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Abstract

Background: Thermostable enzymes from thermophilic microorganisms are playing more and
more important roles in molecular biology R&D and industrial applications. However, over-
production of recombinant soluble proteins from thermophilic microorganisms in mesophilic hosts
(e.g. E. coli) remains challenging sometimes.

Results: An open reading frame TM0438 from a hyperthermophilic bacterium Thermotoga
maritima putatively encoding 6-phosphogluconate dehydrogenase (6PGDH) was cloned and
expressed in E. coli. The purified protein was confirmed to have 6PGDH activity with a molecular
mass of 53 kDa. The k_, of this enzyme was 325 s-! and the K, values for 6-phosphogluconate,
NADP*, and NAD* were | 1, 10 and 380 uM, respectively, at 80°C. This enzyme had half-life times
of 48 and 140 h at 90 and 80°C, respectively. Through numerous approaches including expression
vectors, hosts, cultivation conditions, inducers, and codon-optimization of the é6pgdh gene, the
soluble 6PGDH expression levels were enhanced to ~250 mg per liter of culture by more than 500-
fold. The recombinant 6PGDH accounted for >30% of total E. coli cellular proteins when lactose
was used as a low-cost inducer. In addition, this enzyme coupled with glucose-6-phosphate
dehydrogenase for the first time was demonstrated to generate two moles of NADPH per mole
of glucose-6-phosphate.

Conclusion: We have achieved a more than 500-fold improvement in the expression of soluble
T. maritima 6PGDH in E. coli, characterized its basic biochemical properties, and demonstrated its
applicability for NADPH regeneration by a new enzyme cocktail. The methodology for over-
expression and simple purification of this thermostable protein would be useful for the production
of other thermostable proteins in E. coli.

Background most enzymes are not suitable for industrial applications
Enzyme-based biocatalysis has become an attractive alter-  due to their relatively poor stability and biocatalyst re-use.
native to chemical catalysis because of its higher reaction = The former can be addressed by protein engineering [3-5],
selectivity and more modest reaction conditions [1,2]. But ~ enzyme immobilization [6,7], utilization of stable
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enzymes from extremophilic microorganisms [8,9], or
their combinations [10-12]. The latter can be solved
through enzyme immobilization [6,7]. For example,
immobilized thermostable glucose isomerase has been
used in the food industry to convert glucose to fructose at
~60°C for several months before its deactivation [10].

Discovery and utilization of thermoenzyme from
(hyper)thermophilic microorganisms is of great interest
for numerous applications. Thermotoga maritima is an
anaerobic, rod-shaped eubacterium, originally isolated
from geothermally heated marine sediment at Valcano,
Italy. It has an optimum growth temperature of ~80°C
[13]. T. maritima is regarded as an invaluable source of
intrinsically thermostable enzymes [14,15]. The open
reading frame (ORF) TM0438 was annotated to be a 6-
phosphogluconate dehydrogenase (6PGDH,
E.C.1.1.1.44) [16], but its biochemical function has not
yet been confirmed.

E. coli is a common prokaryotic microorganism for genetic
manipulation and for the production of recombinant pro-
teins because of its fast cell growth in inexpensive media,
rapid accumulation of cellular mass, amenability to high
cell-density fermentation, simple scale-up, and relatively
simple protein purification [17]. But E. coli often produces
recombinant protein in the form of insoluble, inactive
inclusion bodies. It is estimated that less than 20% of the
OREFs in other genomes are likely to be expressed as solu-
ble active proteins in E. coli [18]. A number of approaches
have been explored to improve the expression of soluble
recombinant proteins in E. coli. With regard to the expres-
sion vector, the heterologous protein could be fused with
a protein-folding partner (e.g. thioredoxin, cellulose-
binding module) [19-21] or with a secretory protein frag-
ment (e.g. outer-membrane protein A) that aids protein
folding in a less-reducing periplasmic environment [17].
Expression hosts can be chosen according to different
approaches, such as (i) mitigating codon bias in a host
containing a second plasmid expressing the E. coli rare
tRNA genes [22], (ii) enhancing protein folding in a host
co-expressing folding modulators, such as chaperons
[17,23], (iii) decreasing formation of disulfide bond in
some special host's cytoplasm [24], and (iv) repressing
basal expression of a toxic protein in a host with a repres-
sor [25]. In addition, cultivation conditions, such as
expression temperature, medium composition, timing of
induction, inducer concentration, and inducer type, can
be optimized for over-expression of a soluble protein
[26,27]. Recently, synthetic codon-optimized genes have
been more adapted for heterologous protein expression
[28-30]. But over-expression of soluble heterologous pro-
teins, especially for hyperthermophilic ones, in E. coli still
remains on a trial-and-test stage [22,31,32].

