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† Background and Aims A study is made by computation of the interplay between the pattern formation of growth
catalysts on a plant surface and the expansion of the surface to generate organismal shape. Consideration is made of
the localization of morphogenetically active regions, and the occurrence within them of symmetry-breaking pro-
cesses such as branching from an initially dome-shaped tip or meristem. Representation of a changing and
growing three-dimensional shape is necessary, as two-dimensional work cannot distinguish, for example, formation
of an annulus from dichotomous branching.
† Methods For the formation of patterns of chemical concentrations, the Brusselator reaction-diffusion model is
used, applied on a hemispherical shell and generating patterns that initiate as surface spherical harmonics. The
initial shape is hemispherical, represented as a mesh of triangles. These are combined into finite elements, each
made up of all the triangles surrounding each node. Chemical pattern is converted into shape change by moving
nodes outwards according to the concentration of growth catalyst at each, to relieve misfits caused by area increase
of the finite element. New triangles are added to restore the refinement of the mesh in rapidly growing regions.
† Key Results The postulated mechanism successfully generates: tip growth (or stalk extension by an apical meri-
stem) to ten times original hemisphere height; tip flattening and resumption of apical advance; and dichotomous
branching and higher-order branching to make whorled structures. Control of the branching plane in successive
dichotomous branchings is tackled with partial success and clarification of the issues.
† Conclusions The representation of a growing plant surface in computations by an expanding mesh that has no arte-
facts constraining changes of shape and symmetry has been achieved. It is shown that one type of pattern-forming
mechanism, Turing-type reaction-diffusion, acting within a surface to pattern a growth catalyst, can generate some of
the most important types of morphogenesis in plant development.

Key words: Morphogenesis, pattern formation, surface expansion, symmetry breaking, finite element modelling, reaction-
diffusion, tip growth, dichotomous branching, whorl formation, surface spherical harmonics, Micrasterias.

INTRODUCTION

The issue of how plants and other organisms with cell walls
achieve their shapes is a very complex problem, which will
ultimately require a synthesis from many disciplines,
including molecular and cell biology, biophysics and physi-
cal chemistry. The present study investigates the interplay
between the pattern formation of growth catalysts on plant
surfaces and the expansion of those surfaces to generate
organismal shape. Although an enormous amount of infor-
mation has been gained in recent years on the molecules
involved in patterned growth, especially in higher plant
model systems (e.g. Cosgrove, 2005; Ingram and Waites,
2006; Anastasiou and Lenhard, 2007; Beveridge et al.,
2007), the broader issues of how these molecules are loca-
lized, what maintains localization upon growth and how
growth symmetries are broken remain far less explored.
While some simpler types of morphogenesis, such as
extending tip growth, may arise from a particular asymme-
try in growth that is perpetuated, many morphogenetic
sequences involve repeated symmetry-breaking, for
example repeated branching tip growth from a tip or

shoot apex. Selection of different patterns over the course
of development requires that not only must the chemistry
direct growth, but also that the chemistry must respond to
growth (and geometry) such that appropriate pattern is
generated or maintained.

The focus herein is on the chemical dynamics and con-
straints required for this feedback, to find principles of kin-
etics and transport underlying morphogenesis. Recently,
there has been a great deal of work in modelling reactions
and transport in the apical meristems of higher plants
(Jönsson et al., 2006; Prusinkiewicz and Rolland-Lagan,
2006; de Reuille et al., 2006; Smith et al., 2006; Heisler
and Jönsson, 2007), giving new insight into how these pro-
cesses create pattern in these systems. To focus on the
growth-patterning feedback, however, we find it helpful to
apply physicochemical modelling to morphogenesis in
simpler systems, such as unicellular green algae. Many
genera create body architectures as complex as higher
plants, but in a single cell with a continuous surface. In
these cases, pattern formation is not cell-specific gene
expression, but rather spatial concentration patterns in the
same plasma membrane. Removing the complexities of
multicellular tissues makes these ideal for studying the* For correspondence. E-mail David_Holloway@bcit.ca
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chemical dynamics or biophysics of morphogenesis. Across
higher plants and algae, there may be different mechanisms
of surface expansion, including localized wall loosening by
expansins (e.g. Cosgrove, 1996; Fleming et al., 1997) or
localized delivery of wall material (intussusception; see
Bonner, 1934). However, the overall constraints on
growth rates and patterning boundaries to generate coherent
form are greatly shared in all organisms, unicellular or mul-
ticellular, in which the parts of the growing surface do not
change their relative positions after formation, i.e. in which
there is no phenomenon such as cell migration as seen in
animals.

This paper presents the results of a computational inves-
tigation of a surface chemical pattern-forming mechanism
that drives surface expansion and is capable of breaking
symmetry, for the transition between types of shapes. The
model consists of fairly generic reactions, such as acti-
vation and inhibition, and transport, which could be
applied to most regulatory networks. This allows us to
couple a minimal pattern-forming mechanism with
growth, and to explore the limits of the chemical contri-
bution to shape formation. Plant shape ultimately relies
also on the mechanical properties of cells (e.g. Pelce and
Sun, 1993; Kam and Levine, 1997; Green, 1999; Dumais
et al., 2006; Dumais, 2007); this study does not directly
account for the mechanical response to surface expansion,
but rather focuses on the primary process of chemical cat-
alysis of expansion of area, leading to shape change that
reduces mechanical stress to zero by moving enlarged
elements of area outwards until there is just sufficient
space to accommodate them. This work complements the
molecular biology approach, by providing a framework
for how form and chemistry must interact to give observed
morphogenetic sequences.

Plants develop by growth and pattern formation in separ-
ate, localized small regions (e.g. meristems) that remain
roughly constant in size as the plant grows. The study
describes the dynamics necessary for a chemical patterning
mechanism both to maintain pattern in a growing system
and to give the transitions between patterns necessary for
complex morphogenesis. The key is for there to be a mech-
anism in the chemistry that sets up regions of fast and slow
growth. The resulting differences in growth rates create dis-
tinct domains of active growth, and translate chemical
pattern into distinct shape.

