measured with cross-
validation to provide precise estimates of specificity and sensitivity. It is very important to
select subjects from a prospective multicenter clinical network so that the results can be
generalized to multiple locations.

Supervised classifiers usually assume that certain data points among the whole data set are
associated with class distinction (Simon et al. 2003). These points should be selected as a first
step of designing an effective classifier. The appropriate subsets can either be assigned weights
depending on their distinctive strengths or a PCA can be applied as a dimensionality reduction
technique. The general problem of designing an effective classifier is overfitting to the training
data set. This is a very general problem in cases where the number of training samples are small
compared to the number of data points to represent them. The presented prediction accuracies
are usually misleading as the classifier over-fits to the original data set (especially the
unimportant random variations) and can result in highly variable results when applied to new
data. This requires an effective presentation of prediction performance for the designed
classifiers. Simon et al. (2003) indicates that it is crucial to apply cross-validation when
selecting discriminative data, decreasing dimensionality and designing the predictor. Failing
to cross validate in any of these steps produces biased results.

K-fold cross-validation techniques should be applied in all steps of designing a classifier
including feature selection. For example, Job et al. (2006) extracted three brain areas in a
comparison between 8 schizophrenia subjects and 57 control subjects. The same subjects used
in the region selection were also used in the classification. Such an approach tends to bias the
results as the information on the classes has been used to select the brain areas. Areas showing
possible differentiations between schizophrenia and control subjects can be selected with
minimal to no bias by determining the regions without using the test subject in each iteration
and then performing classification of the left out subject only.
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Georgopoulos et al. (2007) presented a classification method using magnetoencephalography
(MEG) and assigned group memberships to subjects with various illnesses (Alzheimer's
disease, schizophrenia, multiple sclerosis, Sjogren's syndrome, chronic alcoholism, facial
pain). They used 248 axial gradiometers on 142 human subjects and obtained 30628 partial
zero-lag cross-correlations between sensors for all sensor pairs and used them as the predictor
set. They looked for subsets of this predictor set and investigated if any such predictor subsets
correctly classified subjects into their respective groups. This was a dimensionality reduction
problem. They indicated that a subset of 12 predictors (correlations) gave a prediction accuracy
of 86.6% and assigned 86.6% of the subjects to their respective groups correctly. They used
this same set of 12 predictors and presented ̀ cross-validation' results around 77-79% with two
different jackknifed methods, k-fold and leave-one-out, respectively. Though these results are
encouraging, especially given the specificity of the approach to multiple different groups, they
appear to be biased to the data at hand because the same set of 12 predictors were used for each
different training set, and a different set of predictors were not obtained for each training set
separately.

Application of k-fold cross-validation at each step is crucial. Failing to do so on only one such
step will bias the results. Pardo et al. (2006) used linear discriminant analysis (LDA) to
differentiate patients with schizophrenia and bipolar disorder. They used 22
neuropsychological test scores and 23 quantitative structural brain measurements obtained with
cerebral structural MRI to classify 28 subjects into three groups (8 healthy controls, 10
schizophrenia and 10 bipolar disorder patients). Multiple regression analyses were used before
LDA to adjust the data for demographic and medication influences. A subset from the whole
45 variables was chosen each time and these subsets included varying number of variables (2
to 12). The prediction performance of each subset was tested using a leave-one-out method on
the 28 subjects, resulting in the average of 28 different cases. 9 subsets with 12 variables
provided a classification rate of 96.4%, misclassifying only one of the subjects out of the entire
28. Pardo et al. assert that the results are robust because a leave-one-out method was employed
in the analysis. However, the fact that these subsets (12 variables) were determined using all
28 subjects is ignored. A more robust result would be obtained by using only the 27 subjects
to reduce the number of features and testing the performance of this subset on the left-out
subject.

Fan et al. (2007) applied a multivariate classification approach combining data from both a
functional feature map (cerebral blood flow) and structural MRI data to detect brain
abnormality associated with prenatal cocaine exposure in adolescents. Regions with voxels of
similar correlation to the disease were obtained using a Pearson correlation coefficient for three
different feature maps separately. A leave-one-out method was employed and an effective
cross-validation strategy was followed to measure the overall correlation of a feature to class
label. Then, statistical regional features (histograms) and a PCA were used to represent each
region with a feature vector. Subjects were represented with the vectors from three different
feature maps. Promising results were obtained on 49 subjects (25 prenatal cocaine-exposed
subjects and 24 normal controls). Fan et al. (2007) mention the possibility that obtained
classification accuracy might be an indication of over-fitting based on the random permutation
tests they performed.

Nakamura et al. (2004) used structural brain images of 104 subjects (57 patients with
schizophrenia and 47 healthy controls) to investigate the differences between the healthy
controls and schizophrenia patients. 81% overall detection accuracy was obtained using a
discriminant function analysis.