http://www.microbialcellfactories.com/content/8/1/30

6-phosphogluconate dehydrogenase is responsible for
converting 6-phosphogluconate to ribulose-5-phosphate
and CO,, along with one NADPH generation from
NADP+ [33-35]. Thermostable 6PGDH has some poten-
tial applications, such as generation of high-yield hydro-
gen from sugars [36,37] and biosynthesis of chiral
alcohols. For the production of a third generation biofuel
- hydrogen, utilization of thermostable enzymes would
increase production rates and stabilize the enzyme at ele-
vated temperature [12,36,37]. Biosynthesis of chiral alco-
hols mediated by enzymes requires low-cost regeneration
of NAD(P)H [38-41]. Glucose-6-phosphate dehydroge-
nase (G6PDH) has been applied to generate one NADPH
per glucose-6-phospahte [38,42,43]. The combination of
G6PDH and 6PGDH may double NADPH yield from
costly glucose-6-phosphate, but no such study has been
reported.

In this study, we cloned the ORF TM0438 encoding a
putative T. maritima 6PGDH and purified and character-
ized the enzyme. Using different approaches, we increased
its expression levels in E. coli from hardly-detectable to
more than 250 mg per liter of culture. Also, we demon-
strated that two moles of NADPH per mole of glucose-6-
phosphate were generated by using an enzyme cocktail
containing G6PDH and 6PGDH.

Results

Expression of wild-type 6pgdh gene

The expression plasmid pET-trx-wt6pgdh was constructed
based on a pET102-TOPO plasmid. This construct
encodes a fusion protein with a N-terminal thioredoxin,
which is well-known to enhance expression of soluble
heterologous proteins in E. coli [21]. The E. coli
BL21(DE3) harboring plasmid pET-trx-wt6pgdh did not
produce a detectable protein band corresponding to the
size of the fusion protein under various experimental con-
ditions (expression temperatures from 15, 20, 30 to 37°C
and IPTG concentrations from 20, 100 to 500 uM). Figure
1A shows a typical result of the cell lysate of E. coli
BL21(DE3) induced by 500 uM IPTG at 20°C.

Since the codon usage of E. coli BL21(DE3) is drastically
different from that of T. maritima, E. coli BL21(DE3)-RIL
that carries a ColE1-compatible vector encoding extra cop-
ies of tRNA genes of argl, ileY, and leuW was used to over-
express soluble 6PGDH. E. coli BL21(DE3)-RIL/pET-trx-
wt6pgdh produced a weak protein band corresponding to
the size of the fusion protein under the conditions (500
puM IPTG and 20°C), but a majority of the fusion protein
was insoluble (Figure 1B). Decreasing IPTG concentration
to 20 uM did not improve the expression of soluble
6PGDH (data not shown), although lowering IPTG con-
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SDS-PAGE analysis of the expression of the wtépgdh gene. (A) pET-trx-wtépgdh in E. coli BL21(DE3), (B) pET-trx-
wtépgdh in E. coli BL2 | (DE3)-RIL, (C) pET-ci-wtépgdh in E. coli BL21(DE3) and (D) pET-ci-wtépgdh in E. coli BL21 (DE3)-RIL. BI,
before induction; T, total cellular proteins; S, soluble proteins; P, purified protein. Cells were grown at 37°C until A,y of 0.6.

The induction condition was 20 uM IPTG at 20°C for 6 h.

centrations often improved the expression of soluble pro-
tein [27].

Because cellulose-binding module (CBM) tags have been
reported to enhance heterologous protein expression and
folding in E. coli [20,44], we attempted to express 6PGDH
by replacing the thioredoxin tag with a Clostridium thermo-
cellum family 3 CBM tag linked with an intein. Regardless
of IPTG concentrations (20 or 500 uM IPTG), the E. coli
BL21(DE3)/pET-trx-wt6pgdh did not produce any obvi-
ous soluble or insoluble protein bands corresponding to
the right size (Figure 1C, 20 uM IPTG). But BL21(DE3)-
RIL bearing the expression plasmid pET-trx-wt6pgdh pro-
duced some soluble 6PGDH (Figure 1D, 20 uM IPTG,
20°C). These results suggested that E. coli BL21(DE3)-RIL
enhanced expression of the wt6pgdh and the CBM tag
helped expression of soluble 6PGDH more efficiently
than did thioredoxin.