The present project builds on more than 20 years of
work. We first explored the coupling of chemical patterning
to domain growth in Harrison and Kolář (1988), in which a
Brusselator chemical pattern-forming mechanism
(Prigogine and Lefever, 1968) catalysed growth of line seg-
ments of a closed loop, leading to shape change in a two-
dimensional (2-D) plane, i.e. tangential surface increase is
accommodated by normal displacement. As mentioned
above, this does not take into account mechanical anisotro-
pies or shearing, but directly models the simplest shapes
accommodating localized surface expansion due to chemi-
cal pattern. We contrast this with accretive (crystalline)
models of cellular growth (Denet, 1996). This project was
the first work in which chemical patterning and growth
were fully linked in a feedback cycle. Earlier work had

studied the effect of domain growth at an arbitrary
uniform rate on patterning, but without the patterning
having any effect on growth (Harrison et al., 1981;
Meinhardt et al., 1998). More recently, there have been
experimental (Miyakawa et al., 2000) and theoretical
(Crampin et al., 2002; Salazar-Ciudad and Jernvall, 2004;
Boissonade, 2005; Neville et al., 2006; Yashin and
Balazs, 2006) studies involving full feedback between pat-
terning and growth. Key to all these studies is that reaction-
diffusion mechanisms such as the Brusselator have a pattern
wavelength that depends on rate constants and diffusivities
(Turing, 1952). As a domain grows, therefore, more of the
concentration peaks can be observed, unless some feedback
suppresses new peaks.

There are two types of very large unicellular algae that
together display pattern changes relevant to some of the
most important features of multicellular plant development.
First, the Dasycladales, an order of marine algae that have
been described as ‘the most improbable unicellular organi-
sms that exist’ (see Berger and Kaever, 1992, for this quo-
tation and a comprehensive description of the order).
Particularly, for our topic of pattern formation, they form
whorled structures at a growing tip, demanding three
dimensions in computational work on patterning mechani-
sms (see Harrison et al., 1981, for a primitive start).
Second, among the common and widespread freshwater
placoderm desmid algae, the genus Micrasterias is unique
in displaying sequences of successive dichotomous branch-
ings of growing tips.

Species within the genus Micrasterias provide a wealth
of diverse forms to challenge any morphogenetic model
(Fig. 1). In particular, we have been drawn to this genus
(following Lacalli, 1973) because they display repeated
symmetry-breaking, changing from tip growth to dichoto-
mous branching, and morphogenesis largely occurs in the
plane, allowing 2-D work as a starting place for modelling.
One of the first discoveries of the Harrison and Kolář
(1988) work was that a mechanism that can give branching
chemical pattern does not manifest this into shape change,
unless there is some means of segregating the branches
from one another (as plants most commonly do). They
developed a wall-ageing mechanism, in which slow-
growing regions incorporated less and less wall material,
and eventually shut off patterning. This allowed the
model to account for extended tip growth and repeated
branching.

This mechanism, however, was not capable of generating
the acute branching angle seen in most species of
Micrasterias, and necessary for tackling any more wide-
ranging explanation of branching in plants. This ended up
requiring a faster shut-off of slow-growing regions, by
introducing a feedback of the growth catalyst on its own
production (Holloway and Harrison, 1999). With this
feature, we were successful in modelling a wide variety of
the diverse shapes found in Micrasterias. The key feature
distinguishing species in our model was the threshold of
growth catalyst necessary to cause growth. Variation of
this threshold during development accounted for variation
in branching number and branching angle, the chief dis-
tinguishing features between species.
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FI G. 1. Morphogenesis in Micrasterias. (A–D) Developmental sequence in M. thomasiana. Mitosis gives two daughter cells, each with a mature semi-
cell and a newly forming semicell (daughters are in physical, but not developmental, contact). Over the course of about 4 h, the new semicells undergo
repeated dichotomous branching, to create the mature morphology. (E–H) Some of the diversity between different species in the genus. Note the distinct
shapes of the central, polar lobes, and the lateral, wing lobes. In particular, the second branch of the polar lobe is out-of-plane with the rest of the cell
body; maintenance of the branching plane is far more controlled in the wing lobes, with out-of-plane branching generally occurring after many (4–5)

branching events. E–H from Couté and Tell (1981) with permission.
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A number of questions arose in our 2-D work, prompting us
to move to three-dimensional (3-D) modelling. These include:

(1) What constrains the clefts between growing tips? In two
dimensions, it was necessary to arbitrarily fix the posi-
tion of the surface on which patterning had ceased.

(2) What makes Micrasterias planar? Why are the repeated
dichotomous branchings all in the same plane, when
the algae are free floating in their environment?

(3) What defines the growth catalyst threshold? Our earlier
work identified this as an important parameter for con-
trolling shape; can we go further in understanding the
chemical dynamics necessary to define and regulate
this threshold?

(4) The patterns, or symmetries, that can be realized in two
dimensions are fairly constrained. In three dimensions,
the options are much greater. For example, a simple
dichotomous branch in a 2-D plane could be the same
in three dimensions, or an annular flattened tip, or a
whorl of structures, such as in a flower. What selects
among these options, for particular developmental
events?

To begin addressing these issues, we developed a 3-D
version of our model (Harrison et al., 2001), with a
surface specified by finite elements (rather than line seg-
ments). In this preliminary work, geometry alone – slow
surface growth in the cleft at right angles to the fast
growth of the tips – was found to be able to maintain
cleft position ((1), above). However, repeated dichotomous
branching in three dimensions gave alternating branching
planes, unlike much of Micrasterias development. In this
work, and that of Nagata et al. (2003), we also began to
explore the selection of annular vs. dichotomous branching
patterns ((4), above).

The present paper reports our subsequent progress. We
have determined that geometric asymmetry is not sufficient
for maintaining the Micrasterias branching plane, as earlier
hypothesized (Harrison et al., 2001). Rather, a persistent
chemical asymmetry in growth catalyst precursors is
likely to be required. The possible patterns of these precur-
sors on the surface shapes of developing Micrasterias may
be responsible for the very different morphologies of the
central, polar lobe and the lateral, wing lobes of the
mature cell. The requirements for generating, maintaining
and switching between the fundamental shapes of tip
growth, tip flattening, tip re-initiation, dichotomous branch-
ing and whorls of 3–6 structures are also demonstrated.
Finally, preliminary results are presented on controlling
the boundaries between fast- and slow-growing regions
through additional chemical dynamics, rather than through
the threshold value of the growth catalyst.