Previous research topics mentioned in this paper are summarized in Table 1. It is important to
note here that there are numerous other classification studies based on structural data (Golland
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et al. 2000;Gerig et al. 2001;Shen et al. 2004) in the brain imaging field but we are mostly
concentrating on studies using fMRI data in this paper.

Finally, we would like to summarize possible different reasons for bias in the prediction
problems using fMRI data. Table 2 lists different types of bias, reasons, possible solutions and
examples in each group. “Selection Bias” and “Parameter Selection Bias” may seem very
similar to each other. “Selection Bias” involves the use of all subjects that we try to classify
in any stage of the classification algorithm and may result in overfitting. This is a misapplication
of cross-validation. “Parameter Selection Bias” involves the change of the parameters in the
classification algorithm and application of the specific set of parameters giving the best result
in the final design. This could result from deciding what part of the data to use, and what
parameter values to prefer (optimum set) based on the multiple runs of the test.

Although it is not always possible to extend the data set, especially for patients, the number of
healthy controls used in the analysis can be increased to obtain more generalizable results
especially when there are only a very limited number of patients. As long as the specifics of
the subgroups remain the same and prediction accuracies for the subclasses are reported, the
number of subjects in the subgroups do not necessarily need to be equal. Using multi-site data
from different studies will also increase the effectiveness of the results.

In our own experience, including the test subjects in the feature elimination steps increased the
performance considerably (10%-15%). Our experience verified the necessity of the correct
application of k-fold cross-validation. Thus, classifiers should be designed from scratch for
each different training set, and test subjects only used for validation purposes.

A PP analysis model and classification performance comparison on tasks
Tasks and data

The fMRI data used in this research discussed below were obtained via the MIND Research
Network, a consortium founded to help diagnosis of mental illnesses and other brain disorders,
including understanding the course and neural mechanisms of schizophrenia. The data
presented here were obtained from four different sites (New Mexico, Harvard, Iowa and
Minnesota). The aim was to collect as many data as possible with a cooperative team approach
and to incorporate the differences in the multi-site design. Representatives from investigative
teams from each of the sites worked together for calibration and standardization of imaging
designs and techniques so that more reliable measurements of brain structure and functions
across sites could be obtained.

We used functional data sets obtained when subjects were scanned during performance of three
different tasks. These tasks are auditory oddball (AOD), Sternberg item recognition paradigm
(SIRP) and Sensorimotor (SM) tasks. Sections “Auditory oddball discrimination (AOD) task”,
“Sternberg item recognition paradigm (SIRP) task” and “Sensorimotor (SM) task” describe
the tasks briefly followed by a description of the method we followed and results we obtained.

Auditory oddball discrimination (AOD) task—It is hypothesized that an important
deficit in schizophrenia involves information processing (Braff 1993). Patients with
schizophrenia complain that they are subject to more stimuli than they can interpret (McGhie
and Chapman 1961). They misperceive, confuse internal with external stimuli (hallucinations),
or do not respond at all to external stimuli. Patients sometimes cannot allocate attentional
resources relevant to tasks (resource allocation). Alternatively, patients may be unable to
suppress irrelevant stimuli (inhibit) in order to focus on more significant ones (Watersa et al.
2003). This is why the auditory oddball task is widely used to assess sensory processing ability
(McCarley et al. 1993; Shankardass et al. 2001; Tecchio et al. 2003; Symond et al. 2005).
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During auditory oddball tasks, our participants wore sound-insulated earphones (Avotec,
Stuart, FL. Avotec Inc.. 603 N. W. Buck Hendry Way) that present the auditory stimuli while
shielding from noise due to vibration of the gradient coil. Subjects are asked to respond by
pressing a button with their right index finger every time they hear a target stimulus and not
to respond to other standard tones or novel computer generated sounds. The same auditory
stimuli have been found to be effective in differentiating healthy controls from schizophrenia
subjects in previous fMRI studies (Kiehl and Liddle 2001; Kiehl et al. 2005). Standard stimuli
occur with a probability of p = 0.82 and are represented with 1 kHz tones. Target and novel
stimuli are infrequent and each occurred with a probability of p = 0.09 (Fig. 1). Target stimuli
are represented with 1.2 kHz tones and novel stimuli are computer generated, complex sounds.
Each stimulus is presented with a pseudorandom order and last for 200 ms. The inter-stimulus
interval changes randomly in the interval 550-2050 ms with a mean of 1200 ms. A total of four
runs were acquired per session and each run comprised 90 stimuli. The sequences for target
and novel stimuli were exchanged between runs to balance their presentation and to ensure
that the activity evoked by the stimuli were not because of the type of the stimulus used.