Through affinity adsorption of CBM-tagged 6PGDH on
regenerated amorphous cellulose followed by intein self-
cleavage [44], approximately eight mg of 6PGDH was
purified per liter of the culture. But the purified 6PGDH
was composed of several small-size proteins (Lane P, Fig-
ure 1D), suggesting possible proteolysis or incomplete
translation. The first cause was eliminated because addi-
tion of a protease inhibitor phenylmethanesulfonyl fluo-
ride during cell disruption and protein purification did
not change the composition of the small-size proteins
(data not shown).

Codon analysis and optimization
Figure 2 shows the wt6pgdh DNA sequence, the deduced
amino acids, and the codon-optimized DNA sequence

(co6pgdh). The wt6pgdh gene contains 47 rare E. coli
codons, accounting for ~10% of the entire sequence. They
are 20 AGA, 5 AGG, 19 AUA, and 3 CUA. The AGA(Arg)
and AUA(Ile) codon frequencies in the wt6pgdh gene are
4.3% and 4.0%, but are only 0.24% and 0.5% in E. coli
http://www.kazusa.or.jp/codon, respectively. Moreover,
two rare codons formed clusters AUA(11e97)-AUA(11e98)
and AGA(Arg306)-AGA(Arg307). Following site-directed
mutagenesis to remove these two rare-codon clusters,
there were no noticeable changes in the SDS-PAGE pat-
terns of the purified 6PGDHs before and after site-
directed mutagenesis (data not shown). Therefore, the
entire wt6pgdh DNA sequence was optimized to remove
all 47 rare codons by using frequently-used E. coli codons,
based on several rules: (i) keeping the GC ratio around
50%; (ii) avoiding cis-acting DNA sequences (internal
TATA-boxes, chi-sites, and ribosomal entry sites; AT-rich
or GC-rich sequence stretches; repeat sequences; and RNA
secondary structures); (iii) precluding cutting sites of fre-
quently-used restriction enzymes, and (iv) adding two
stop TAATAA to ensure efficient termination of transla-
tion, and (v) using a strong terminator in the expression
vector for enhancing mRNA stability. The overall GC con-
tent for the codon-optimized 6PGDH was 49% (Figure 2).

Expression of the codon-optimized épgdh gene

Plasmid pET-ci-co6pgdh encoding the fusion protein
CBM-intein-6PGDH was expressed in E. coli BL21(DE3)
and BL21(DE3)-RIL, separately. Figure 3 shows that both
hosts produced soluble target proteins at similar levels,
suggesting that E. coli BL21(DE3)-RIL was not necessary
for expression of the codon-optimized gene. After purifi-
cation, no small-size protein fragments accompanied with
the purified 6PGDH were observed (Figure 3), suggesting
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HIMER
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ATCACCTACAAG
I T Y K
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W T S Q
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ACARGGCTTTCG
T R L S
ACCCGTCTGTCC

TTCATGGCCTTT
FMAF
TTCATGGCCTTT

GGTGGATGTATC
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GGTGGCTGTATT

CTATTGAAAGGC
L L K G
CTGCTGAAAGGC

TTCATGAGTCTT
F M S L
TTCATGTCCCTG

GGTGTGTTCCAC
GV F H
GGTGTCTTTCAT

ATGGGTCAGAAT
M G QN
ATGGGTCAGAAT

CGTGTAACGAAT
RV T N
OGTGTCACAAAT

GGAAAACCCGTG
G K PV
GGTAAACCTGTT

GAAAGACGCTTC
ERRTF
GAACGCOGCTTC

ATGCCTGGGGGA
M PG G
ATGCCAGGTGGT
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G E R S
GGGGAGCGCTCT

GATGTTTTGAGC
D VLS
GACGTGCTGICT

ATTTTGAGAAAG
I L RK
ATCCTGCGCAAA

GCAGCCCTTGAC
AALD
GCAGCCCTGGAT

AAACTGTATAAT
K L Y N
AAACTGTATAAC
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S Q G M
TCTCAGGGAATG
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CTGCCAGCAAAT
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ATTGCGAGGAAA
I AR K
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P H Y D
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TCTCAGCTTCTT
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TACAACCTGGTT
Y N LV
TATAACCTGGTC

GTGAAGATGGTT
VK MV
GTTAAAATGGTC

GAAATGTCCAGT
EMS S
GAGATGAGTAGC

ACAGGAAAACCG
T G K P
ACCGGGAAACCG

ACCCCTTCCATA
TP S I
ACACCGTCCATC

GCTACTCAGGGT
AT QG
GCAACACAAGGT

GAAGCATCGAAA
E A S K
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CTCAGAAGGTAC
L R R Y
CTGCGTCGCTAT

TTGAAGGCGTCC
L KA S
GTGAAAGCGAGC
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LI Q A
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G
GGC

