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Abstract
In studies of the accuracy of diagnostic tests, it is common that both the diagnostic test itself and the
reference test are imperfect. This is the case for the microsatellite instability test, which is routinely
used as a prescreening procedure to identify individuals with Lynch syndrome, the most common
hereditary colorectal cancer syndrome. The microsatellite instability test is known to have imperfect
sensitivity and specificity. Meanwhile, the reference test, mutation analysis, is also imperfect. We
evaluate this test via a random effects meta-analysis of 17 studies. Study-specific random effects
account for between-study heterogeneity in mutation prevalence, test sensitivities and specificities
under a nonlinear mixed effects model and a Bayesian hierarchical model. Using model selection
techniques, we explore a range of random effects models to identify a best-fitting model. We also
evaluate sensitivity to the conditional independence assumption between the microsatellite instability
test and the mutation analysis by allowing for correlation between them. Finally, we use simulations
to illustrate the importance of including appropriate random effects and the impact of overfitting,
underfitting, and misfitting on model performance. Our approach can be used to estimate the accuracy
of two imperfect diagnostic tests from a meta-analysis of multiple studies or a multicenter study when
the prevalence of disease, test sensitivities and/or specificities may be heterogeneous among studies
or centers.
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1. INTRODUCTION
The performance of a binary diagnostic test is usually represented by sensitivity (Se) and
specificity (Sp). Sensitivity is also referred to as the true positive fraction, defined as the
probability of testing positive given the person is diseased. Specificity is also known as the
true negative fraction, defined as the probability of testing negative given the person is not
diseased (Zhou, Obuchowski, and McClish 2002; Pepe 2003). Disease status is usually
measured by a reference test, which may also be prone to measurement error. In this case, a
“gold standard” is not available. There is a considerable literature discussing the challenges
and approaches to assess the performance of diagnostic tests from a single population in the
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absence of a “gold standard” (Gart and Buck 1966; Joseph, Gyorkos, and Coupal 1995;
Andersen 1997; Johnson, Gastwirth, and Pearson 2001). Even under the assumption that two
tests are conditionally independent given disease status, estimating five parameters (i.e.,
prevalence, two sensitivities, and two specificities) from three unconstrained cells in a two by
two table induces nonidentifiability. In this context, even Bayesian approaches, which can
incorporate prior knowledge on model parameters, do not generally converge to the true values
as sample size increases (Johnson, Gastwirth, and Pearson 2001). To overcome the
identifiability problem, sampling from a second population with a different prevalence was
suggested (Hui and Walter 1980). Assuming that the tests have the same accuracy in both
populations, there are six unconstrained cells, and sufficient degrees of freedom to estimate
the six parameters (two prevalences, two sensitivities, and two specificities).

The growth of evidence-based medicine has led to an increase in attention to meta-analytic
studies of diagnostic test accuracy (Egger, Smith, and Altman 2001). When a “gold standard”
is available, random effects models including the hierarchical summary receiver operating
characteristic model (Rutter and Gatsonis 2001) and the bivariate random effects meta-analysis
on sensitivities and specificities (van Houwelingen, Arends, and Stijnen 2002;Reitsma et al.
2005; Chu and Cole 2006), which are very closely related and sometimes identical (Harbord,
Deeks, Egger, Whiting, and Sterne 2007), have been recommended to take into account the
potential heterogeneity between studies (Zwinderman and Bossuyt 2008).

The literature on meta-analytic studies of diagnostic test accuracy when a gold standard is not
available is very sparse. In a recent meta-analysis of 17 studies to evaluate the accuracy of
microsatellite instability testing (MSI) in predicting Lynch syndrome, the most common
familial colorectal cancer syndrome, a Bayesian approach was proposed to handle missing data
resulting from partial testing (Chen, Watson, and Parmigiani 2005). However, the meta-
analysis assumed that the sensitivity and specificity of both tests do not differ from study to
study. Furthermore, after categorizing the studies into a registry-based recruitment group and
a family-based recruitment group (based on whether subjects were recruited from population-
based colorectal cancer registries or from individuals with a family or personal history of colon,
rectum, or endometrial cancers) the prevalence is assumed homogeneous within each group.
However, because of differences in study design, study population, and laboratory techniques,
between-study heterogeneity is intrinsic in many meta-analyses (Egger et al. 2001).

To our knowledge, when a gold standard is not available, meta-analysis using random effects
models has not been previously described in the literature. In this article, we investigate such
models in the presence of between-study heterogeneity in test sensitivities, specificities and/
or the prevalence of disease by reanalyzing existing meta-data on the diagnosis of Lynch
syndrome and through simulations. This article is organized as follows. In Section 2, we
introduce the study background and review the meta-data. In Section 3, we present our
modeling approach and explain the assumptions and choices that were made. In Section 4, we
report the results of the case study, including three sensitivity analyses: (1) on the choice of
prior distributions; (2) on the handling of a suspected outlier, and (3) on the conditional
independence assumption. Section 5 includes a comprehensive simulation study to illustrate
the performance of our approach under a variety of conditions. Finally, we discuss our findings
and implications for future analyses in Section 6.

