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Abstract
Context—Chronic pain and depression are highly comorbid conditions, yet little is known about
the neurobiological basis of pain processing in major depressive disorder (MDD).

Objective—To examine the neural substrates underlying anticipation and processing of heat pain
in a group of unmedicated young adults with current MDD.

Design—Functional magnetic resonance neuroimaging (fMRI) data were collected during an event-
related factorial experimental pain paradigm. Painful and non-painful heat stimuli were applied to
the left volar forearm while different color shapes explicitly signaled the intensity of the upcoming
stimulus.

Setting—University brain imaging center.

Patients—15 (12 F) young adults with current MDD and 15 (10F) healthy subjects with no history
of MDD were recruited and matched for age and level of education. The Structured Clinical Interview
for DSM-IV was administered to all participants by a board-certified psychiatrist.

Main Outcome measure—Between-group differences in blood oxygen level-dependent fMRI
signal change to anticipation and processing of painful versus non-painful temperature stimuli.

Results—MDD compared to healthy controls showed: (1) increased activation in right anterior
insular region, dorsal anterior cingulate and right amygdala during anticipation of painful relative to
non-painful stimuli, (2) increased activation in right amygdala and decreased activation in
periaqueductal gray, rostral anterior cingulate and prefrontal cortices during painful stimulation
relative to non-painful stimulation, and (3) in MDD subjects greater activation in the right amygdala
during anticipation of pain was associated with greater levels of perceived helplessness.

Conclusion—These findings suggest that increased emotional reactivity during the anticipation of
heat pain may lead to an impaired ability to modulate pain experience in MDD. Future studies should
examine the degree to which altered functional brain response during anticipatory processing affects
ability to modulate negative affective states in MDD, which is a core characteristic of this disorder.

Introduction
Chronic pain and depression are common and often overlapping syndromes. Over 75% of
patients with depression experience chronic or recurring pain 1. Similarly, 30-60% of chronic
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pain patients report significant depressive symptoms 2. Understanding the neurobiological
basis of this relationship is important because the presence of comorbid pain contributes
significantly to poorer outcomes and increased cost of treatment in MDD 3. However, despite
the close relationship between clinical pain and depression, the neural basis of altered pain
processing in patients with major depressive disorder (MDD) is poorly understood.

Anticipation of future events is an important component of emotion processing 4. Negative
anticipatory biases not only affect acute emotional experiences 5, but also play an important
role in the development and maintenance of MDD and chronic pain disorders 6. Current
cognitive models of MDD posit that depressed individuals negatively bias their expectations,
perceptions and memories 7-9 10. Such negative biases may account for the development of
passive coping styles that promotes helplessness, and therefore the maintenance of depression
7, 10-12. Depressed individuals exhibit more passive response styles, such as lack of control,
rumination and helplessness 13, which have been associated with longer and more severe
episodes of depression 14, 15, as well as with enhanced emotional impact of chronic and
experimental pain 16, 17.

Consistent with this conceptualization, human imaging studies have shown that MDD is
associated with abnormally increased activation within an emotion processing network that
includes the extended amygdala and prefrontal cortex during the anticipation of negative
images 18. Related studies, which have examined experimental pain processes in currently
depressed patients, 19-21 provide preliminary evidence that MDD is associated with functional
alterations of emotion processing circuitry during the perception of pain. Additionally, recent
findings by our group and others suggest that MDD subjects show an affective bias (i.e.,
increased emotional reactivity) when they experience experimental pain 22, 23, although some
find increased thermal pain thresholds in depression (e.g.,24 but see 22 for discussion). Despite
these findings, little is known about the degree to which anticipatory pain processing is altered
in MDD or whether certain types of coping styles contribute to these changes. Clarifying the
relationship between heightened anticipation of negative events (i.e., pain), which biases
individuals towards helplessness and depression, and its underlying neural substrates, helps to
develop a mechanistic insight of why being depressed makes one susceptible to chronic pain
and/or why comorbid pain worsens the course of depression.