In relation particularly to the dasyclads, but with rel-
evance to any work on patterning in algae, Dumais and
Harrison (2000) addressed the following question: ‘When
a definitive identification of the pattern-forming event is
reached, will it throw light on development of anything
other than the dasyclads?. . . Some authors (e.g. Church,
1919; Chadefaud, 1952; Emberger, 1968) not only argued
for a natural continuity between algae and higher plants

[also see Lewis and McCourt, 2004], but also emphasized
that algae account for all the major structural innovations
in the plant kingdom. . . Mandoli (1998) and Nishimura
and Mandoli (1992) have identified juvenile and adult
developmental phases in Acetabularia closely correspond-
ing to such phases in higher plants. Hagemann (1992)
and Kaplan (1992) have also discussed general implications
of similar development with and without multicellularity.’
For instance, our concentration on Micrasterias as an
example of co-planar repeated dichotomous branching
somewhat disguises a more general applicability of such
work, to the telome theory of evolution in vascular plants
(Zimmermann, 1952). Repeated dichotomous branching is
central to this theory, and ‘planation’, i.e. co-planar
arrangement of the successive branchings, is the second
of Zimmermann’s postulated transformations (for a most
recent review, see Beerling and Fleming, 2007). Although
this theory remains speculative, the theoretical study of suc-
cessive dichotomous branching ensures that we are setting
up a model in which, after a branching process, the new
apices can retain the ability to branch repeatedly, as
needed for planation or Micrasterias, or revert to domi-
nance of the original apex, as is more common in higher
plants. The results suggest the conditions underlying these
differences.

MODELS AND METHODS

Chemical pattern-forming mechanism

For our minimal model giving spatial pattern formation, we
use the Brusselator mechanism, originally developed by
Prigogine and Lefever (1968):

A�!a X ð1aÞ

Bþ X�!b Y þ D ð1bÞ

Y þ 2X�!c 3X ð1cÞ

X�!d E ð1dÞ

With diffusion of the X and Y intermediates, and appropri-
ate rate constants a–d, this mechanism generates stable
spatial patterns in the X and Y concentrations. For most of
our modelling relevant to plant rather than animal develop-
ment, we choose the Brusselator rather than other reaction-
diffusion mechanisms (e.g. the Gierer–Meinhardt model)
because the Brusselator dynamics are particularly good
for generating patterns of multiple, equally spaced repeated
parts (Lacalli, 1981; Harrison, 1993). The interactions of
eqns (1b) and (1c), autocatalysis of X and de facto inhi-
bition of X by Y (by depletion), are at the heart of the
pattern formation, and represent commonly occurring
motifs in biochemical networks. In many of our compu-
tations, a prepattern, or gradient, is introduced into the pre-
cursor A. This represents the result of an earlier stage of
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development, such as an initial polarization defining which
side of a system is going to have the meristem or growing
tip advancing out of it. We couple this mechanism to
growth, by making the surface expand in proportion to
the X concentration. A model for patterning regions that
remain small and separate from regions of slower unpat-
terned growth requires an additional feature to account for
the boundary between these regions. Here (as previously
in Holloway and Harrison, 1999) this boundary is defined
by a threshold X concentration, Xth, above which the
pattern-forming reactions, eqns (1a)–(1d), operate, and
below which only the decay of X, eqn (1d), does. From
eqns (1a)–(1d), with Fick’s law for diffusion in the
surface, the following partial differential equations
(PDEs) describe the time evolution of the X and Y concen-
trations:

@X=@Y ¼ aA� bBX þ cX2Y � dX þ DXr2X ð2aÞ

@Y=@t ¼ bBX � cX2Y þ DYr2Y ð2bÞ

where the D’s are the diffusivities of X and Y, and r2 is the
Laplacian operator (in Cartesian coordinates, sum of 2nd
spatial derivatives). In the unicellular examples, the diffu-
sivities concerned are likely to be attached to the plasma
membrane for molecular species, or in a cortical layer of
cytoplasm. For multicellular plants, they could represent
intercellular movement via plasmodesmata in the tunica
layer (Holloway and Lantin, 2002). A wavelength, or
spacing, for the X and Y patterns can be found (Turing,
1952), which depends on the rate constants a–d, input con-
centrations A and B, and diffusivities DX and DY. At first
emergence of pattern from uniformity, the incipient patterns
of X and Y concentrations mimic the harmonic patterns of
displacement in mechanical vibrations of thin shells.
These are:

(1) in one dimension (1-D), the sine wave vibrational
patterns of, for example, a violin string;

(2) in two dimensions, upon a flat circular disc, vibrational
patterns of a drumskin, made up of angular sine waves
and radial ripples, which mathematically are called
Bessel functions (Lacalli, 1981; Harrison and von
Aderkas, 2004; see Fig. 6 below);

(3) in three dimensions, upon a hemispherical shell, the
vibrations of a hollow hemispherical bell (spherical
harmonics, Yl

m). Most scientists have met these patterns
as angular parts of the hydrogen atom wave functions,
with designations such as s, p, d, f corresponding to
l ¼ 0, 1, 2, 3. Table 1 lists the first few spherical
surface harmonics relevant to plant patterns.