2. STUDY BACKGROUND
2.1 Lynch Syndrome

The DNA mismatch repair (MMR) system consists of a group of genes that are in charge of
repairing the mismatches in the genome that occur during cell duplication. When a person
inherits a pathogenic (i.e., disease-causing) mutation in one of these genes, the impaired
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mismatch repair mechanism gives rise to Lynch syndrome. Lynch syndrome, also known as
Hereditary Nonpolyposis Colorectal Cancer, is the most common familial colorectal cancer
syndrome. Lynch syndrome individuals have an up to 80% lifetime risk of cancer of the colon
or rectum, as well as an elevated risk of cancer at the stomach, small bowel, endometrium, and
a number of other sites compared to the general population. It is estimated that 600,000
individuals in the United States have Lynch syndrome but may not know it. It is of great public
health importance to accurately diagnose Lynch syndrome for cancer prevention and early
detection (Chen et al. 2006).

Diagnosing Lynch syndrome is equivalent to mutation finding in the MMR genes. Therefore,
mutation analysis of the MMR genes is considered the reference test for Lynch syndrome.
Finding mutations involves obtaining blood samples and performing laboratory tests on blood
DNA. Available commercial mutation analysis currently costs a hefty $2,000-$3,000 per
individual, which precludes it use in widespread screening. To increase cost effectiveness, a
relatively inexpensive test ($200-$300 per individual) was proposed as a prescreening test
(Thibodeau, Bren, and Schaid 1993). This test aims at detecting a tumor phenotype, called
“microsatellite instability” (MSI), which exists in most tumors that arise from inherited MMR
mutations. MSI testing is performed on DNA extracted from tumor tissues. The MSI test is
now routinely used as a part of international Lynch syndrome diagnostic guidelines (Umar et
al. 2004); it is therefore important to accurately evaluate its sensitivity and specificity to support
informed clinical diagnosis.

2.2 Overview of the Meta-Studies
A number of research groups have attempted to evaluate accuracy of the MSI test by comparing
it to the mutation analysis results in subjects with tumors. In the meta-analysis by Chen et al.
(2005), 17 studies were identified from a systematic review of literature on the evaluation of
the accuracy of the MSI test in diagnosing Lynch syndrome. Studies either recruited subjects
from population-based colorectal cancer registries or selected individuals with a family or
personal history of colon, rectum, or endometrial cancers. The former tend to have a lower
chance of having Lynch syndrome, because they are often the only case of colorectal cancer
in the family. Tumor tissue was collected for MSI testing, and blood samples were obtained
for mutation analysis. Most studies tested subjects for MSI and conducted subsequent mutation
analysis on all or a subset of subjects. More details regarding the studies can be found in Chen
et al. (2005). See Table 1 for the list of studies.

After examining the studies in detail, several challenges emerge. (1) The absence of a gold
standard: the reference test, mutation analysis, is not perfect. The main reason is that most
mutation analysis techniques fail to detect large genomic deletions and rearrangements, which
constitute a significant fraction of all MMR mutations (Yan et al. 2000). (2) Potential
heterogeneity: studies differ in their subject recruitment methods and in the laboratory
techniques or quality. Such between-study heterogeneity is likely to affect parameter estimates.
Not accounting for it may result in bias in relevant point estimates or underestimation of
uncertainty or both. (3) Missing data: because of the perceived high negative predictive value
of MSI testing, many studies did not perform subsequent mutation analysis once the subjects
were tested MSI negative. Other patterns of missing data also exist (see Section 3.1). In this
article, we introduce an approach to address these challenges that commonly arise in meta-
analyses of diagnostic tests that lack a gold standard.

3. STATISTICAL METHODS
We present an analytic approach to estimating the accuracy of MSI testing and mutation
analysis in a meta-analytic setting. Here we measure the accuracy of a test by two quantities:
sensitivity, denoted as Se = Pr (test positive | true mutation), and specificity, denoted as Sp =
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Pr (test negative | no mutation). According to convention, we focus on dichotomized test results
as the outcome of interest, as follows. For the MSI test, MSI = 1 denotes a positive result (i.e.,
a high level of microsatellite instability), and MSI = 0 for a negative result (i.e., low instability
or stable) (Boland et al. 1998). For mutation analysis, MUT = 1 denotes finding a pathogenic
mutation, and MUT = 0 for failure to find any.