In this fMRI study we examined the neural systems involved in the anticipation and processing
of heat pain in a group of young individuals with current MDD, and a matched group of healthy
control (CON) subjects with no lifetime history of MDD (or other psychiatric illness). We
hypothesized that MDD relative to CON subjects would show increased emotional reactivity
to anticipatory cues, as evidenced by increased activation of emotion processing brain areas.
We further hypothesized that a passive response style would underlie heightened anticipatory
reactivity to negative stimuli in MDD.

Materials and Methods
Subjects

Fifteen unmedicated (no pharmacological treatments > 30 days), currently depressed subjects
(12F, mean age ± SD: 24.5±5.5) were recruited via flyers and internet bulletin boards (see
Table 1 for detailed description). Each individual fulfilled diagnostic criteria for MDD
according to a structured clinical interview for DSM IV (SCID-P) 25, which was administered
by a board certified psychiatrist (SCM). Participants completed the Beck Depression Inventory
(BDI-2) 26 to establish the severity of current depressive symptoms. Ten out of fifteen subjects
were naïve to psychotropic medication. As well as meeting criteria for current MDD, seven of
the MDD individuals also met criteria for lifetime (but not current) comorbid depressive and/
or anxiety disorders. Specifically, three MDD subjects (one male) met criteria for past but not
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current dysthymia, two female MDD subjects met criteria for past but not current PTSD, one
female MDD subject met criteria for past but not current generalized anxiety disorder and panic
disorder and one female MDD subject met criteria for past but not current dysthymia and panic
disorder. Fifteen medically healthy comparison (CON) subjects (10F, mean age 24.3±5.0) with
no history of psychiatric disorders according to a structured clinical interview for DSM IV
(SCID-P) 25 and no first-degree relatives with psychiatric disorders were matched to the MDD
subjects for age (t(28)=0.1, p=0.92) and level of education (t(28)=0.4, p=0.69). Subjects were
excluded from the study if they: 1) met DSM-IV criteria for lifetime alcohol or substance
dependence; 2) fulfilled DSM-IV criteria for alcohol or substance abuse within 30 days of
study participation; 3) were experiencing active suicidal ideation; 4) had a lifetime history of
bipolar or psychotic disorder; 5) had clinically significant comorbid medical conditions, such
as cardiovascular and/or neurological abnormality; 6) had a history of current or past chronic
pain condition. Written informed consent was obtained from each individual following a
detailed description of the study, which was approved by the University of California San
Diego Institutional Review Board. A chi-square showed that the groups were not significantly
different in their gender distributions (χ2=0.682, p=n.s.). All but one MDD subject completed
the Pain Catastrophizing Scale (PCS) 16 which is a self-report 13-item questionnaire that
evaluates three separate dimensions of catastrophizing: magnification (e.g. “I wonder whether
something serious may happen”), rumination (e.g. “I can’t seem to keep it out of my mind”)
and helplessness (e.g. “There is nothing I can do to reduce the intensity of pain”). We used this
PCS to assess “helplessness” since it is specific to pain experience, unlike Illness Cognition
Questionnaire (ICQ), for instance, that assess “helplessness” associated with chronic illness
27.