GGCTACAAAGTT
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GGCTATAAAGTG

ATCGAAAGCTTC
I ES F
ATCGAGAGCTTC

CCTCACCTCGAA
P HLE
CCACATCTGGAG

CTTTTCCTCGGT
L FLG
CTGTTTCTGRGT

GAGGAGATTCTT
EE T L
GAAGAGATCCTG

CACAACGGCATA
H N G I
CACAACGGCATC

ATCTTTGAAGAG
I FEE
ATTTTTGAGGAG

ATGGTCGATGTG
MV DV
ATGGTTGATGTT

AACCTGGCGGTG
N LAV
AATCTGGCAGTG

AGCGAGGAATTT
S EEF
TCGGAAGAGTTT

GAGTTCGGCTAT
EF G Y
GAATTTGGCTAT

ATATCTAACGAG
I S N E
ATTAGCAATGAG

ATAGAGAACGAA
I ENE
ATCGAAAACGAG

CAARGAGACTTC
Q R DF
CAGCGTGATTTT

TCGGTTTACAAC
S VYN
AGCGTGTATAAT

GTGAAGTCTCTC
VK S L
GTAAAAAGTCTG

CCAGGTGATTTG
P G D L
CCTGGTGATCTG

ATGGGAGTTTCT
M G V S
ATGGGTGTTTCT

TTGGAAATAGCA
L E I A
CTGGAAATTGCC

GAATACGCCATC
E Y A I
GAGTATGCCATT

TGGAACAGAGGA
¥ N R G
TGGAATCGIGGT

ATTCTGGACAAG
I L DK
ATCCTGGATAAA

GTTGAARGGGTG
VERY
GTTGAACGTGTT

TTGAGAGATCTC
L R DL
CTGCGCGATCTG
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GV S L
GGGGTATCACTG

AACGCGTATTTG
NAYL
AATGCTTATCTG

ATCCCCGTTCCT
I PV P
ATTCCGGTTCCG

TTCGGAGCACAC
F G A H
TTTGGCGCTCAC

The wild-type 6pgdh sequence, the deduced amino acid sequence, and the codon-optimized épgdh sequence.
WT, wtépgdh; CO, cobpgdh. The highlighted codons among the wtépgdh gene are the rare codons in E. coli. The codon clusters
in blue are the rare codons sites for site-directed mutagenesis. The underlined nucleotides in co6pgdh are the changed ones
corresponding to wtépgdh.
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SDS-PAGE analysis of the expression and purification
of T. maritima 6PGDH from plasmid pET-ci-cobpgdh
in the E. coli BL21(DE3) (A) and E. coli BL21(DE3)-
RIL (B). M, protein marker; Bl, before induction; T, total
cellular proteins; S, soluble proteins; P, purified protein. Cells
were grown at 37°C until Ay, of 0.6. The induction condi-
tion was 20 uM IPTG at 20°C for 6 h.

that the rare codons mainly caused the incomplete trans-
lation (Figure 1D). Approximately 15-17 mg of 6PGDH
was purified per liter of culture for both hosts.

Basic biochemical characterization of T. maritima
6PGDH

The cleaved T. maritima 6PGDH through RAC adsorption
and intein cleavage was purified and characterized. The
pH effects on 6PGDH activity were studied in 50 mM cit-
ric acid/sodium citrate buffers (pH 5.0 and 6.0), a Bis-Tris
(pH 6.5), Tris-HCI buffers (pH 7.0, 7.5 8.0, 8.5, and 9.0),
and a Hepes buffer (pH 7.5). The optimum pH was found
to be around pH 7.0 (Figure 4A). About 70% of 6PGDH
activities remained at pH 6.0 and 9.0. The enzyme had the
similar activities in the Hepes and Tris buffers (pH 7.5).

The effects of temperature on T. maritima 6PGDH activi-
ties were measured from 20 to 95°C (Figure 4B). The opti-
mum temperature was around 90°C. The 6PGDH had an
approximately 90% of its maximum activity at 80°C, but
retained only ~2 and ~20% of its maximum activity at 30
and 60°C, respectively. The activation energy was 51.4 KJ/
mol at a temperature range of 20-80°C, based on the
Arrhenius plot. The 6PGDH was highly thermostable (Fig-
ure 4C) in a 50 mM Hepes buffer (pH 6.8) containing 500
mM NaCl, 1 mM EDTA, and 5 mM B-mercaptoethanol. It
retained more than 90% activity for 48 h at 60 and 80°C
and retained ~50% enzymatic activity after 48 h at 90°C.
This enzyme had half-life times of 48 and 140 h at 90 and
80°C, respectively.