For study i (i = 1, 2, ..., I), let Pijk = Pr (MSI = j, MUT = k) be the joint probability of test
results and nijk be the corresponding observed count, j, k = 0, 1. Let πi be the study-specific
disease prevalence, and let (SeiA, SeiB, SpiA, SpiB) be the corresponding sensitivities and
specificities for MSI and MUT. Under the assumption that the two tests are independent
conditional on the true disease status, study-specific prevalences, sensitivities, and
specificities, we have the following relationship:

(1)

In this context, the conditional independence assumption is arguably likely to be valid. Because
all pathogenic mutations disrupt the MMR mechanism that leads to MSI tumors, those that are
likely to be missed by MUT (i.e., large genomic deletions and rearrangements) do not differ
from others in their ability to generate MSI tumors. In other words, biologically there do not
seem to be subjects who are more likely to be missed (or picked up) by both tests (Rodriguez-
Bigas et al. 1997). However, we shall relax this assumption and discuss a method to allow
conditional dependence in Section 3.4.

3.1 Missing Data and the Likelihood
Several studies had missing data as a result of partial testing. The most common scenario is
that because of the perceived high negative predictive value of MSI testing, studies did not
perform mutation analysis once the subjects were tested MSI negative. Partial testing can be
grouped into the following patterns: (A) MSI measured, MUT missing; (B) MSI missing, MUT
measured. We denote the probabilities of study i to fall in categories A and B by ωiA and
ωiB. Table 2 presents a typical data structure and notation for a study with partial testing.

Of the 17 studies with a total of 2,750 subjects, 9 studies with a total of 2,050 subjects have
missing data on either MUT or MSI tests. Among them, three studies had MUT completely
missing and one study had MSI completely missing (a total of 829 subjects). They can be
considered missing completely at random (MCAR). Five studies had missing MUT on all
subjects with MSI = 0 for a total of 1,209 subjects, and can be considered missing at random
(MAR). Only one study (i.e., Study 3) had MUT missing on 12 of 35 subjects with MSI = 1
due to unavailability of blood samples. Assuming that blood sample availability is independent
of mutation analysis result conditioning on MSI result, then the missing mechanism for those
12 subjects can also be regarded as MAR. Therefore, we focus on methods under the MAR
assumption for the selection process (Rubin 1976; Little and Rubin 2002).

Under the MAR assumption, the likelihood function can be factored into L(θi, ϑi | data) = L
(θi | data) × L (ϑi | data) where θi, = (πi, SeiA, SeiB, SpiA, SpiB) and ϑi = (ωiA ωiB). Assuming
independence among subjects conditional on θi, the log-likelihood for θ = (θ1, θ2, ... , θ1) is
the summation of the contribution from each study, that is
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(2)

where the relations among the components of θi and Pijk are summarized in (1).

3.2 Accounting for Heterogeneity Through Random Effects Models
Between-study heterogeneity commonly exists in a meta-analysis because studies usually
differ in their subject recruitment methods and laboratory techniques as well as arguably in
overall study quality, as reflected in the study protocol and adherence to the protocol. Thus,
measurements within a study tend to be correlated beyond what would be anticipated for
measurements between studies. Not adequately accounting for this heterogeneity when it is
present may result in biased estimation or underestimation or both of uncertainty (Egger et al.
2001; Molenberghs and Verbeke 2005). To take into account the potential between-study
heterogeneity of the prevalence, sensitivity and specificity, we consider a random effects
model. In line with Section 2, we introduce a covariate Xij = 1 if recruitment is family-based
and Xij = 0 if recruitment is registry-based. The model can then be specified as follows:

(3)

where logit(p) = log(p) - log(1 - p). In epidemiological studies, the prevalence of disease is
usually assumed to be independent of sensitivity and specificity of a diagnostic test, in other
words, a study with higher prevalence does not imply higher (or lower) accuracy in testing
(Szklo and Nieto 2004). Under the assumption that the prevalence of Lynch syndrome is
independent of the test accuracy of MUT and MSI, the variance-covariance matrix Σ in
Equation (3) can be specified as

(4)

The parameters (ρμAνA, ρμAμB, ρμAνB, ρνAμB, ρνAνB, ρμBνB) capture the pairwise correlation
among random effects. If prevalence is suspected to be associated with test accuracy in a
specific meta-analysis, the corresponding correlations can be specified above instead of the
zero entries. However, unless there are many studies of reasonable size with considerable
variation, there is typically little information on the correlation parameters even in the presence
of a gold standard (Harbord et al. 2007). Therefore, their estimation may be troublesome and

a simple Σ is preferred. The diagonal elements of the matrix  capture the
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extent of heterogeneity of the parameters of interest across studies. If there is statistical or

scientific evidence of homogeneity, that is, , the corresponding study-
specific random effect(s) can be dropped from the model.