Paradigm Design (see Figure 1)
We used two different types of temperature stimuli (i.e., moderately painful heat and non-
painful warmth), two different cognitive contexts (i.e., fixation and continuous performance
task (CPT)) and examined brain behavior during two temporal phases (i.e., stimulus
anticipation and stimulus administration). CPT was used to engage subjects in a measurable,
low cognitive load, controlled experimental probe. This task entailed pressing LEFT button
when subjects saw a circle and RIGHT button whenever they saw a square on the screen. Visual
stimuli were presented at a rate of 0.5Hz. The two stimulation intensities (i.e., moderately
painful heat and non-painful warmth) were individualized to each participant prior to scanning
in order to establish similar perceptual intensity between groups. Stimuli were presented in a
pseudo-random and counterbalanced order using a 9cm2 thermode (Medoc TSA-II, Ramat-
Yishai, Israel), which was securely fastened to each subject’s left volar forearm. Each
temperature was presented 20 times. The following average temperatures (mean ± SD) that
resulted in similar ratings of intensity of thermal stimuli were used: 1) MDD: painful - 46.4 ±
0.6°C, non-painful - 38.9 ± 0.2°C; 2) CON: painful - 46.9 ± 0.6°C, non-painful - 38.9 ±0.2°C.
Painful (p=0.08, t(28)=1.8) and non-painful (p=0.59, t(28)=0.54) temperatures were not
statistically different between the groups. Since painful temperatures were only ∼0.5°C higher
in MDD than in CON participants, the observed differences in brain activation were probably
not due to differences in physical attributes of the stimuli. Subjects were cued to an upcoming
painful stimulus whenever the color of the shape changed to RED, and to an upcoming non-
painful warm stimulus whenever the color of the shape changed to GREEN. Subjects were told
that they would feel several painful and non-painful stimuli. Subjects’ performance on the CPT,
including reaction times (RT) and percent correct, were scored and compared between the
groups. Lack of differences between the groups in percent correct and RTs would suggest
similar attentional engagement and psychomotor reactivity, respectively, both of which are
compromised in MDD 28. The effects of the CPT were regressed out by the linear contrasts
of interests (see below). Main effects of CPT are shown in Supplementary Material.
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fMRI Protocol
Four fMRI runs (for a total of 952 brain volumes) sensitive to blood oxygenation level-
dependent (BOLD) contrast 29 were collected for each subject using 3.0 Tesla GE scanner
(T2* weighted echo planar imaging, TR=2000 ms, TE=32ms, flip angle= 90, FOV=23cm,
64×64 matrix, 30 2.6-mm 1.4-mm gap axial slices, 238 scans) while they performed the above
paradigm. FMRI acquisitions were time-locked to the onset of the task. During the same
experimental session, a high-resolution T1-weighted image (FSPGR, TR=8ms, TE=3ms,
TI=450 ms, flip angle=12, FOV=25cm, 172 sagital slices, 1×0.97×0.97 mm3 voxels) was
obtained for anatomical reference.

Statistical Analysis
All imaging data were analyzed with the Analysis of Functional NeuroImages (AFNI) software
package 30. Preprocessed time series data for each individual were analyzed using a multiple
regression model consisting of eight task-related regressors (Figure 1): 1) Anticipation of
painful stimuli with CPT (A1); 2) Anticipation of painful stimuli without CPT (B1); 3)
Anticipation of non-painful stimuli with CPT (C1); 4) Anticipation of non-painful stimuli
without CPT (D1); 5) Processing of painful stimuli with CPT (A2); 6) Processing of painful
stimuli without CPT (B2); 7) Processing of non-painful stimuli with CPT (C2); 8) Processing
of non-painful stimuli without CPT (D2). Eight additional regressors were included in the
model as nuisance regressors: two cue regressors (to signal an upcoming temperature stimulus),
one outlier regressor to account for physiological and scanner noise, each individual’s white
matter regressor to account for activation that is not spatially specific, three movement
regressors to account for residual motion (in the roll, pitch, and yaw directions), and regressors
for baseline and linear trends to account for signal drifts. A Gaussian filter with a full width-
half maximum of 4mm was applied to the voxel-wise percent signal change data to account
for individual variation in the anatomical landmarks. Data from each subject were normalized
to Talairach coordinates 31.

Primary contrasts between regression coefficients from the AFNI program 3dDeconvolve were
entered into two-sample t-tests. We examined activation differences between the groups for:
1) Pain Anticipation (i.e., [(A1+B1)-(C1+D1)], Figure 1), and 2) Pain Stimulation (i.e., [(A2
+B2)-(C2+D2), Figure 1]. A threshold adjustment method based on Monte-Carlo simulations
was used to guard against identifying false positive areas of activation 32. Based on the whole
brain analysis, an a priori voxel-wise probability of p<0.05 in a cluster of 512 μL resulted in
an a posteriori cluster-wise probability of p <0.05. Since amygdala consistently shows
abnormal activity in MDD 33 and plays important role in pain 34and anticipatory processes
35we performed region of interest (ROI) analyses in the amygdala for the above linear contrasts
using Talairach-defined bilateral masks for the amygdalae 31. Due to small volume correction,
a cluster of at least 128 μL in the amygdala during the ROI analysis was considered significant.
The average percent signal in the amygdala was extracted from each individual subject’s data
using the group functional mask that survived this threshold/cluster method. This activation
was then correlated with the three dimensions of PCS (i.e., helplessness, rumination,
ramification) to examine whether amygdala activity was predicted by passive coping styles.
Correlations were performed separately for each group and corrected for multiple comparisons
using Bonferoni’s method. The between-group differences in the strength of these correlations
was tested by contrasting the Fisher Z transform of the correlation values in each group; this
allowed testing whether relationship between amygdala activation and passive coping styles
is specific to MDD. Furthermore, in order to examine whether activation of dorsolateral
prefrontal cortices (dlPFC) and PAG during painful stimulus was related to recruitment of pain
modulatory systems 36-38 the average percent signal in these areas was extracted from each
individual subjects’ data using the group functional mask that survived whole brain threshold/
cluster method and correlated with subject’ average post-scan ratings of pain intensity and
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unpleasantness. All post-hoc statistical analyses were performed with SPSS 12.0 (SPSS. Inc,
Chicago, IL).