In all dimensionalities, any one pattern fits only a certain
range of system sizes, and more complex patterns become
optimal for larger size ranges. On the hemisphere, the
change in pattern complexity with increasing l as listed in
Table 1 comprises changes in shape more complex than
the simple changes from half a wave to one wave to 11

2
waves, etc., in 1-D systems. In place of the optimal

wavelength l, surface harmonics have an optimal hemi-
sphere radius r related to l by

lðlþ 1Þ=r2 ¼ 4p2=l2 ð3Þ

where l is calculated from the reaction and diffusion para-
meters (Harrison, 1993; l increases with increasing diffu-
sivities and decreasing reaction rate constants). This
implies that the same size of hemisphere is optimal for
both dichotomous branching and annular patterns, so that
both should start to grow equally together. Figure 2
shows that equal development of both patterns gives in
fact a good dichotomous branching pattern.
l, or optimal r, depends on parameter values, particularly

rate constants and diffusivities. Parameters common to all
computations were a ¼ 0.01, bB ¼ 1.5, c ¼ 1.8, d ¼ 0.07,
as in earlier work (Harrison and Kolář, 1988; Holloway
and Harrison, 1999; Harrison et al., 2001). Parameters for
specific results are given in Tables 2–5. The ratio DY/DX

was kept at 20, but the absolute values of the D’s were
varied to change the wavelength (harmonics) in particular
computations. This does not have a mechanistic implication
in regard to rates of diffusion. An alternative, and equival-
ent, procedure would be to keep the D’s constant and vary
the values of the chemical rate parameters. Parameter
values were chosen to give the correct patterning behaviour
according to the parameter space for Turing models devised
by Lacalli (Lacalli and Harrison, 1979; Harrison, 1993).
They can represent a fairly wide range of values in actual
spatial and temporal units in various examples. As the sim-
plest correlation, consider the rate constant d, which is the
exponential decay constant of the substance X by itself.
Its reciprocal is the ‘lifetime’ (i.e. time to decay to 1/e of
initial X concentration). For d ¼ 0.07, 1/d ¼ 14. For a
protein, 14 min would be a reasonable decay time, and if
this was its value then our d would be directly in min– 1.
However, within the wide range of biological diffusivities
and pattern formation times, much faster or slower decay
times could give the observed morphogenetic sequences.
For the diffusion calculations, boundary conditions were
no-flux, except for that in Fig. 7A, which was Dirichlet
(fixed value).

TABLE 1. Harmonic wave patterns on a hemispherical shell

l l(l þ 1) Analogous
atomic orbital

Spherical surface
harmonic, Y l

m
Plant tip pattern

1 2 pz Y1
0 or z Dome-shaped

tip
2 6 dxz,yz Y 2

+1 or xz,yz * Monocot
embryo

3 12 fz3 Y3
0 or z3

Annulus
(cup-shaped)

“ “ fxyz,z(x22y2) Y3
+2 or xyz,z(x22y2) Dichotomous

branches

* ‘+’ indicates a sum of the modes.
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Finite element solution of rate equations

All computations start on a hemispherical or hemi-
ellipsoidal shape, represented as a mesh of triangles
(Fig. 3). In the initial mesh, all vertices (nodes) have a
coordination number of 6 (i.e. are connected to six other
nodes), except for the equatorial nodes, which have coordi-
nation number 3 or 4. The computations presented here
were initialized with 1141 nodes. Numerical values of the
concentrations in eqns (2a) and (2b) are defined at the
nodes. The rates of change due to the reaction terms in
eqns (2a) and (2b) were averaged over the three nodes of
any triangle and multiplied by the area of the triangle.

The diffusion terms in eqns (2a) and (2b) were approxi-
mated assuming a constant concentration gradient down
the triangle from outside edge to central node, again
taking into account triangle area. Both reaction and diffu-
sion were summed over a finite element defined by all the
triangles surrounding any given node. The eqn (2a) and
(2b) PDEs were thus converted into a system of ordinary
differential equations that were solved by a Runge–Kutta
method, following the method of Ascher et al. (1997).

Converting chemical pattern into shape change

Chemical pattern on the surface is converted into shape
by moving nodes according to the concentration of X at
each (ith) node. Area in each finite element increases by
cgXiDt, with growth constant cg and time step Dt. The
central node of the element is moved normal to the
surface (outwardly, because of internal turgor pressure),
until the prescribed area increase is met. The normal direc-
tion is found by averaging the normals of all the triangles in
an element. The magnitude of nodal movement is found by
approximating area increase as a quadratic function of
nodal movement, making three test movements to deter-
mine the quadratic coefficients, and finally solving the dis-
tance for the specified area increase. An upper limit is set
on this distance, to control movement instabilities. For
growth-patterning stability, this area increase occurs once
for every ten solution steps of the reaction-diffusion
equations. To simulate as closely as possible the result of
simultaneous growth of the whole surface, nodes are
visited in random order to compute their movement. As
growth occurs, and the surface changes shape, our surface
representation by finite elements is superior, for solving
the reaction-diffusion equations, to finite difference
schemes, which depend on internode distances.

This method works well for shape change on convex
regions of the surface, but can be less accurate in concavi-
ties. It is likely that bending stresses, surface shrinkage and
sideways (tangential) surface displacement need to be con-
sidered in fully concave regions (both principal curvatures
negative). For the 3-D work reported here, the algorithm
copes with saddle points and adjacent regions where one
of the principal curvatures is negative (concave) and the
other positive (convex), giving a positive sum that allows
growth stress to be relieved by outward movement. In our

TABLE 3. Parameters for Fig. 5

Figure 5A, B 5C, D

DX 0.0185 0.0007
Cg 0.0125 0.001
Xth (changing at time) 0.035 0 (1000), 0.15 (1100), 0.075
Initial radius 1 0.25
Dt 0.1 0.05
A gradient: max.–min. Y 1

0 : 6–1 – (Y3
0 þ Y3

2) : 13.9–1.2
(shown in Fig. 7B)

Shown at time 250, 1000 1100, 2500

FI G. 2. The surface spherical harmonics Y3
2 (A), Y3

0 (B) and their sum (C), corresponding to tip flattening (B) and dichotomous branching (A, C).
Concentration is shown as a colour-map, with white/yellow high and green/blue low.

TABLE 2. Parameters for Fig. 4*

Figure 4A 4C 4E

DX 0.025 0.012 0.008
A gradient: max.–min. Y 1

0 : 6–1 Y 1
0 : 16–1 as in 4C

Shown at time 3650 100 as in 4C

* Cg ¼ 0.0125; Xth ¼ 0.035; initial radius ¼ 1; Dt ¼ 0.1.

TABLE 4. Parameters for Fig. 6*

Figure 6A 6B

DX 0.012 0.005
A gradient: max.–min. Y 1

0 : 6–1 as in 6A
Shown at time 2500 as in 6A

* Cg ¼ 0.0125; Xth ¼ 0.035; initial radius ¼ 1; Dt ¼ 0.1.