3.3 Model Implementation
We adopted two approaches to make inference from the previous random effects model. The
first is a nonlinear mixed effects model (NLMM) (Davidian and Giltinan 1995; Vonesh and
Chinchilli 1997; Molenberghs and Verbeke 2005) fitted using SAS PROC NLMIXED; the
second is a Bayesian hierarchical model (Carlin and Louis 2000; Gelman, Carlin, Stern, and
Rubin 1995) fitted using WinBUGs (Spiegelhalter, Thomas, and Best 2002). Because these
two approaches use different frameworks and different software, they can be considered
complementary. In most instances, inferences obtained by Bayesian and frequentist methods
agree when weak prior distributions are specified. However, the Bayesian framework is
particularly attractive when suitable proper prior distributions can be constructed to incorporate
known constraints and subject-matter knowledge on model parameters (Davidian and Giltinan
2003). Furthermore, the Bayesian framework provides for direct construction of 100(1 - α)%
equal tail and highest probability density (HPD) credible intervals of general functions of the
estimated parameters without having to rely on asymptotic approximations.

To avoid over-fitting the data with an excess of random effects, we used a forward selection
procedure based on information criteria. Specifically, Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC) were used as the guideline (Burnham and
Anderson 1998) for NLMM, and the deviance information criterion (DIC) was used for the
Bayesian hierarchical model (Spiegelhalter, Thomas, Carlin, and van der Linde 2002). At each
forward step, we added a random-effect component that provided the largest improvement
based on the previous model selection criteria.

3.3.1 Nonlinear Mixed Effects Model (NLMM)—The nonlinear mixed effects model was
fitted using PROC NLMIXED in SAS version 9.1 (SAS Institute Inc., Cary, NC). PROC
NLMIXED maximizes an adaptive Gaussian quadrature approximation to the likelihood
integrated over the random effects (Pinheiro and Bates 1995) using dual quasi-Newton
algorithm optimization techniques, and then computes empirical Bayes estimates of the random
effects. We used the PROC NLMIXED built-in delta method to compute the population
estimates of the back-transformed parameters of interest and their confidence intervals (CIs)
based on a normal approximation. In the presence of random effects, the back-transformed
estimates represent the population median estimates. To obtain the population means,
numerical integration over the estimated distributions of random effects can be performed
(Halloran, Preziosi, and Chu 2003). Furthermore, the NLMM implemented in SAS PROC
NLMIXED enables us to use the estimated model for constructing predictions of arbitrary
functions using empirical Bayes estimates of the random effects. This often produces more
concentrated predictions than a fully Bayesian procedure because NLMM does not fully take
into account the uncertainty associated with the estimation, especially for the random effects.
In this situation, the full Bayesian approach is expected to provide more appropriate assessment
of uncertainty.

3.3.2 Bayesian Hierarchical Model (BHM) and the Choice of Priors—In the
Bayesian hierarchical model, computation was done using Markov chain Monte Carlo
(MCMC) (Gelfand and Smith 1990) in WinBUGS (Spiegelhalter, Thomas, and Best 2002).
Burn-in consisted of 100,000 iterations; 400,000 subsequent iterations were used for posterior
summaries. Convergence of Markov chains was assessed using the Gelman and Rubin
convergence statistic (Gelman and Rubin 1992; Brooks and Gelman 1998). We selected proper
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but diffuse prior distributions for the hyper-parameters, because noninformative prior
distributions can lead to inaccurate posterior estimates (Natarajan and McCulloch 1998). The
hyper-priors for the precision parameters were assumed to be as follows: (1)

, which corresponds to a 95% interval of (0.27, 39.50) for the variance
parameter  allowing large heterogeneity for the prevalence; (2)

, which corresponds to a 95% interval of (0.36, 8.26) for the

variance parameters, , providing moderate heterogeneity for the latent
sensitivities and specificities. Vague priors of N(0, 22) were assumed for the fixed effects
(η0, αA, αB, βA, βB), which correspond to a 95% interval for the log-odds ranging from 0.02 to
50 (Chu, Wang, Cole, and Greenland 2006). A vague prior of N(0, 22) was used for η1 on the
log scale to ensure the constraint that the prevalence of the family-history recruitment group
is greater than that in the registry-based recruitment group for any study i.

3.4 The Conditional Independence Assumption
It is well known that if the conditional independence assumption is falsely assumed, parameter
estimates can be biased (Vacek 1985; Torrance-Rynard and Walter 1997; Dendukuri and
Joseph 2001). When the possibility of conditional dependence cannot be completely ruled out,
as a sensitivity analysis to the conditional independence assumption, we extended the model
in Equation (1) to allow dependence. Specifically, we incorporated the residual dependence of
the two tests given the latent disease status and study-specific random effects by assuming
homogenous residual dependence across all studies. Let ρ1 and ρ0 denote the correlation of the
two tests when the true disease status is positive and negative, respectively, Equation (1)
becomes (Vacek 1985; Shen, Wu, and Zelen 2001; Dendukuri and Joseph 2001),

(5)

where  and  are
the covariances between two tests among the diseased and nondiseased subjects in study i,
respectively. The feasible range of correlations is determined by the sensitivities among
diseased subjects and specificities among nondiseased subjects in each study. Specifically, the
correlation coefficients ρ1 and ρ0 satisfy

Although negative associations are possible, it seems more plausible that ρi ≥ 0 (i = 0, 1), which
corresponds to positive dependence conditional on the latent disease status and study-specific
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random effects. If homogenous conditional dependence between studies looks suspicious,
methods allowing more complex dependent errors need to be considered, for example, by
considering study-specific correlation coefficients ρ1i and ρ0i in Equation (5).