The kinetics properties of T. maritima 6PGDH followed
the Michaelis-Menten equation. The apparent K,, values

http://www.microbialcellfactories.com/content/8/1/30
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The reaction conditions of pH (A) and temperature
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centration of 0.24 mg/mL.
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were 11, 10, and 380 puM on 6-phosphogluconate,
NADP+, and NAD+, respectively and k_,, value was 325 s-1.
Clearly, this enzyme preferred NADP+to NAD+ as an elec-
tron acceptor.

Overexpression of cobpgdh and simple purification
Codon analysis indicated that the C. thermocellum CBM
and the Synechocystis intein contained 21 rare codons. In
addition, self-cleavage of intein during protein expression
and cell disruption may result in some loss of the desired
protein even at a decreased cultivation temperature [44].
Expression vector pET-co6pgdh-his was constructed to
express a co6pgdh gene with a C-terminal His-tag. Figure
5A shows the SDS-PAGE analysis of 6PGDH expression.
More than 200 mg of 6PGDH-His was purified per liter of
culture. But the specific enzymatic activity of the 6PGDH-
His was approximately 80% of that of 6PGDH without
the His tag.

Since T. maritima 6PGDH was extremely thermostable
(Figure 4C), heat precipitation was chosen for simplifying
protein purification. Plasmid pET-co6gpdh was con-
structed for expressing the co6gpdh gene without a His-tag.
The cell lysate was treated at 90 or 100°C with time
lengths ranging from 15 minute to 6 hours. The highest
6PGDH yield was obtained under heat treatment condi-
tions (90°C for 30 min), where a 6PGDH purity was
around 85%, as judged by SDS-PAGE analysis (Figure 5B).
The overall recovery yield was 90% according to 6PGDH
activity. Approximately 190 mg of 6PGDH was obtained
from the cells harvested after 4-hour induction at 37°C.

Figure 6 shows the fermentation profiles of E. coli

BL21(DE3)/pET21-co6pgdh in 200 mL of LB medium in
a 1-L Erlenmeyer flask at a constant cultivation tempera-

T S P M__kDa

B) —100
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Figure 5

SDS-PAGE analysis of the expression and purification
of T. maritima 6PGDH from the E. coli BL21(DE3)/
PET-cobpgdh-his (A) and E. coli BL21(DE3)/pET-
cobpgdh (B). Cells were grown at 37°C until A,y of 0.6.
The induction condition was 500 uM IPTG at 37°C for 4 h.
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Figure 6

Cultivation profiles of cell growth, total cellular pro-
tein, and T. maritima 6PGDH content by E. coli
BL21(DE3)/pET-cobpgdh in the LB medium at 37°C.

ture of 37°C. When the A, reached 0.6, 500 uM of IPTG
was added. The highest A,,,was 3.9, and the total cell pro-
tein was 790 mg per liter at hour 12 (9.5 hours after IPTG
induction). The 6PGDH content rose from ~10% before
induction to 38% at hour 4.5 and then decreased to levels
of ~30% for the remaining cultivation period. Up to 230
mg of 6PGDH was produced from one liter of the LB-
grown culture.

To decrease the inducer cost, different concentrations of
IPTG (20, 100 or 500 uM) as well as lactose (100 uM)
were further investigated. Nearly all cells had similar
growth patterns except that 500 puM IPTG slightly inhib-
ited cell growth during the first six-hour induction. After
cell lysis and heat precipitation, approximately 194, 224,
208, and 250 mg of the 6PGDH protein were obtained
under the conditions of 20, 100, and 500 uM IPTG, and
100 pM lactose, respectively. The largest amount of
6PGDH was obtained when lactose was used as the
inducer, suggesting that low-cost lactose was an effective
inducer and worked as a supplementary carbon source for
protein synthesis.

NADPH regeneration

Coupling of 6PGDH and G6PDH was believed to gener-
ate one more mole of NADPH per mole of glucose-6-
phosphate relative to G6PDH alone. Xylitol can be pro-
duced from xylose and NADPH mediated by xylose
reductase [45,46]. Figure 7 shows kinetics of xylitol syn-
thesis with glucose-6-phosphate as the NADPH regenera-
tion substrate and G6PDH in the presence and absence of
6PGDH. In the case of three enzyme cocktails (G6PDH,
6PGDH, and xylose reductase), 35.5 mM xylitol was pro-
duced at hour six, nearly twice that of the two-enzyme sys-
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Figure 7

Profile of xylitol synthesis coupled with NADPH
regeneration reaction from glucose-6-phosphate
mediated by G6PDH alone or coupled with 6PGDH.

tem (19.5 mM, G6PDH and xylose reductase). The yields
of xylitol synthesized were 175% and 97%, respectively,
relative to glucose-6-phosphate consumed for the reac-
tions mediated by the three enzymes and by the two
enzymes.