Holloway and Harrison — Pattern Selection in Plants366



earlier 2-D work (Holloway and Harrison, 1999), the single
negative curvature in a cleft could be accommodated only
by arresting all growth and movement at such points.

Mesh refinement for a growing surface

In order to maintain an accurate representation of the
shape, and to accurately solve the model (eqns 2a and
2b), new mesh must be incorporated in regions of high
growth. Our choice of a triangular mesh allows us to
insert new triangles into old ones (following Kaandorp,
1994). Once an original triangle has grown such that one
of its sides is twice its original length, a new triangle is
inserted, with vertices on the midpoints of the old triangle
(Fig. 3, old triangles in heavy lines, new edges in light
lines). This procedure maintains the original coordination
number 6, except on boundaries between fast- and slow-

growing regions. In order to maintain diffusion across
these boundaries and to keep the coordination number
close to 6 (for mesh stability), we define one-way junctions
(B! C in Fig. 3), such that the new node B has the old
node C as a neighbour, but not vice versa. [For another
approach to this ‘non-conforming mesh’ problem, see
Rivara and Inostroza (1995).] The resulting growing and
proliferating mesh gives stable growth for up ten times
expansion of the original surface area.

Software and computing facilities

The complete software package for combining reaction-
diffusion and growth computations consists of 15 linked
C programs (each calculating, for example, growth, refine-
ment, triangulation, surface initialization and reaction-
diffusion), about 20 000 lines in total. Computations have
been run on IBM (AIX), HP (UX) and Linux workstations,
and on the Linux cluster at the UBC Institute of Applied
Math. Output is visualized with C/Cþþ programs, which
call OpenGL graphics libraries. We have developed a
Windows version of this software, which is available for
general use (http://commons.bcit.ca/math/faculty/david_
holloway.html).

RESULTS

With the model, it has been possible to simulate a number
of the morphogenetic sequences observed in development.
Starting from the conditions needed to maintain tip exten-
sion, we proceed to single symmetry-breaking events, and
the control of multiple symmetry breaking for more
complex examples of body architecture. This work involved
much ‘computer experimentation’, in which parameter
values were chosen to achieve the desired patterns. In par-
ticular, the wavelengths of patterns were selected by the
value of Dx, and complex repeated branching events
required changes in the value of Xth, occasionally several
times in the course of a computation (Table 5, see
Fig. 7F). This is in the spirit of our earlier 2-D work on
Micrasterias (Holloway and Harrison, 1999) and may
point towards changing surface patterns being influenced
by timing events within the cell. These should be exper-
imentally discoverable.

TABLE 5. Parameters for Fig. 7*

Figure 7A 7B, C 7D 7E 7F 7G

DX 0.0018 0.0035 as in 7B 0.0007† as in 7E‡ 0.0005
Cg 0.001 as in 7A as in 7A as in 7A as in 7A 0.01
Xth (changing at time) N/A 0.08 0.08 (1000),

0.04
0.0 (1000), 0.15
(1050), 0.05
(1400), 0.15

0.0 (650), 0.15 (700),
0.05 (1050), 0.15 (1200),
0.05 (1250), 0.12

N/A

A gradient :
max.–min.

uniform : 12 –(Y3
0 þ Y3

2) : 13.9–1.2 as in 7B as in 7B as in 7B (Y3
0 þ Y3

2) :
41.1–7.2

Shown at time 1150 0, 1500 2050 2500 2050 4000

* Dt ¼ 0.05, initial radius ¼ 0.25.
† Wavelength decreased continuously, with a halving time of 500 time units, between t ¼ 1000 and t ¼ 1500.
‡ Wavelength decrease as above, but between t ¼ 500 and t ¼ 1750.

FI G. 3. Computational representation of the surface, by finite elements.
The initial shape (hemispherical or hemi-ellipsoidal) is represented by a
triangular mesh. Reaction and diffusion are computed in elements
defined by all the triangles surrounding each vertex, or node. Growth
occurs by movement of nodes normal to the surface, according to the con-
centration of the growth catalyst (X ) on the node. When any original tri-
angle (heavy lines) has grown such that a side is twice its original
length, a new triangle (light lines) is inserted inside it, in order to maintain
accuracy. On boundaries between regions with new triangles (fast growth)
and old triangles (slow growth), one-way connections (dashed lines

B! C) are made, so that a node never has more than six neighbours.
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Tip growth, and circularly symmetric transitions

Tip growth is one of the fundamental modes of morpho-
genesis in plants. Once an initial direction has been
selected, tips require a specific pattern of growth rates to
extend. For a hemisphere to be the steady-state shape of
an advancing growing tip, Green and King (1966) showed
mathematically that morphological growth rate must vary

as the cosine of the co-latitude. (This function is the Y 1
0

spherical harmonic, Table 1.) For a chemical patterning
mechanism capable of breaking symmetry, such as ours,
there must be a mechanism to limit the extent of the
region of patterned growth rates, despite surface being
extended behind the growing tip. That is, the ‘stalk’ must
become inactive to chemical patterning. In our model,

FI G. 4. Tip growth. (A) Extended tip growth, over ten times the starting height. Concentration of the X growth catalyst is shown by a colour-map, with
white/yellow high and green low. (B) Detail looking down on a tip, after extensive growth. The computational mesh is shown in white. The wanderings in
tip direction do not depend on the coarseness of the mesh or the random order of node movement, but arise because there are no external tropisms in the
model. (C) Changing the fit of the pattern to the tip size, by increasing reaction rates in this case, induces a transition to an annular pattern, giving tip
flattening. (D) Flattening is a fundamental process in many developmental sequences, for instance in embryonic development, and preceding hair whorl
formation in the Dasyclad algae Acetabularia (shown). Calcium chlorotetracycline fluorescence, yellow against a background of red chlorophyll autofluor-
escence, from a growing tip at the onset of vegetative whorl formation. Photograph taken by B. Lakowski. (E) Continued growth can lead to a new central
pattern maximum, required for re-initiation of extending tip growth in Acetabularia (F) (from Berger and Kaever, 1992, with permission). Such a

sequence of patterns, but in a uniformly growing system, was first demonstrated by G. Zeiss, in Harrison et al. (1981); also (F).
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FI G. 5. Simple dichotomous branching. (A) Starting from tip growth, shorter wavelength breaks symmetry to give a dichotomous branch. (B) The new
growing regions undergo independent tip extension. The 3-D geometry of the cleft, with slow growth at right-angles to the branching plane, is sufficient to
maintain the branching morphology. (C) With the catalyst threshold mechanism introduced in Holloway and Harrison (1999), patterning ceased below a
threshold value, leaving only decay of the catalyst. This created a ‘drain’ for catalyst in slow-growing regions, which contributed to acute branching angles
in two dimensions. In three-dimensions, however, the effect on branching angle is much more pronounced, such that initial broad branching angles (C,
about 808) can be turned nearly parallel (D, about 208). Modelling acute branching is challenging in two dimensions, but the 3-D results suggest geometry

may be helping plants consistently form acute branches.