Sternberg item recognition paradigm (SIRP) task—A working memory (WM) deficit
is consistent with some of the symptoms of schizophrenia, since performing cognitive
operations using WM permits individuals to respond in a flexible manner, to formulate and
modify plans, and to base behavior on internally-held ideas and thoughts rather than being
driven by external stimuli (Baddeley 1992). The SIRP task was utilized as it is a choice reaction
time task that requires working memory. Participants in the SIRP task are asked to memorize
targets (digits) during the “encode” epoch and then are asked to respond by indicating whether
the probe is a target (a member of the memorized set) or a foil (not a member of the memorized
set). Figure 2 shows one of those blocks during an experiment.

Each block is composed of three epochs. During the encode epoch, one of the three possible
WM blocks are pseudorandomly selected and the targets (digits) presented sequentially.
Subjects are asked to respond to the probes (single digits) presented during the “probe” epoch
and asked to respond with a right trigger press if the digit is a target (a member of the memorized
set) or a left trigger press if the digit is a foil (not a member of the memorized set). In each of
the probe epochs half the probes are targets and half are foils. A “fixation” epoch follows where
a point is shown on the screen and subject is asked to relax and get ready for the next trial. The
duration of the fixation epochs within a run is random, changing between 4 and 20 seconds.
Six blocks (two blocks of each of the 3 conditions in a pseudorandom order) constitute a run
and each run lasts approximately 6 minutes requiring the sum of fixation epochs to be 78
seconds.

Sensorimotor (SM) task—The sensorimotor task was designed for calibration purposes.
The task includes 8 different tones with different pitches which are presented with 0.2s duration
and 0.5s stimulus onset asynchrony (SOA) in a pattern such that pitches of the tones increases
and decreases stepwise (see Fig. 3). The pattern of ascending and descending pitch scales
continues till the end of a block with “on” cycle. Subjects are asked to push a button of an input
device with their right thumb after each tone. No tone is presented during the blocks with “off”
cycles. The total task duration is 240s (120 TRs, TR = 2s).

fMRI data—For this study, we analyzed data from two sites as an initial effort in a larger
multi-site analysis. Incorporating data from other sites is planned in our next research study.
The first data set included 70 subjects from the New Mexico site of the MIND research network;
34 patients with schizophrenia and 36 healthy controls. Patients with schizophrenia were
receiving stable treatment with atypical antipsychotic medications (aripiprazole(7), olanzapine
(2), risperidone(1), ziprasidone(1), clozapine(1)). Twenty eight subjects in each class were
males. There were no significant between-group differences in age. The healthy controls ranged
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in age from 18 to 54 years (mean=28.9, SD=12.3). The patients ranged in age from 18 to 60
years (mean=31.4, SD=11.6).

A larger data set was generated with the addition of subjects from the Iowa site to the previously
described New Mexico data and included a total of 138 subjects; 57 schizophrenia patients and
91 healthy controls. Patients with schizophrenia were receiving stable treatment with atypical
antipsychotic medications (aripiprazole(13), olanzapine(7), risperidone(12), ziprasidone(4),
clozapine(1), quetiapine(5)). 60 of the healthy controls (61%) and 38 of the patients (83%)
were males. Healthy participants ranged in age from 18 to 57 years (mean=30.2, SD=10.6).
Patients ranged in age from 18 to 60 years (mean=32.4, SD=12.3). In the second data set, there
was no significant difference in the average ages of the two groups.

Schizophrenia patients in the data set were limited to those with a DSM-IV diagnosis of
schizophrenia on the basis of a structured clinical interview and review of the case file (First
et al. 1995). The healthy volunteer subjects were recruited from communities through
newspaper advertising and carefully screened using a structured interview to rule out medical,
neurological, and psychiatric illnesses, including substance abuse. Subjects with history of
neurologic or psychiatric disease other than schizophrenia, head injury resulting in prolonged
loss of consciousness and/or neurological sequelae, skull fracture, epilepsy, except for
childhood febrile seizures, prior neurosurgical procedure, and IQ less than or equal to 70, based
on a standard IQ test or the ANART were excluded from the study. All subjects were fluent in
English, provided written, informed, IRB approved consent at the scanning locations in New
Mexico and Iowa, and were paid for their participation.

All scans were acquired at the MIND Research network sites in New Mexico and Iowa on
Siemens Sonata 1.5T and Siemens 3T Trio dedicated head scanners equipped with 40mT/m
gradients and standard quadrature head coils, respectively. The functional scans were acquired
using gradient-echo echoplanar-imaging with the parameters: repeat time (TR)= 2 s, echo time
(TE)= 40 ms ((TE)= 30ms for Iowa), field of view= 22 cm, acquisition matrix= 64 × 64, flip
angle= 90°, voxel size= 3.44 × 3.44 × 4 mm3, gap= 1 mm, 27 slices, interleaved acquisition.