Discussion

The ORF TM0438 was confirmed to encode a hyperther-
mophilic 6PGDH. Through different approaches (expres-
sion vectors, hosts, cultivation conditions, inducer type,
and gene sequence), we increased expression levels of the
soluble T. maritima 6PGDH from nearly-undetectable to
more than 250 mg per liter of the LB-grown culture, as
summarized in Figure 8. Several lessons were learned
from this study. (A) The codon bias between the rare
codon-rich wt6pgdh gene and the expression host E. coli
was the largest cause for its low expression. It can be
addressed (i) mainly by a codon-optimized synthetic gene
(Figure 5) or (ii) partially by using E. coli BL21(DE3)-RIL
(Figure 1). (B) The C. thermocellum CBM tag enhanced T.
maritima 6PGDH folding more efficiently than did thiore-
doxin (Figure 1Duvs Figure 1B). (C) Decreasing cultivation
temperature and/or inducer concentration possibly
decreased formation of inclusion body. But it was not nec-
essary for the expression of the codon-optimized 6pgdh
gene (Figure 5). (D) The 6PGDH was induced by a low
level of IPTG or lactose. Low-cost lactose was highly rec-
ommended because it was used as the carbon source for
supporting cell growth and protein synthesis (low cost
plus high protein yield). (E) More than 30% of the E. coli
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Figure 8

Production and purification of T. maritima 6PGDH.
The 6PGDH amounts were calculated based on their activity
relative to the purified 6PGDH specific activity. The amount
of total T. maritima 6PGDH proteins produced by E. coli were
estimated from the band intensities on the SDS-PAGE gels
relative to those contained in the soluble fraction. Expression
host was E. coli BL2 | (DE3) except where ** denoted E. coli
BL21(DE3)-RIL. The data from left to right were obtained
from Figure | A, Figure IC, Figure 1D, Figure 3A, Figure 3B,
Figure 5A, and the expression by the E. coli BL21(DE3)/pET-
cobpgdh (induced by 100 uM lactose at 37°C for 10 h).

cellular protein was soluble T. maritima 6PGDH after
numerous approaches. (F) Heat precipitation was effec-
tive to obtain relatively pure thermostable enzymes (Fig-
ure 5B), suggesting that feasibility of ultra-low-cost mass
production of this thermostable enzyme.

Few studies have been conducted pertaining to cloning
and characterization of 6-phosphogluconate dehydroge-
nase [47,48]. The T. maritima 6PGDH is the most ther-
mostable 6PGDH characterized so far, with half-life times
of 48 h and ~140 h at 90°C and 80°C, respectively. This
enzyme was far more thermostable than the Bacillus
stearothermophilus 6PGDH with a half-life time of about
15 min at 70°C [49]. The hyper-thermostability of T. mar-
itima 6PGDH makes it possible to simplify its purification
by heat precipitation, different from most protein purifi-
cation technologies, such as chromatography or adsorp-
tion/desorption [19,44]. Heat precipitation is becoming a
popular protein purification protocol for hyper-ther-
mostable proteins [50,51].
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NAD(P)H enzymatic regeneration can be conducted by
combining a number of enzyme/substrates, for example,
glucose dehydrogenase [52], formate dehydrogenase/for-
mate [53], phosphate dehydrogenase/phosphite [46],
G6PDH/glucose-6-phosphate [42,43,54], and so on.
Starting from G6PDH and glucose-6-phosphate, the addi-
tion of 6PGDH doubled NADPH yield to two NADPH per
glucose-6-phosphate, resulting in 1.8-fold xylitol produc-
tion as compared to G6PDH alone (Figure 7). This new
enzyme cocktail would make the NADPH regeneration
from glucose-6-phosphate more economically feasible.

High expression levels of T. maritima 6PGDH in E. coli (>
30% of total cellular protein), simple purification by heat
precipitation and its hyper-thermostability suggest great
potential for decreasing protein costs associated with its
production, separation, and use. Although costly LB
medium was used for production of 6PGDH in flasks on
a laboratory scale, the production cost of 6PGDH is antic-
ipated to decrease greatly by using low-cost lean medium
plus high-cell-density fermentation in bioreactors. This
highly-thermostable 6PGDH would be invaluable for
high-yield generation of hydrogen from polysaccharides
and water mediated by cell-free synthetic pathway
biotransformation (SyPaB) [12,36,37].

http://www.microbialcellfactories.com/content/8/1/30

Conclusion

In conclusion, we over-expressed more than 250 mg of T.
maritima 6PGDH per liter of culture through numerous
approaches, characterized its basic biochemical proper-
ties, and demonstrated its applicability for high-yield
NADPH regeneration. This hyper-thermostable 6PGDH
was easily purified by heat precipitation. The methodol-
ogy for over-expression and simple purification of this
thermostable protein would be useful for the production
of other thermostable proteins in E. coli.