Furthermore, we propose a simple graphical method, the Kappa agreement plot, to
quantitatively validate the conditional dependence assumption for each study based on the final
model. This plot is obtained by plotting the model-based marginal agreement between the two
tests for study i measured by the Kappa statistics (κi) with 95% confidence (or credible)
intervals, which corrects the agreement that may occur by chance alone, against the observed
marginal agreement between the two tests for study i. The model-based Kappa statistics for
study i can be computed by

If the model based 95% confidence (or credible) intervals include the observed Kappa statistics
at close to the nominal rate, then there is not enough evidence to reject the conditional
independence assumption.

4. CASE STUDY
We searched for the best fitting model, starting with the model that assumes no random effects
(referred to as Model I), which was presented in Chen et al. (2005). Based on the forward-
selection procedure in Section 3.3, Table 3 presents the goodness of fit statistics including the
-2 log (likelihood) statistic AIC, and BIC for the nonlinear random effects model, and DIC for
the Bayesian hierarchical model.

In the first step, adding any random-effect improved the goodness of fit under all criteria, with
the exception of Model IIc using DIC. The largest improvement was achieved by allowing for
study-specific prevalence εi, referred to as Model IIa. For example, the DIC decreased by 69.4
points compared with Model I. This revealed an important characteristic of this meta-analysis,
that is, the studies varied considerably in their recruitment criteria, resulting in different
mutation prevalences across studies. Based on the Bayesian hierarchical Model IIa, the
posterior mean prevalence ranged from 0.125 to 0.860 for the twelve studies in the family-
recruitment group, and from 0.016 to 0.098 for the seven studies in the registry-recruitment
group.

In the second step, the largest improvement was seen by adding a random-effect for the
mutation analysis sensitivity μiB (Model IIIc). The improvement was modest compared with
adding the initial random-effect, but still notable (e.g., the DIC decreased by 15.3 points
compared with Model IIa). This is plausible because studies were conducted in different
laboratories using a variety of mutation analysis techniques. As a result, the mutation analysis
sensitivities ranged from 0.424 to 0.871 for the 17 studies based on the Bayesian hierarchical
Model IIIc.

The last forward step that produced meaningful improvement included random effects for
microsatellite instability testing sensitivity μiA (Model IVa). The DIC decreased by 9.6 points
compared with Model IIIc. The final model included the random-effects on (1) prevalence εi;
(2) mutation analysis sensitivity μiB; and (3) microsatellite instability testing sensitivity μiA. In
this case study, model selection proceeded identically under the nonlinear mixed effects model
and the Bayesian hierarchical model. Table 3 shows that no improvements were obtained by
including additional random effects.
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Estimated fixed effects (MSI sensitivity, MSI specificity, MUT sensitivity, MUT specificity,
prevalence in the family-recruitment group, and prevalence in the registry-recruitment group)
from Model I, Model IIa, Model IIIc, and Model IVa are presented in Table 4. Estimates were
highly concordant between the two approaches, except for some difference in the estimates of
MSI sensitivity. We used the triple of percentiles, 2.55097.5, as an effective way to display a
parameter estimate (or posterior median) with its 95% confidence (or equal tail credible)
interval, as suggested by Louis and Zeger (2008). Based on the final model IVa, the posterior
estimate of MSI sensitivity from BHM was 0.740.920.99, whereas the estimate from NLMM
was 0.920.971.00. The random effect of MSI sensitivity has a standard deviation of 2.53 by
NLMM or 1.65 by BHM on the logit scale. The standard deviation is relatively large is because
most study-specific sensitivity estimates were close to 0.9, whereas one study (i.e., study 13)
had a much lower estimate of 0.010.230.99 (see Figure 2C). When study 13 is removed from
the analysis (see Section 4.2), there is no longer enough evidence to support heterogeneous
MSI sensitivity. Figure 1 presents the posterior kernel smoothed density of MSI sensitivity,
MSI specificity, MUT sensitivity, and MUT specificity based on the final Bayesian hierarchical
Model IVa, suggesting a skewed posterior density of MSI sensitivity, which helps explain the
difference in MSI sensitivity estimates between the nonlinear mixed effect model and the
Bayesian hierarchical model.

Although mutation analysis has been regarded as the reference test, with a median sensitivity
of 64%, it does not offer the level of accuracy as a gold standard should. In fact, these tests
missed one-third of all MMR mutations, a value that is consistent with the proportion of large
genomic mutations that cannot be detected by conventional mutation analysis techniques.