FMRI data were preprocessed using the software package SPM5 (SPM5 2008). Images were
realigned using INRIalign a motion correction algorithm unbiased by local signal changes
(Freire et al. 2002). Data were spatially normalized into the standard Montreal Neurological
Institute space (Friston et al. 1995), spatially smoothed with a 9 × 9 × 9 mm3 full width at half-
maximum Gaussian kernel. The data (originally acquired at 3.44 × 3.44 × 4 mm3) were slightly
sub-sampled to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels.

Behavioral data—The demographics of the data set used in this study was explained in detail
in “fMRI data.” Tables 3 and 4 present behavioral data for AOD and SIRP tests, respectively.
The presented hit percentages consider all subjects from the two sites, but the reaction times
were evaluated using only the subjects from the New Mexico site due to a hardware
measurement error at the Iowa site.

Table 3 lists the hit accuracies of the targets and average reaction times of both patients and
controls based on four different runs included in an AOD experiment. The results indicate that
patients have longer average reactions times and standard deviations compared to controls,
although the accuracies are similar to each other.

Table 4 lists average hit accuracies and average response times of both patients and controls
based on runs where three different block types were presented. These behavioral results also
show that patients have longer average reaction times and standard deviations compared to
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controls, and hit accuracies are essentially the same, similar to those obtained in AOD
experiment.

Analysis methodology
Background and related work—ICA is a technique that is used on multivariate data to
define a generative model as linear or nonlinear mixtures of some unknown sources with an
unknown mixing system. ICA decomposes the data into mutually independent, nongaussian
sources, which are called sources or independent components. Various algorithms such as
maximization of nongaussianity, minimization of mutual information, maximization of
maximum likelihood estimation can be employed (Hyvarinen et al. 2001). It has been a fruitful
tool in the fMRI field by helping delineate the spatiotemporal structure of fMRI data. Using
ICA, the change in the fMRI signal is factored into a set of time courses and corresponding
spatial patterns where either the spatial patterns or the time courses are a priori independent.
Spatial ICA extracts the non-overlapping, temporally coherent brain activation networks
without constraining the temporal domain (McKeown et al. 1998; Calhoun et al. 2001c).

ICA has been used on fMRI data mostly to identify networks associated with schizophrenia.
Calhoun et al. (2004) used ICA on fMRI data to identify aberrant localization of hemodynamic
coherence in schizophrenia and suggested that abnormal patterns of coherence in temporal lobe
cortical regions characterize schizophrenia. Garrity et al. (2007) also employed ICA of fMRI
data to identify the default mode component, which is thought to reflect the resting state of the
brain, and examined the differences in temporal and spatial aspects of the default mode.
Significant spatial and temporal differences were observed between healthy controls and
patients with schizophrenia in the default mode component.

We also employed ICA to separate the data into maximally independent groups and identify
the networks most related to schizophrenia as one of the steps of our PP algorithm (Demirci
and Calhoun 2007; Demirci et al. 2007, 2008). Time progress of voxels during the auditory
oddball task were factored into 20 independent spatial components and a set of time courses
through ICA. After the application of ICA on the data obtained during various tasks,
independent spatial components (the default mode network, temporal lobe network, visual
mode, frontal temporal, frontal parietal, lateral frontal parietal, etc.) were selected for each
task. For this paper, we chose to focus only on the main task-related components, but much
more is possible. Although default mode is the baseline condition when the brain is idling,
each task can yield a default mode component that can be chosen from among the other
networks. The independent components were used to represent N subjects in a high dimensional
space (number of voxels in the whole brain, m, ≈ 150000 voxels) separately. An m × N
dimensional mean removed data matrix (m ⪢ N), X, whose columns included all voxels in the
network was formed and PCA was applied to the covariance matrix, CXX = (1/N - 1)XXT, as
an effort to transform the data into a lower dimensional space with maximal variability. PCA
decomposes the data into uncorrelated components. An alternative eigen-analysis method was
preferred due to the extensive size of CXX and PCA was applied on  instead.
The two covariance matrices, CXX and  shared the same N nonzero eigenvalues with the
assumption that there were only N independent observations. Eigenvectors, vi, of the
covariance matrix CXX were obtained applying a transformation on the eigenvectors, , of

,

(1)
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The classification performance obtained on the subjects using all brain data with a leave-one-
out cross validation method was poor (results not shown). This indicated the necessity of
reduction of the voxels (m ⇒ m′), and considering only those features that discriminated the
healthy controls and patients with schizophrenia. A mask was proposed to eliminate voxels
that demonstrated indifferent activation patterns between classes. Remaining voxels (features)
were used to represent the subjects in a lower dimensional space. Classification results were
promising and PP algorithm was shown to be effective (Demirci and Calhoun 2007). The
performance of the classifier was compared using different activation networks and the
temporal lobe network provided better and more stable performance among the others (Demirci
et al. 2008).