FI G. 6. Higher-number branching, whorls. Again starting from tip growth, shorter pattern wavelength breaks symmetry into higher-number branching
events, of three (A) to six (B) structures. The six lobes in B are not the steady-state chemical pattern for the initial hemisphere, but have been stabilized by
surface growth. Such simultaneous whorl-forming events are common in plant development, such as flowers and conifer cotyledon formation (C, Larix
leptoeuropaea, from Harrison and von Aderkas, 2004). Very high-number whorls, such as in Acetabularia (up to 35 structures), can form simultaneously,

but may require prior formation of an annular pattern (Harrison et al., 1981, 1988; Harrison, 1992).
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FI G. 7. Successive co-planar dichotomous branching, key to understanding Micrasterias morphogenesis (and planation in the telome theory). (A)
A pattern-forming mechanism with at least one wavelength between structures will tend to make new structures, once growth has made room for
them, at right-angles, or as far away as possible, from the original structures (hemisphere initial shape). In most Micrasterias species, this only occurs
in the polar lobe (Fig. 1). A persistent gradient in one of the precursors (reactant A) of the growth catalyst is effective at maintaining a branching
plane, even starting from an initially hemispherical shape. (B) The simplest hemispherical pattern for defining a plane (equal mix of the spherical har-
monics Y 3

0 and Y 3
2, top view). (C) This prepattern can constrain primary branching to the plane (side view). (D) Secondary branching tends to be

out-of-plane on the pole, but in-plane in the wings. The circular symmetry at the pole in the prepattern (B) does not constrain secondary branching direc-
tion, while the low concentration at low latitudes on the hemisphere gives the upthrust of the wings [away from the equator; see also (C) and Fig. 1A, B].
These distinctive features of Micrasterias morphology may result from the pattern of a precursor to growth. (E) For wing lobes, the prepattern is quite
successful at constraining secondary branches to the same plane as the first branching. (F) With tertiary branching, lobes begin to drift from the plane. In
Micrasterias, out-of-plane branches in the wings are generally observed at the terminal fourth or fifth branching (Fig. 1G). (G) Preliminary result on con-
trolling growth without the catalyst threshold. Here, growth is proportional to the Y species in eqns (2A) and (2B), and patterning dynamics automatically
cease at high precursor (A) levels. That is, switching off is not imposed in the computer code, it is a feature of the chemistry. Work is ongoing to under-

stand the additional kinetics necessary to control complex 3-D growth (as in Figs 4–7F) with this purely chemical switching.
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this is achieved through the Xth value; for the correct range
of Xth, patterning is cut off at the ‘equator’ of the active pat-
terning region, such that this boundary moves with the
growing tip, and maintains the cosine growth rate for
steady-state tip extension. Figure 4A shows a computation
in which tip extension has proceeded for over a ten-fold
increase in height (computational parameters for Fig. 4
are given in Table 2). The tip direction changes slightly
over such long computations. This is observed for a range
of mesh coarsenesses (271–2611 initial nodes) and differ-
ent random orders of node movement. As there are no exter-
nal tropisms in the model, this tip wandering is not
unexpected, and is seen, for example, with many runners
and vines. Figure 4B looks down on a tip after extensive
growth, showing the irregularity of the mesh after many
new triangles have been added (compare with the regular
mesh on the original hemisphere below the tip). The local
irregularity does not appear to affect overall shape; this is
robust over a wide variety of mesh coarsenesses and
random order of node movements.

In many cases of morphogenesis, tips flatten prior to a
breaking of symmetry (e.g. Figs 4D; see also Fig. 6C
below). This transition can be described as a change in
the fit of pattern to the tip size, i.e. as a transition from
the Y 1

0 spherical harmonic to the annular Y 3
0 spherical har-

monic. Change in fit can occur either by increasing the tip
size, which corresponds to lowering Xth in the model to
retard boundary advance, or by decreasing the pattern
wavelength, by decreasing diffusivity or increasing reaction
rates. Figure 4C shows a flattened tip resulting from the
latter approach. In a case such as Acetabularia morphogen-
esis (Fig. 4D), tip flattening (which precedes the initiation
of a whorl of hairs) must be followed by re-initiation of
tip growth, in order for main stalk development to
proceed (Fig. 4F). This again results from surface expansion
or wavelength decrease to fit a higher harmonic on to
the tip. Figure 4E shows this, having lower diffusivity
than Fig. 4C. This response, for a uniformly growing
surface, was demonstrated by G. Zeiss (Fig. 4F; Harrison
et al., 1981).

Dichotomous branching

On hemispherical tips, the first possible pattern that
breaks circular symmetry is the Y2

1 harmonic, which corre-
sponds to off-centre tip growth, as in the embryogenesis of
monocots. The long-term architecture, however, is not
greatly different from centred tip growth. Dichotomous
branching has a greater effect on architecture, and not
only underlies the embryogenesis of dicots and much
plant development, but is the central event in Micrasterias
development. In terms of hemispherical patterns, branched
growth corresponds to a mix of the annular Y3

0 and ‘quar-
tered’ Y3

2 patterns (Fig. 2). Transition from tip growth to
dichotomous branching can be achieved, as with tip flatten-
ing, by tip expansion or reduction of wavelength. Figure 5A
has identical conditions to Fig. 4A, except for reduced dif-
fusivity (reduced wavelength). In earlier work, we reported
that 3-D computations allowed us to remove the ad hoc
‘locking’ of node positions needed in two dimensions to

maintain clefts (Harrison et al., 2001). In that work,
however, growth was arbitrarily set to zero in morphogene-
tically ‘dead’ regions. In the present computations, we no
longer do this, but rather allow X-dependent growth over
the whole surface. Geometry, in three dimensions, is still
sufficient to constrain cleft position, and allow lobe
outgrowth.