4.1 Sensitivity Analysis to Prior Distributions for BHM
As a sensitivity analysis to the specification of prior distributions, we repeated our analyses
using two additional sets of priors for the variance parameters of random effects that are more
diffuse than the ones presented earlier. Although estimation of other parameters remains of
interest, because of space limitations we focus here on MSI sensitivity and specificity estimates,
because they are of primary scientific interest. Specifically, we have chosen Gamma(1, 1) and

Gamma(0.5, 0.5) as the priors for the precision parameters . When

, which corresponds to a 95% interval of (0.27, 39.50) for the
variance parameters, the posterior estimate of MSI sensitivity was 0.710.930.99. When

, which corresponds to a 95% interval of (0.2, 1,018.3) for
the variance parameters, the posterior estimate of MSI sensitivity was 0.680.930.99. Under both
priors, the posterior estimate of MSI specificity was 0.890.910.94. In summary, for the priors
considered, results are consistent.

4.2 Sensitivity Analysis to an “Outlier” Study
Bayesian posterior means with 95% equal tail credible sets of the study-specific effects from
the final model are shown in Figure 2. The study-specific MSI sensitivity estimates were quite
homogeneous, with study 13 being the only exception (see Figure 2C), which is consistent
with the expert belief that MSI is a relatively standard and simple test and that measurement
variability associated with it is low. On the other hand, the study-specific estimates of mutation
prevalence are quite heterogeneous, highlighting differences in the study populations. The wide
range of MUT sensitivity estimates suggests differences in the nature and quality of the
laboratory work for mutation analysis. Closer examination of study 13 reveals that it is a study
of missense mutations. A missense mutation only results in a single amino acid substitution,
which may or may not be pathogenic. Such mutations are currently all treated as MUT = 1,

Chu et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2009 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



whereas functionally some of them should be classified as MUT = 0. This led to a smaller than
expected number of MSI = 1 subjects in study 13 and was reflected in the low study-specific
MSI sensitivity.

To investigate sensitivity to a potential outlier, we excluded study 13 and reran our forward
random-effects selection procedures. The algorithm identified Model IIa in the first step and
IIIc in the second step using both NLMM and BHM. Under all model selection criteria, the
forward selection algorithm did not proceed to select an additional random-effect on MSI
sensitivity, as there was no longer enough evidence supporting such heterogeneity once study
13 is removed.

From the final Model IIIc using the NLMM, MSI sensitivity and specificity were estimated to
be 0.870.930.99 and 0.890.910.93, respectively. The MUT sensitivity and specificity were
respectively estimated to be 0.510.660.81 and 1.001.001.00. The standard deviations of random
effects for prevalence σε and MUT sensitivity σμB were estimated to be 0.220.600.98
and 0.130.741.35. When using the Bayesian hierarchical model, posterior estimates of MSI
sensitivity and specificity were 0.870.940.99 and 0.890.910.94, respectively. The posterior
estimates of MUT sensitivity and specificity were 0.500.650.81 and 0.940.981.00. The posterior
estimates of the standard deviations of random effects for prevalence σε and MUT sensitivity
σμB are estimated to be 0.490.751.25 and 0.600.941.65, respectively.

In summary, the two approaches yielded similar estimates of model parameters. Moreover,
none of the estimates changed notably from the original estimates when the “outlier” (i.e., study
13) was included in the analysis, especially when using BHM.

4.3 Sensitivity Analysis to the Conditional Independence Assumption
As a graphical check, Figure 3 presents the model-based versus observed Kappa statistics for
those studies with complete data using NLMM. It suggests that the conditional independence
assumption is likely to be valid here because all of the 95% CIs of model-based Kappa statistics
contain the observed Kappa statistics. As expected, the model-based estimates are shrunk
toward the mean.

In Section 3.4, we restricted the final model (IVa using NLMM) to homogeneous conditional
dependence across studies as specified in Equation (5). Specifically, under ρ1 = ρ0 = ρ, which
corresponds to equal conditional dependence for true positives and true negatives, the negative
twice log-likelihood (-21ogL) was 3,330.0. It did not improve the goodness of fit over model
IVa in Table 3 (i.e., -21ogL = 3,330.6) significantly (p-value = 0.44 based on likelihood ratio
test). The estimated correlation coefficient ρˆ = -0.340.0120.37. When ρ1 ≠ρ0, -2logL is estimated
to be 3,329.3 (p-value = 0.52), which did not improve the goodness of fit either. The estimated
correlation coefficient ρˆ1 for true positives was -0.500.0020.50, and the ρˆ0 for true negatives
was -0.180.260.71. No further sensitivity analyses of more complex conditional dependence
structures were pursued.