Methods—During our research study, we applied three group ICA operations (Calhoun et al.
2001a, b; GIFT 2008) on the data from three different tasks and obtained 20 independent spatial
components and a set of time courses for each task. In light of the previous findings, two
different criteria have been used to select the activation networks (independent components)
to be used in further analysis in two different methods. In the first of such method, we inspected
the independent components visually and labeled them as a temporal lobe network, default
mode network, etc based on the activation. We would like to clarify that labeling operation
causes no bias and each of the independent components looks similar to one of the brain
activation patterns. The selection is not based on visual appearance quality. In the second
method, the independent components were ordered based on the fit to the regressors used in
the task. In this paper we performed these two analyses, first using only the temporal lobe
network and the second using the component with the best fit to the regressors for each of the
tasks.

The selected independent components were used in the developed PP algorithm separately
(Demirci et al. 2008). The number of all brain voxels from each individual independent
component were reduced to around 6000 using a mask to eliminate the voxels that demonstrated
little difference between the two classes. Employing a stepwise algorithm, 10 patients with
schizophrenia and 10 healthy controls were picked randomly from their training groups at each
step. Differences between the averages of the two subsets each with 10 subjects were examined
to retain the voxels showing higher activation for either schizophrenia patients or healthy
controls. Voxels that were retained in the set consistently were kept until the number of voxels
was less than 6000. These voxels were used to represent the training subjects and the covariance
matrix was computed in the PCA to find the spatial patterns (eigenvectors) that maximized
variability. The first M eigenvectors representing the largest variance were kept and each of
the subjects was projected onto these eigenvectors to determine the principal components (PCs)
in the M dimensional space. An optimization algorithm was employed to find the direction,

, that maximized the separation of the healthy controls and patients with schizophrenia based
on the PP index defined (Demirci et al. 2008). Another PP stage followed to decrease the
number of features to be considered. Components of the unit length vector  were used and
M/2 eigenvectors giving more separation between the classes were kept. A similar optimization
stage was employed to find another direction, , that maximized the separation of classes in
the M/2 dimensional space. All training subjects were represented with scalars after projecting
their coordinates onto  in the M/2 dimensional space. A test subject was also projected onto

 and represented with another scalar. A decision was given objectively based on the
projection of the test subject on the unit length vector  compared with the distribution of the
training set.

In this study, we extend our research efforts to find performance differences among the data
obtained during three different tasks, AOD, SIRP and SM, to examine their usefulness in
discriminating healthy controls from patients with schizophrenia. Detailed descriptions of the
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tasks were provided in Sections “Auditory oddball discrimination (AOD) task”, “Sternberg
item recognition paradigm (SIRP) task” and “Sensorimotor (SM) task.”

A leave-one-out approach was performed on 70 subjects (36 healthy controls and 34 patients
with schizophrenia) from New Mexico site of the MIND research network. The same test was
repeated for different values of M to investigate the effect of number of PCs considered on the
performance accuracy.

In “Results and discussion,” we present results obtained using the fMRI data and applying a
previously published PP technique (Demirci et al. 2008).

Results and discussion
Probability of detection (PD), probability of false alarm (PFA) and overall detection accuracy
(PAll) are tabulated in Table 5 for various activation networks of three different tasks. The
results are presented for various predicted false alarm rates (10%, 20%, 30%, 40%) obtained
using the Gaussian approximation to the histograms on the  direction. For the AOD and SM
tasks, the components with temporal lobe activation and the component with best fit to
regressors were the same, 12th and 17th components, respectively. In SIRP task, component
with temporal lobe activation was the 16th one and best fit to regressors method gave two
highly likely components, 11th and 3rd.

Three different comparisons can be made using the three possible independent component
choices from the SIRP task and keeping the independent components from AOD and SM tasks
the same. One of the comparisons with the choice of components with temporal lobe activations
from all three tasks are presented in Fig. 4 for a 10% predicted false alarm rate threshold choice.

The results indicate that PFA rates are high for all three tasks especially for higher M values.
The PFA rates fall as lower M values are used and stay almost constant for M lower than 20.
PD values show a similar trend for all three comparisons and detection performance falls down
as M values lower than 20 are considered. The decrease in the values for PFA and PD
compensate each other and Pall does not show a large change as the number of PCs considered
varies. Nevertheless, it can be seen that optimal number of M is either 14 or 10 for this data
giving the best possible overall performance accuracy. When we compare the performances
of the three tasks, it can be seen that SM task does better than AOD and SIRP tasks for almost
all choices of M. This is an interesting result as SM task was designed as a calibration paradigm
but in fact helps us obtain better performances compared to the other two tasks. The AOD task
seem to be performing better for choices of M > 14, and SIRP task performs better for M ≤ 14.
Low performance of SIRP task for other M values could be because working memory deficits
can appear better in other scenarios.