Methods

Chemicals, plasmids, and strains

All chemicals were of reagent grade, purchased from
Sigma (St. Louis, MO) and Fisher Scientific (Pittsburgh,
PA), unless otherwise noted. Regenerated amorphous cel-
lulose (RAC) was prepared through cellulose dissolution
by ice-cooled concentrated phosphoric acid followed by
regeneration in water [55]. Pfx50 DNA polymerase,
Champion™ pET102 Directional TOPO® Expression Kit
with E. coli BL21 Star™ (DE3), and Ni-NTA agarose were
purchased from Invitrogen (Carlsbad, CA). The T. mar-
itima genomic DNA was purchased from the American
Type Culture Collection (Manassas, VA). The strains, plas-
mids, and oligonucleotides used in this study are listed in
Table 1.

Table I: The strains, plasmids, and oligonucleotides used in this study

Description Contents Reference/sources
Strain
E. coli BI2|star(DE3) B F-ompT hsdSg(rg'mg") gal dem mel31 (DE3) Invitrogen
E. coli BI21(DE3)-RIL B F-ompT hsdS(rg-mg’) dem Tet gal A(DE3) endA Hte Stratagene
[argU ileY leuW Cam']

Plasmid
pCIP Ampr, T7 promoter, lacO, ColEl ori, parental DNA, [44]

replacing pgm gene with wtépgdh, coépgdh or gépdh

pET2la Epoch Biolabs

pET-trx-wtépgdh Ampr, T7 promoter, lacO, ColEl ori, Trx-wtépgdh This study
pET-ci-wtépgdh wtbépgdh gene subcloned into pCIP This study
pET-ci-co6pgdh cobpgdh gene subcloned into pCIP This study
pET-co6pgdh-his cobpgdh gene with C-terminal (His), cloned into pET21a
pET-co6pgdh Removed C-terminal (His), from pET-co6pgdh-his This study
pET-ci-g6pdhp Expression of T. maritima gépdh This study
pET26b-xr Expression of N. crassa xylose reductase [57]

Primers* Final plasmid
Trx-F 5'-caccatggtgaaatctcatattggtctcatcggte-3' pET-trx-wtépgdh
Trx-R 5'-tcatcctatctctecttecteecagttg-3'

Cl-wt-F 5'-ccagtctactcgaggtgaaatctcatattggtctcatcggte-3' pET-ci-wtépgdh

Cl-wt-R 5'-ccagtctagtcgaccctatctetecttectcecag-3'

Cl-co-F 5'-ccagtcta ctcgagggetcttccatgaaatcccacattggectgate-3' pET-ci-co6pgdh

Cl-co-R 5'-ccagtctaggatcctcaagtcgagecaatctecccctecteee-3'

NH-F 5'-gaggagggggagattggctaacatcaccaccaccattaag-3' pET-cobpgdh
NH-R 5'-cttaatggtggtggtgatgttagccaatctccccctecte-3'
G6P-F 5'-ccagtctactcgagggctcttce atgaagtgcagtctgggattg-3' pET-ci-gépdh
G6P-R 5'-ccagtctagtcgacagttttctccattttctace-3'
* Underlined nucleotide sequences indicate restriction endonuclease sites.
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Construction of expression plasmids

Five expression plasmids were constructed for expressing
wild-type 6pgdh (wt6pgdh) and codon-optimized 6pgdh
(co6pgdh) genes under the control of T7 promoter (Table
2). Plasmid pET-trx-wt6pgdh encoding a fusion protein of
thioredoxin (Trx) and 6PGDH was constructed by inser-
tion of amplified wt6pgdh gene into pET102 Directional
TOPO® . The wt6pgdh DNA fragment was PCR amplified
using primers Trx-F and Trx-R from the T. maritima
genomic DNA. Plasmid pET-ci-wt6pgdh was constructed
by replacing the pgm gene in the plasmid pCIP [44] by the
wt6pgdh gene. The whole 6pgdh DNA sequence was opti-
mized based on the codon usage for E. coli B http://
www.kazusa.or.jp, yielding the co6pgdh DNA sequence.
The co6pgdh DNA sequence with a C-terminal His-tag was
synthesized by Epoch Biolabs (Sugar Land, TX) and
cloned into pET21a via the restriction endonuclease sites
Ndel and BamH1 to obtain pET-co6pgdh-his. Plasmid
pET-ci-co6pgdh was constructed similarly to pET-ci-
wt6pgdh using the co6pgdh DNA sequence. Plasmid pET-
co6pgdh encoding 6PGDH protein without a His-tag was
constructed based on pET-co6pgdh-his by replacing the
first codon (CAT) of the His-tag with a stop codon (TAA).
The site-directed mutagenesis was conducted by using
primers NH-F and NH-R following QuikChange™ Site-
Directed Mutagenesis (Stratagene, La Jolla, CA).