5. SIMULATION STUDIES
To evaluate the performance of our modeling approach and to study the impact of
misspecification of random effects, we performed four sets of simulations. For ease of
presentation and interpretation, we generated data with random effects only on disease
prevalence or test sensitivities (εi, μiA, μiB) and fitted models with up to two random effects.
Specifically, data were generated from the following four models: (1) no random effects; (2)
random effect on prevalence (εi); (3) random effect on MSI sensitivity (μiA); and (4) random
effects on prevalence and MSI sensitivity (εi, μiA). Simulations represent realistic scenarios
that researchers are likely to encounter, such as those in the case study.
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For each simulation, 20 meta-studies were generated, each with 7 studies having only a family-
recruitment group, 7 studies having only a registry-recruitment group, and 6 studies having
both a family-recruitment group and a registry-recruitment group. For each study, there were
80 observations in the family-recruitment group and 250 observations for each study in the
registry-recruitment group, roughly matching the sample sizes in our case study. Each study
in the registry-recruitment group was assigned a probability of 0.40 of missing MUT test results
for those with MSI = 0, which corresponds to a common scenario in diagnostic testing when
the reference test is expensive or invasive. In the absence of random effects, the prevalences
of true mutation were set to be 50% for the family-recruitment group and 10% for the registry-
recruitment group. The sensitivity and specificity were taken to be 70% and 98% for MUT,
respectively, and were both taken to be 90% for MSI testing. In the presence of random effects,
the variances of (εi, μiA) were set to be 0.52, which gives the prevalence a 95% interval of
27%-73% for the family-recruitment group and 4%-23% for the registry-recruitment group
and the MSI sensitivity a 95% interval of 77%-96%.

For each generated dataset, we fitted seven models using both NLMIXED and BHM: (1) no
random effect; (2) one random effect (on εi, μiA, or μiB); and (3) two random effects (on [εi,
μiA], [εi, μiB], or [μiA, μiB]). Model selection was based on AIC and BIC for the nonlinear random
effects model using SAS PROC NLMIXED and DIC for the Bayesian hierarchical model using
WinBUGs.

Table 5 summarizes the Monte Carlo frequency of selecting each candidate model as the “best”
model in each set of simulations. In summary, DIC has a probability of 0.55-0.70 to identify
the true random effects model, whereas the performance of AIC and BIC is highly variable
with a probability of 0.25-0.95. Closer examination of the results reveals that the Bayesian
approach with DIC has a stronger tendency to select additional random effect(s) not included
in the true model than does the nonlinear random effects approach (overall probability of 0.17
for DIC, 0.06 for AIC, and 0.03 for BIC, averaging over all four scenarios). Meanwhile, the
average probability that the Bayesian approach misses a true random effect (0.17) was lower
than that of the nonlinear random effects approach (0.30 based on AIC and 0.36 based on BIC).
A possible explanation for this is that BHM fully accounts for the uncertainty in estimation
and thus produces a more appropriate selection of random effects.

The prevalence random effect (εi) was almost always identified, if present. Under-fitting was
mainly a result of the failure to include the random effect in MSI sensitivity (μiA) (i.e., 95%
interval = 77%-96%), which had a narrower range than that of the prevalence εi (i.e., 95%
interval = 27%-73% for the family-recruitment group and 4%-23% for the registry-recruitment
group) by simulation design due to the logit transformation. Overall, the probability of selecting
completely incorrect random effects (i.e., including invalid random effects while failing to
include true random effects) was very low under all criteria (0.03 for DIC, 0.03 for AIC, 0.01
for BIC, respectively).

Table 6 records the means, standard errors, 95% interval lengths, and coverage probabilities
for the MSI sensitivity under each model. Although estimation of other parameters is also of
interest, because of space limitations we present only MSI sensitivity. In general, the standard
errors are larger when including more random effects. Over-fitting (including a random effect
when there is none) or under-fitting (not including the random effect when it is present) can
generate biased point estimates of MSI sensitivity. Moreover, over-fitting tends to produce
larger standard errors, whereas under-fitting can provide biased standard error estimates in
both directions. Specifically, if the true model contains no random effects, the 95% CI length
can be 25% wider in the BHM or 14% wider in the NLMM when random effects are included.
On the other hand, when the true model contains random effects on both prevalence (εi) and
MSI sensitivity (μiA), the 95% CI length is 20% narrower by NLMM or 25% narrower by BHM
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when no random effects are included, and 25% wider by NLMM or 25% wider by BHM when
we only include random effects for MSI sensitivity (μiA).

We note the following for the coverage probabilities: (1) under the correct model, or when
over-fitting occurs, the coverage probabilities are all close to the nominal value of 0.95; (2)
when under-fitting occurs, failure to include random effects in prevalence (εi) does not
substantially affect the coverage probabilities for MSI sensitivity; but failure to include random
effects on MSI sensitivity itself reduces coverage notably. In summary, there is a need to select
appropriate random effects carefully to account for potential cross-study heterogeneity on the
estimation of diagnostic accuracy measurements from a meta-analysis without a gold standard.