Extension to data from multiple sites
In “Bias in classification,” we mentioned the difficulty of generalizations for small subject
numbers and indicated the need to extend the sets, possibly by using subjects from different
sites. Previous comparison results presented in “A PP analysis model and classification
performance comparison on tasks” were based on 70 subjects only from the NM site of the
MIND Research Network. We wanted to extend our data set using additional subject data
possibly from other sites to investigate the stability of these results and to further validate them.
These variations can originate from, but not limited to, operator variability, scanning equipment
and parameters, population distribution, etc. In this section, we first give brief information on
the data set used and present three sets of results to investigate the effect of a larger data set,
differences between chronic and standard patients and brain activation pattern explaining the
difference between patients and controls, respectively.
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Tasks and data
In our next analysis, we extended our data set in “Results and discussion” and included the
data from the Iowa site. The data and task descriptions given in “A PP analysis model and
classification performance comparison on tasks” are still valid. A total of 138 (57 patients with
schizophrenia and 81 healthy controls) subjects were employed. The number of subjects
included in the new data set was almost twice as large as the number of subjects in the initial
set, and included possible variations due to possible measurement differences in the two sites.
The schizophrenia patients constituted less than half of the whole data set; hence the two classes
included an unequal number of subjects.

Results and discussion
Variability in the prediction accuracies with data from two sites combined—The
same masking technique in “Analysis methodology” has been applied on the temporal lobe
activation networks from three different tasks and number of voxels considered was decreased
to 6000 with the application of designed masks. The remaining voxels were used in the PP
algorithm. Pall, PD and PFA values for a predicted false alarm rate of 10% are depicted in Fig.
5. Obtained PFA rates are smaller for M > 14, compared to the results with only 70 subjects.
This is in fact in accordance with the number of subjects used as a bigger set included more
variability in it and required a larger set of PCs to be represented. Similarly, PD performances
decreased more rapidly as smaller M values were used compared to the results found for only
70 subjects. Pall performances are almost the same as previously, and around 80% overall
prediction accuracies are obtained. Similar to the analysis in “A PP analysis model and
classification performance comparison on tasks,” the overall prediction performances obtained
using the SM task are higher than those obtained using the AOD and SIRP tasks.

The increased number of subjects used in the analysis motivated us to include a larger set of
voxels than 6000. We modified the experiment slightly and applied a masking to represent
each of the subjects by 8000 voxels. The remaining steps in the PP algorithm were unchanged.
Pall, PD and PFA values for a predicted false alarm rate of 10% are depicted in Fig. 6. The
results obtained using 8000 voxels were almost the same as before where only 6000 voxels
were used to represent each of the subjects. Overall prediction accuracy of the SM task was
still higher than the accuracies obtained using the AOD and SIRP tasks for almost all values
of M.

Variability in the prediction accuracies with different subgroups—The results
presented in “Results and discussion” and “Variability in the prediction accuracies with data
from two sites combined” include the prediction performances of the PP algorithm and explain
how well the two classes, schizophrenia patients and healthy controls, can be separated from
each other. The class of patients with schizophrenia included both chronic and first episode
cases. We designed another experiment to investigate whether the chronic patients could better
be separated from the healthy controls and whether the group of selected healthy controls made
any difference in the performance of the classifier.

In this experiment, we used a total of 42 chronic schizophrenia patients and used them with 42
healthy controls selected randomly from a set of 56. The experiment was repeated a total of
15 times. In each of these experiments, the same set of 42 chronic schizophrenia patients were
kept and were matched with a different set of 42 healthy controls among the 56 possible healthy
subjects. The temporal lobe network for the SM task was used in the analysis. The average
performance of PAll, PFA and PD are depicted in Fig. 7 for varying number of M's. The error
bars indicate the standard deviation of the performances from the average performance in the
15 different trials.
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The results show that overall average prediction accuracies (PAll) are slightly higher (just above
80%) than those obtained using all patients with schizophrenia, both chronic and first episode.
PFA values are high for larger number of Ms and decrease as we use smaller values. The
variability that we see in the performance indicate the differences among the healthy control
subjects in their own group and point out the need for more efficient ways of feature selection.
The variability in almost all PAll, PFA and PD is high for large and small values of M, and
smallest for either M=14 or M=10. These values of M are indeed the values we achieve the
best overall prediction accuracies and optimum for these experiments.

Spatial representation of the maximum separation direction, —We discussed the
necessity of reducing the data dimensionality. It is crucial to decrease the number of features
efficiently and keep only those that best discriminate classes for reliable classification. We
applied a mask on the whole brain image and kept the voxels that showed consistently higher/
lower activation for the two classes. The disadvantage of this approach was the fact that some
regions in the brain did not contribute to the analysis at all, and were eliminated in the masking
of the whole brain data. We also designed a different masking technique and divided the brain
into 116 regions based on a Talairach map. The average of all subjects' brain data was divided
into 116 regions. In each region, the top 10% of the most activated voxels were kept and others
were eliminated to generate the mask. The obtained mask was used on each of the subjects and
the remaining voxels were used in the PP analysis similarly (Demirci et al. 2008).