After branching, the new tips can undergo extensive tip
growth (Fig. 5B). In two dimensions, we found the –dX
decay in morphogenetically ‘dead’ regions to be important
for achieving acute branching angles (Holloway and
Harrison, 1999). In three dimensions, this effect can be
very strong, and indeed reduce angles that initially are
large (Fig. 5C, D). This difference is probably due to the
–dX ‘drain’, which tends to force peaks together, being pro-
portional to surface area in three dimensions, rather than
linear distance. Such a decrease in branching angle is
observed, for example, in development of Acetabularia
whorls (Fig. 4F), in which initially wide angles between
hairs decrease at early stages of hair extension.

Higher-number branching, whorls

A further decrease of wavelength from that which gives
dichotomous branching might be expected to give larger
numbers of branches. Figure 6A shows a branching to
three outgrowing lobes, generated by a decrease in
diffusivities from Fig. 5A values. Upon a hemisphere,
growing or not, but of unchanging shape, it is well known
to theorists (but rarely reported, being a negative con-
clusion) that when the number of branches exceeds three
or four, computations usually give them randomly distribu-
ted over the whole hemisphere, not organized in a whorl.
Hence, we have (Harrison et al., 1981, 1988; Harrison,
1992) hypothesized for large-number whorl formation a
two-stage hierarchical mechanism, with the first mechanism
defining an annular pattern and the second branching it into
multiple lobes. Figure 6B, however, shows a six-lobe whorl
formed by the single-stage mechanism of the present study.
This pattern is, however, dependent on growth rate and
shape change from the initial hemisphere. Slower growth
rate with the same chemical rate parameters and diffusiv-
ities gave a dichotomous pattern. Most probably, formation
of incipient branches has led to tip flattening without the
need for an annulus-forming mechanism, and the six-lobe
whorl is patterning on a shape more like a flat disc than a
hemisphere. Experimentally, Fig. 6C shows the apex of a
somatic embryo of a hybrid larch with six cotyledons
forming (Harrison and von Aderkas, 2004). Analysis of
data for embryos with from one to eight cotyledons in
this species showed that the patterns were a spatially quan-
titative fit to a particular set of 2-D harmonics (drumskin
vibration patterns, radial Bessel functions with angular
sine wave functions). Many plants exhibit whorls of from
three to eight structures (e.g. flowers of monocots and
dicots). We have yet to undertake detailed studies of just
which of many drumskin patterns should be fastest
forming on a disc, and what diverse patterning behaviours
may be possible in a system changing shape at various
rates from a hemisphere towards a disc. For very
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high-number whorls (vegetative whorls of Acetabularia can
have up to 35 hairs), our hypothesis of two-stage hierarch-
ical patterning stands.

The tip growth to branch transition is more complex in
three than in two dimensions. A 2-D branch could represent
the cross-section of three possibilities in three dimensions:
an annulus (Fig. 4C); a dichotomous branch (Fig. 5); or a
higher-branching whorl, such as that in Fig. 6B. The
present computations begin to show how fit of pattern to
tip size controls these possibilities in 3-D development.

Successive dichotomous branching and control
of branching plane

After mitosis, a Micrasterias daughter cell generates the
form of its missing half by successive dichotomous branch-
ings from an initial ‘bubble’ of cell surface (Fig. 1A). To
form this flat structure, not only must successive branchings
be all in the same plane, but that plane must somehow be
specified as the plane of the existing mature semicell. The
question of how this specification works was raised more
than half a century ago by Waris (1950), who speculated
upon ‘cytoplasmic inheritance’; Lacalli (1976) favoured
the concept of a ‘morphogenetic template’ in the cell
surface, somehow related to the slightly non-circular
shape of the isthmus between old and new semicells. The
problem remains unsolved.

A pattern related to Y3 spherical harmonics can specify a
plane of bilateral symmetry either as containing the line
between two concentration maxima (Fig. 2C, white) or by
the blue band perpendicular to this. Our computed patterns
for a first dichotomous branch from a hemispherical starting
shape (Fig. 5) give patterns very similar to that in Fig. 2C. It
is evident that a second branching from the two
white-and-yellow regions will almost always be at right-
angles to the first branching, because these regions are
extended in that direction. Our computations confirm this
decussate pattern for successive branchings (Fig. 7A;
Harrison et al., 2001, Fig. 8e–g). An additional feature to
the simple harmonic wave-generating mechanism is
needed to keep successive branchings in the same plane.
We have studied two possibilities for this specification of
the morphogenetic template: the initial shape of the
growing surface, and pre-patterning of the chemical
inputs A or B in the Brusselator mechanism (eqns 1, 2).
A number of computations starting from hemi-ellipsoidal
instead of hemispherical shape showed that the direction
of a second branching is quite insensitive to shape; it was
still at right-angles to the first branching for axial ratios
up to 6 : 1.

Within the model, we can test the ability of chemical gra-
dients to constrain the branching plane. For general applica-
bility, as envisaged in the telome theory for multicellular
plants, such work is in the spirit of the review of Beerling
and Fleming (2007), who discuss ‘planation’ in relation to
auxin fluxes and PIN gene expression patterns, i.e. they
envisage control of the 3-D geometry of branching by
chemistry. A natural ‘planar’ gradient for the hemisphere
is the negative of the mix of Y3 spherical harmonics
shown in Fig. 2. This pattern is used for the precursor A