6 DISCUSSION
In this application of random effects models for meta-analysis of the accuracy of two diagnostic
tests without a gold standard, we focused on methods that assume conditional independence
between two tests given the true mutation status and the study-specific random effects. In the
case study, this assumption is biologically plausible, because large genomic deletions and
rearrangements do not differ from other mutations in their ability to generate tumors with
microsatellite instability. Furthermore, the assumption seems reasonable based on the Kappa
agreement plot and the homogenous conditional dependence models that we have considered
in Section 3.4. However, if the homogenous conditional dependence looks suspicious, methods
incorporating heterogeneous dependent errors across studies need to be considered, for
example, by considering study-specific correlation coefficients ρ1i and ρ0i in Equation (5).

We demonstrate improved estimation of the sensitivity and specificity by taking into account
heterogeneity across studies through study-specific random effects. All model selection criteria
consistently indicated that allowing for appropriate random effects improves goodness of fit,
and their inclusion did affect estimates of the sensitivity and specificity of MSI and MUT. In
particular, estimated MSI sensitivity increased noticeably from the model without random
effects. The medical literature suggests that all tumors except a small fraction from Lynch
syndrome individuals exhibit positive MSI phenotype (see Vasen and Boland 2005). Therefore,
a MSI sensitivity estimate of 0.93 based on NLMM or 0.94 based on BHM from the final model
after deleting the “outlier” study might be more biologically plausible than the lower estimate
(0.82 based on NLMM or 0.84 based on BHM) obtained from the model without random
effects. Random effects models can be effective in identifying outlier studies, for example
study 13.

Simulations show that our approach has a good chance of identifying the correct model, with
the DIC being more likely to favor expanded models relative to AIC and BIC, which tend to
penalize random effects. Our simulations identify a noticeable variance inflation from over-
fitting and meaningful decrements in coverage when between-study heterogeneity is present
but not included in a model. Therefore, when there is uncertainty about whether to include a
random effect or when different statistical criteria give different recommendations, we
recommend including the random effect to reduce the chance of omitting an important source
of variability. However, variance inflation cautions against generically including all five
random effects. From the design perspective, one potential way to improve the selection of
competing models with multiple tests in a meta-analysis is to extend the methods recently
proposed by Albert and Dodd (2008) for the meta-analysis setting when some study participants
are verified by a gold standard.

The nonlinear random effects model as implemented by SAS PROC NLMIXED involves
maximizing an approximation to the likelihood integrated over the multidimensional random
effects. Particularly in the presence of missing data, convergence may be an issue. For example,
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about 0.1-0.5% simulations did not converge. Moreover, we were not able to fit all five random
effects using PROC NLMIXED.

Finally, when dealing with multiple tests from a single population, several alternative models
have been proposed to incorporate conditional dependence induced by characteristics other
than latent disease status. The basic idea is to include a subject-specific random effect, with
test results independent conditional on both this random effect and latent disease status.
Examples include a Gaussian random effects model (Qu, Tan, and Kutner 1996; Qu and Hadgu
1998), and the extended finite mixture model (Albert, McShane, and Shih 2001). In a meta-
analysis involving multiple tests, one may consider adding additional random effects at the
subject level and nesting such an effect within the study level to account for the potential
residual dependence after conditioning on the latent disease status and study-specific random
effects.

We did not study this extension because it is known that when conditional dependence between
imperfect measurements is misspecified in a single study, estimated sensitivity, specificity,
and prevalence can be biased, and a large number of imperfect measurements are needed to
distinguish among different models (Albert and Dodd 2004). Furthermore, it is computationally
complex to include subject-specific random effects nested within study-specific random
effects. SAS NLMIXED SAS version 9.1 cannot handle nested random effects and the MCMC
setting may have convergence problems. Further research and development is needed to
incorporate these effects.
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Figure 1.
Posterior distributions of MSI and MUT sensitivities (A), MSI and MUT specificities (B). It
is based on the kernel smoothed density estimation of 400,000 Monte Carlo samples. Solid
lines are for MSI, dashed lines are for MUT.
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Figure 2.
Study-specific posterior means with 95% equal tail credible sets of the prevalence of family
(A), and registry (B), recruitment groups, MSI (C), and MUT (D) sensitivities based on the
Bayesian hierarchical model IVa. Large dots and bold lines are population averaged posterior
estimates with their corresponding 95% credible intervals.
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Figure 3.
Model-based Kappa versus observed Kappa statistics for assessing the conditional dependence
assumption.
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Table 2
Typical data displays for study i (i = 1, ..., I) with missing data

MSI

MUT

Positive (+) Negative (-) Missing

Positive (+) ni11(1-ωiA-ωiB)Pi11 ni10(1-ωiA-ωiB)Pi10 ni1mωiA(Pi11+Pi10)

Negative (-) ni01(1-ωiA-ωiB)Pi01 ni00(1-ωiA-ωiB)Pi00 ni0mωiA(Pi01+Pi00)

Missing nim1ωiB(Pi11+Pi01) nim0ωiB(Pi10+Pi00) —

NOTE: In each cell, the first line shows the observed count, the second line the corresponding probability. MSI = microsatellite instability testing, MUT
= mutation analysis testing.
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