In the PP algorithm, the subjects are represented in a reduced dimensional space using the
uncorrelated PCs and the direction maximizing the separation of patients with schizophrenia
and healthy control distributions is found in two separate steps via unit length vectors involved
in the optimization of a cost function. The detection performance of the PP algorithm is based
on the objective classification of the test subjects according to where they fall on the maximum
separation direction in a reduced (M/2)-dimensional space (Demirci et al. 2008). Although the
decision is made in the reduced dimensional space, the technique actually compares each of
the test subjects with the spatial pattern represented by the maximum separation direction,
which maximizes the separation of patients with schizophrenia and healthy control cases using
only the training set.

In the analysis, the two opposite ends of the maximum separation direction correspond to the
patients with schizophrenia and healthy controls in the reduced dimensional space and we can
term the spatial patterns as end point images of the maximum separation direction. It is
noteworthy to investigate the spatial patterns that the maximum separation directions represent
in the analyses. The spatial pattern represented the most important features in terms of
separation and it is appropriate to investigate the spatial representation to make an easier visual
comparison. This spatial pattern that the maximum separation direction represents might be
more important than the prediction performances that we obtain and provides stronger validity
for the designed PP algorithm.

The spatial pattern in the reduced dimensional space can be generated using the components
of the maximum separation direction vector, , and the corresponding eigenvectors the
reduced (M/2)-dimensional space. The common linear model that was subtracted before PCA
represents the origin in the space and was added to these patterns and included in the
comparison for a more credible discussion.

Figure 8 shows the spatial representation of the end points of the maximum separation direction
in the (M/2)-dimensional space (M=6) at slices 19, 20, 29 and 36 (right to left) for a particular
training set. Different sets of training subjects gave similar spatial masks since only one subject
was removed from the whole group. We are presenting only one of those here. Comparison of
activation in the temporal lobe for patient with schizophrenia, average and healthy control
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(from top to bottom) indicate that patients with schizophrenia have decreased activation in the
temporal lobe activation component.

Similar analyses were repeated for other values of M. Although, different number of PCs were
considered and gave us different classification accuracies, the maximum direction image found
represented very similar appearing patterns (Figures not shown due to similarity).

In the future, we are planning to identify the impact of additional variables (scanning
parameters, similar but not identical tasks) to investigate the variability of the methods. It would
also be interesting to combine fMRI data with clinical variables like medication record, age,
behavioral results. Unfortunately, we currently do not have the data for human-diagnosed cases
available to compare the algorithmic sensitivity/specificity with the human diagnosed
accuracies. Using only the chronic patients with a matching set of healthy controls increased
the prediction accuracies slightly suggesting it may be possible to use classification approaches
to identify subtypes of schizophrenia. Finally, application of various methods to fMRI data
together with the results presented indicates that the optimal classification of subjects into
distinct groups of patients and healthy controls is yet an unsolved problem. Considerable effort
is still required for better and more generalizable results.

Conclusion
fMRI is a promising tool that could possibly be used for diagnostic / prognostic purposes.
Various studies have been published in the fMRI field and patients with schizophrenia were
successfully discriminated from healthy controls. We believe that there are important issues
to consider both in analyzing fMRI data for classification and in presentation of the results.
We have surveyed previous classification research and identified some issues to consider and
present possible solutions.

We also presented a classification study based on a PP algorithm applied to an ICA analysis.
FMRI data of 155 subjects from two different sites obtained during three different tasks were
used in the algorithm in order to discriminate patients with schizophrenia from healthy controls.
The SM task provided better results compared to AOD and SIRP tasks. Extension of the data
to two sites provided similar results and proved to be generalizable. The spatial representation
of the patients and controls in the reduced dimensional space suggested that schizophrenia
patients had decreased activation in the temporal lobe component. In summary, with the use
of proper validation techniques we believe that fMRI has great potential for use in clinical
decision making, but there is still much work to be done.
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A Appendix
An observation matrix, X, including n subjects each represented with m voxels,

(2)
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Two different covariance matrices can be defined, and two different eigendecompositions are
possible,

(3)

(4)

where

(5)

and

(6)

Nonzero eigenvalues of covariance matrices X XT, {λ1,…λn}, and XT X, {l1,… ln}, are the same
and eigenvectors corresponding to the higher dimensional covariance matrix, {q1,… qn}, can
be derived from the eigenvectors of the smaller one, {p1,… pn}. This useful information
number of can be used in cases where the data points is a lot higher than the number of
observations. Here we present a proof of this fact.