Protein expression and purification

The E. coli strain harboring the expression plasmid was
grown in a 200 mL LB medium in a 1-L flask with appro-
priate antibiotics at 37 °C until the Ay, reached ~0.6. After
addition of the inducer (isopropyl B-D-1-thiogalactopyra-
noside - IPTG or lactose), the culture were grown at 37°C
or a lower temperature (e.g. 20°C). For the CBM-tag pro-
teins, they were purified through affinity binding on RAC
followed by intein self-cleavage [44]. For the His-tag pro-
teins, the cells were disrupted by sonicator in a 50 mM
Tris-HCI (pH 7.5) containing 500 mM NaCl, 5 mM imi-
dazol, and 20% (w/v) glycerol. After centrifugation at
8,000 g for 5 min, the supernatant was collected and puri-
fied by using affinity binding on Ni-NTA resin. For purifi-
cation through heat precipitation, the soluble fraction of
E. coli cell lysate was incubated at 90°C for 30 min in a 50
mM Tris-HCI (pH 7.5) buffer containing 100 mM NaCl

Table 2: Expression plasmids for T. maritima 6PGDH with or
without the tags

Plasmid Modular organization Molecular mass

pET-trx-wtépgdh Trx-WT6PGDH 66, 634 Da
pET-ci-wtépgdh CBMe-intein-WT6PGDH 91, 187 Da
pET-ci-co6pgdh CBM-intein-CO6PGDH 91, 187 Da
pET-coépgdh-his CO6PGDH-(His), 53,975 Da
pET-co6pgdh CO6PGDH 53,152 Da

http://www.microbialcellfactories.com/content/8/1/30

and 20% (w/v) glycerol. After centrifugation, the superna-
tant contained relatively pure 6PGDH.

The T. maritima glucose-6-phosphate dehydrogenase
(G6PDH) was produced by E. coli BL21(DE3)-RIL/pET-ci-
g6pdh. The G6PDH was purified through affinity binding
on RAC followed by intein self-cleavage [44] and charac-
terized as described [56]. The Neurospora crassa xylose
reductase was expressed and purified as described else-
where [57].

6PGDH activity assays

T. maritima 6PGDH activity was measured in a 50 mM
Hepes buffer (pH 7.5) containing 2 mM 6-phosphogluco-
nate, 1 mM NADP+, 5 mM Mg?+, 0.5 mM Mn2+, and 0.5
mg bovine serum albumin per mL at 80°C for 5 min. The
reaction product NADPH was measured at 340 nm by
DU® 800 UV/visible spectrophotometer (Beckman Coul-
ter, Fullerton, CA). The enzyme unit was defined as one
pmole of NADPH produced per min. For determining
enzyme kinetic parameters, the K, of 6-phosphogluco-
nate was measured in a 50 mM Hepes (pH 7.5) buffer
containing 1 mM NADP+, 5 mM Mg2+, 0.5 mM Mn2+,
along with 2.5 to 50 uM 6-phosphogluconate; the K, of
NADP+ was measured in the same buffer 2 mM 6-phos-
phogluconate with various concentrations of NADP+from
2.5 to 50 uM. The K,, of NAD+ was measured using 50 to
1000 pM NAD+,

Protein assays

Concentration of soluble protein was measured by the
Bio-Rad Bradford protein kit with bovine serum albumin
(BSA) as a standard protein. Total cellular protein was
measured as described previously [58].

Xylitol production with NADPH regeneration

Synthesis of xylitol from xylose mediated by xylose
reductase was conducted in a 200 pL reaction volume in
the presence of GGPDH or G6PDH/6PGDH at 25°C. The
reaction mixture contained a 50 mM Hepes buffer (pH
7.5) with 50 mM xylose, 1 mg xylose reductase/mL, 2 mM
NADP+, 20 mM glucose-6-phospahte, 0.16 mg T. maritima
6PGDH/mL, 0.3 mg T. maritima 6PGDH/mL, 1 mg BSA/
mL, 0.5 mM MnCl, and 5 mM MgCl,. A 10 pL of the sam-
ple was withdrawn and diluted 20-fold in 5 mM H,SO,.
Xylitol was measured by a HPLC equipped with the Bio-
Rad Aminex HPX-87H column [59].
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