(Fig. 7B). With this gradient, we have been able to constrain
successive branches to the same plane, with a hemispherical
initial shape. Figure 7C shows that the primary lobes are
directed upwards, as in Micrasterias, due to the pattern in
the A gradient. Secondary branches are in the original
branching plane in the wing lobes, but out-of-plane in the
polar lobe (Fig. 7D). The different planarities of the wing
and polar lobes stem from the more circularly symmetric
A pattern at the pole, as compared with the wings, a
natural feature of the spherical harmonic. This may underlie
the observed differences in wing and pole branching planes
in most species of Micrasterias. The A gradient is quite suc-
cessful in generating in-plane secondary branches (Fig. 7E,
modelling ‘wing’ lobe). To generate repeated branches, two
features were added to the model: (1) to maintain clefts
while new peaks are generated nearby, an irreversible
‘death’ was imposed, such that once a node fell below
Xth, it could not be rescued by movement of high X into
that region (a region which loses pattern-forming ability
is no longer competent subsequently to activate it); and
(2) decrease of wavelength (through continuous decrease
of DX, DY) to decrease the size of the lobes, a feature of
Micrasterias important for avoiding lobe overlap (Lacalli
and Harrison, 1987, showed that M. rotata wavelength
halves over three branching events; here, with the surface
growth rate used, we halved wavelength over one branching
event). It has been possible to generate up to tertiary
branches in the model (Fig. 7F). For the tertiary branches,
the upper wing lobes branch in advance of the lower
wing lobes, as seen in the development of M. rotata
(Lacalli and Harrison, 1987); this is due to the greater A
concentration closer to the pole (Fig. 7B). The last branches
tend to adhere to the plane of the gradient less than earlier
branches. Similarly, in many species of Micrasterias, the
small, final branches are out-of-plane with the rest of the
wing lobe (Fig. 1G). In the model, this arises as local
growth is catalyzed by fairly circular X peaks and lobe
tips are created which retain little of the original A gradient
asymmetry. In nature, maintaining branching plane for four
or more branchings may depend on active patterning of the
precursor gradient, such that the gradient asymmetry is
maintained on the shape as a whole, rather than being lost
through local isotropic growth. Such a double pattern-
forming mechanism would be akin to the hierarchical
mechanism previously proposed for high-number whorl
formation in Acetabularia (Harrison et al., 1981, 1988;
Harrison, 1992).

In separate work, with R. J. Adams, we have begun to
develop a mechanism (in one dimension), which could
not only be applied to such hierarchical pattern formation,
but replaces the arbitrary assumption of an Xth by a feed-
back model between two Brusselators (‘feedback loop III’
in Harrison et al., 1988, 2001; Harrison, 1992) that explains
the chemical–dynamic origin of the threshold effect. In the
Brusselator, with growth depending on the concentration of
Y, boundaries between fast patterned growth and slow
uniform growth can be dictated by the Turing (1952) con-
ditions inherent in the mechanism dynamics. As a prelimi-
nary step towards seeing how this might work in 3-D shape
change, we have run single-mechanism (eqns 1A–D)
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computations in which growth is proportional to Y
(Fig. 7G). These computations have a precursor A gradient
as in Fig. 2C, but dynamically maintain that pattern with
growth. Such a mechanism could serve as the start of a hier-
archical mechanism for maintaining branching plane
through four or five branchings. Morphologically, such
shapes are seen in non-branching desmids, such as
Cosmarium, which may have only the initial half of the
double mechanism that highly branching Micrasterias
species might require.

DISCUSSION

The work presented in this paper has two main features: (1)
the representation of a growing plant surface in compu-
tations by an expanding mesh that has no artefacts con-
straining changes of shape and symmetry; and (2) the
study of how much in plant development is explicable by
one type of patterning-forming mechanism, Turing-type
reaction-diffusion, acting within the represented surface
and expressing pattern through catalysis of area increase.
These two features are not linked one-to-one. The setting
up of the mesh in a finite-element manner, with means
for displacement of the elements in response to any putative
pattern-forming mechanism, and means for refinement of
the mesh as it grows, is a major project in itself. Many fea-
tures of the responses of the mesh could probably be illus-
trated and studied with developmental mechanisms other
than reaction-diffusion (which we are nevertheless advocat-
ing as having substantial promise to be what is actually
going on in plant development).

The study has focused on the dynamic constraints necess-
ary for pattern selection in plants. Experimental verification
of the results would require not only an identification of pat-
terning molecules, but estimates of concentration alongside
measurements of cell surface expansion, in order to achieve
a quantitative description of morphogenetic sequences,
against which our estimates of relative rates could be
checked and calibrated.

Phenomenologically, we are trying to address the pro-
blems of how a tip or shoot apex contrives to limit its
own size while it contributes to the formation of a much
larger structure, and how two or more new branches each
manage to acquire within their own apices all the develop-
mental apparatus of the former single apex. This may, as
indicated particularly in relation to Fig. 6, require consider-
ation of sequential pattern-forming steps interacting through
feedback loops. We are pursuing this in 1-D work, but it is
beyond the current scope of the 3-D studies described here.
Patterns produced by a single reaction-diffusion mechanism
have proved capable of producing the developmental
phenomena illustrated in Figs 4–7.

What are we implying by concentrating our efforts on
manipulation of a surface? If this represents membrane and
wall of a single cell, it might be expected to take its shape
changes from action of a mobile scaffolding within the cytos-
keleton. The example of Micrasterias, however, is one for
which there is substantial evidence to localize pattern-
forming and shape-changing activity at the cell surface
(Kiermayer and Meindl, 1989). A surface, as implicitly

defined by our representation of it in the computer, is any
region that is very much more extensive in area than it is
thick, and unconstrained for movement normal to its own
plane in one direction (outward). For multicellular plants,
the tunica (commonly a single layer of cells) can be regarded
as a surface. (And, indeed, for single cells, a cortical layer of
cytoskeleton could be incorporated into our concept of a
surface, provided only that it is thin enough.)

Just as the surface, represented by the triangulated mesh in
our computations, may have many different structural
identities in diverse living systems, so the molecules rep-
resented by A, B, X and Y in our computations may have
diverse identities. Calcium ions have been found in
concentration-patterned attachment to plasma membranes
in Acetabularia (Fig. 4D) and Micrasterias (Meindl,
1982). Binding of calcium by membrane-bound proteins
has been suggested in both cases. Beerling and Fleming’s
(2007) review of the telome theory invokes patterned auxin
fluxes and genes such as PIN, active on shoot apical meris-
tems. We advocate that people working upon all such mol-
ecules should think also of rates of processes involving
them as an equally ultimate reality in explaining develop-
ment, and we offer our computational results in that spirit.
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