Using Eq. 4 as a beginning point,

(7)

(8)

(9)

(10)

(11)
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can be obtained. Equation 11 can be further used,

(12)

(13)

(14)

(15)

(16)

(17)

(18)

and a relationship between P and Q can be reached. Using Eq. 4 again,

(19)

(20)

(21)

(22)

(23)

(24)
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(25)

(26)

Using Eq. 26 in Eq. 18,

(27)

can be obtained. The same equation is valid for every column separately and can be expressed
as,

(28)
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Fig. 1.
Auditory oddball experiment. Three different stimuli are represented with different colors and
unevenly spaced to indicate the pseudorandom generation (Demirci et al. 2008)
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Fig. 2.
Representation of a block in SIRP (Sternberg Item Recognition Paradigm). Two blocks of each
of the three conditions with {1, 3, 5} digits (in a pseudorandom order) constitute a run
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Fig. 3.
Representation of a block in Sensorimotor (SM) task
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Fig. 4.
Performance comparison of 3 different tasks (AOD, SIRP and SM) with temporal lobe
activation networks for varying (M/2,M). PAll, PFA and PD are reported for predicted PFA =
10% threshold. A t-test was employed to eliminate the number of voxels to consider on a group
of 70 subjects from NM site
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Fig. 5.
Performance comparison of 3 different tasks (AOD, SIRP and SM) with temporal lobe
activation networks. PAll, PFA and PD are reported for predicted PFA = 10% threshold. A t-test
was employed to eliminate the number of voxels to consider on a group of 138 subjects from
NM and Iowa sites. 6000 voxels were used after elimination
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Fig. 6.
Performance comparison of 3 different tasks (AOD, SIRP and SM) with temporal lobe
activation networks. PAll, PFA and PD are reported for predicted PFA = 10% threshold. A t-test
was employed to eliminate the number of voxels to consider on a group of 138 subjects from
NM and Iowa sites. 8000 voxels were used after elimination
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Fig. 7.
Variability in the Performance of SM 18th component with 84 subjects (42 chronic patients,
42 healthy controls). The chronic patient set was kept the same but 15 different healthy control
sets were determined (each with different 42 controls) using a total of 56 healthy controls.
Variability in PAll, PFA and PD are reported for predicted PFA = 10% threshold. A t-test was
employed to eliminate the number of voxels
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Fig. 8.
Spatial representation of the maximum separation direction,ŭ, in the reduced dimensional
space. Points A-C are used to illustrate difference(s) in the activation of patient with
schizophrenia, average and healthy control (from top to bottom) with 3/6 principal components
at slices 19, 20, 29 and 36 (right to left) among the 46. Point A represents schizophrenia, Point
B represents average, and Point C represents Healthy Control. a 3D distribution. b Regenerated
slices
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Table 2
Different causes of bias in prediction problems

Type of Bias Reason Solution Example

Limited number of available
subjects

The results are obtained based on a small
data set (whole group or one of the
classes) and are not always
generalizeable to larger data sets. A
small set does not necessarily represent
all characteristics of populations of
interest.

Collecting data for more
subjects (either locally
or via multi-site studies)

9 patients and 9 healthy
controls or 5 patients and
27 healthy controls.

Presenting only the overall
prediction accuracy (all
classes together)

The classes in a data set might not have
equal number of subjects. A lower
prediction performance on the subclass
with smaller number of subjects will
have less weight and overall
performance will look high due to the
higher performance of the sublass with
larger number of subjects. Poor
performance on the class with smaller
number of subjects will be concealed.

Including a separate
prediction accuracy for
each subclass, and an
overall prediction
accuracy.

Reporting 90% overall
prediction accuracy on 5
patients and 35 controls
could be either,
1) 90% on patients, 90%
on controls
2) 41% on patients, 97%
on controls

Selection Bias (ovefitting)

Cross validation is often used
incorrectly. Design of a classifier is
composed of the stages:
1- selecting a subset of discriminative
subjects,
2- applying PCA / assigning weights to
voxels based on their discriminative
strengths,
3-defining prediction rules.
Using full set of available subjects in any
of these steps causes bias.

External cross-
validation at each step of
the classifier design.
Classifier should be built
from scratch (from step 1
to step 3) for each
training set.

Using all subjects
available (including the
class information) to
reduce the number of
voxels from 50000 to 50
and then running an
analysis with external
cross-validation.

Parameter Selection
(Optimization) Bias

Selecting a set of parameters based on
the prediction accuracy obtained and
using the set of parameters with the best
performance in the final classifier, (e.g.
even if cross-validation is applied,
running the experiment multiple times
with the same data )

2-level cross-validation:
A portion of the data (1/
P1) is left out to assess
the prediction
performance. P2-fold
external cross-validation
is applied on the
remaining portion of the
data.

Running the same
analysis multiple times
considering varying
number of principal
components, and using
the most optimum
number of PCs in the
further steps.
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Table 3
Comparison of schizophrenia patients and healthy controls in AOD test using the hit percentages in targets and average
reaction times. Both mean and standard deviations are listed

Hits in targets % Avg. reaction time (s)

Patients Controls Patients Controls

Mean 82.36 81.47 484.36 451.66

Std 18.38 20.67 131.65 79.37
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