Skip to main content
. Author manuscript; available in PMC: 2009 Jun 25.
Published in final edited form as: Brain Imaging Behav. 2008 Sep 1;2(3):147–226. doi: 10.1007/s11682-008-9028-1

Table 1.

List of previous research with the data and the methods used, and the performances obtained

# subjects Best Performance
Author Title Data Method (c+d) (a+b) (a+c)/(a+b+c+d) a/(a+b) c/(c+d) a/(a+d) c/(b+c) a b c d
Healthy Control Patient (SZ, AD, CA, ..) Prediction Accuracy (%) (overall) Sensitivity, (PD,%) (%) Specificity, (1-PFA,%) PPV (+ predictive value NPV (- predictive value TP (true +) FP (false +) TN (true -) FN (false -)
Ford et al. (2002) A combined structural-functional classification of schizophrenia using hippocampal volume plus fMRI activation. fMRI-sMRI Fisher's linear discriminate (FLD) analysis 8 15 83-87 ? ? ? ? ? ? ? ?
Ford et al. (2003) Patient Classification of fMRI Activation Maps. fMRI Fisher's linear discriminate (FLD) analysis 10 15 60-80 ? ? ? ? ? ? ? ?
Job et al. (2006) Grey matter changes can improve the prediction of schizophrenia in subjects at high risk. vMRI Measure of change in grey matter with masks and thresholding in ROIs. 57 8 89 38 96 60 92 3 5 55 2
Shinkareva et al. (2006) Classification of functional brain images with a spatio-temporal dissimilarity map. fMRI Temporal dissimilarity using an RV-coefficient 7 7 86 86 86 86 86 6 1 6 1
Calhoun et al. (2007) Temporal lobe and default hemodynannic brain modes discriminate between schizophrenia and bipolar disorder. fMRI ICA, Euclidian distance 26 SZ 21
BP 14
91 90 95 ? ? ? ? ? ?
Demirci et al. (2007) A Projection Pursuit Algorithm to Classify Individuals Using fMRI Data: Application to Schizophrenia. fMRI ICA and Projection Pursuit 36 34 80-90 91-97 89 89 91 31 3 32 4
Pokrajac etal. (2005) Applying spatial distribution analysis techniques to classification of 3D medical images. fMRI Mahalanobis distance, Kullback-Leibler (KL) divergence and maximum likelihood 9 9 68-80 77-79 57-83 70 75 7 2 6 3
Kortos et al. (2004) Detecting discriminative functional MRI activation patterns using space filling curves. fMRI Hilbert space filling curves, neural networks 9 9 82-100 79-100 74-100 100 100 9 0 9 0
Wang et al. (2004) Application of time series techniques to data mining and analysis of spatial patterns in 3D images. fMRI Time series domain techniques (Euclidian distance, Singular Value Decomposition) 9 9 80-100 ? ? ? ? ? ? ? ?
Georgopoulos et al. (2007) Synchronous neural interactions assessed by magnetoencephalography: a functional biomarker for brain disorders. MEG Autoregressive integrative moving average (ARIMA) model 89 SZ 19
AD 9
CA 3
SS 1D
MS 12
77 ? ? ? ? ? ? ? ?
Pardo etal. (2006) Classification of adolescent psychotic disorders using linear discriminant analysis. sMRI Linear Discriminant Analysis (LDA) 8 SZ 10
BP 10
96.4 ? ? ? ? ? ? ? ?
Fan et al. (2007) Multivariate examination of brain abnormality using both structural and functional MRI. fMRI-sMRI Pearson correlation coefficient, statistical regiona features {histograms) and PCA 24 25 88-92 ? ? ? ? ? ? ? ?

The missing data in some cells are approximated using the data in others when possible.

fMRI: functional MRI, sMRI: structural MRI, vMRI: volumetric MRI, MEG: Magnetoencephalography