Results
Behavioral Measures

Performance on the CPT—There was no significant difference between the groups in RT
or percent correct (Table 2) suggesting that both MDD and CON individuals showed similar
engagement in the experimental paradigm.

Behavioral Ratings between fMRI runs—Subjects reported the average intensity and
unpleasantness of the painful and non-painful stimuli following each functional run (Figure
2). All subjects rated high temperatures as painful, and low temperatures as non-painful. The
MDD and CON groups did not differ in their ratings of the intensity and unpleasantness of
painful heat, or in their ratings of the intensity of non-painful warmth (p’s > 0.2, t’s(28) < 1.2).
The MDD relative to the CON subjects rated non-painful warm stimuli as slightly more
unpleasant (p=0.04, t(28)= 2.15), a finding which is consistent with our previous observations
of the increased affective bias in MDD at non-painful temperatures 22.

fMRI Results
Pain Anticipation—Table 3 (upper section) shows significant group differences in BOLD
signal during the anticipation of pain, i.e., anticipation of painful heat versus anticipation of
non-painful warmth. Whole brain analyses revealed that MDD compared to CON subjects
showed increased activity in several brain regions including, right anterior insular region (AI),
left AI/inferior frontal gyrus, bilateral dorsal anterior cingulate cortex (ACC), right dorsolateral
prefrontal cortex (DLPFC), several clusters in the left DLPFC, as well as clusters in the
temporal and occipital lobes. CON compared to MDD subjects showed increased activity in
the right caudate, bilateral precuneus, right posterior cingulate cortex and ventral brainstem
(Figure 3a). The ROI analysis in the amygdala showed increased right amygdala activation in
MDD versus CON subjects during anticipation of painful heat relative to anticipation of non-
painful warmth.

Pain Stimulation—Table 3 (lower section) shows significant group differences in BOLD
signal during painful stimulation, i.e., painful-heat versus non-painful warmth. A whole brain
analysis revealed that MDD compared to CON subjects showed increased BOLD activation
in the left parahippocampal gyrus and occipital cortex, whereas CON compared to MDD
subjects showed increased BOLD signal in several regions within DLPFC, right rostral ACC,
periaqueductal gray (PAG), a cluster in the temporal lobe, precuneus and cerebellum (Figure
3b). ROI analysis in the amygdala showed increased right amygdala activation in MDD versus
CON subjects for the painful heat versus non-painful warmth comparison.

Brain-Behavior Correlations—To examine whether amygdala activation was related to
passive coping styles in MDD, we correlated percent signal change within the amygdala with
the helplessness, rumination and ramification dimensions of PCS (see Methods). Significant
positive correlations were observed in the MDD group between greater helplessness scores
and greater activity in the right amygdala during the anticipation of pain (r=0.65, p = 0.014)
(Figure 4a). After correcting for multiple comparisons, there was a trend for correlations
between rumination subscale and amygdala activation during anticipation (r=0.63, p=0.017),
as well as helplessness (r=0.62, p=0.019) and rumination (r=0.59, p=0.029) subscales and
amygdala activation during pain to be significant. In comparison, none of these correlations
were significant in the CON group (-0.27<r’s<0.25, p’s >0.34). Furthermore, significant
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between-group difference was found in the strength of correlations between helplessness and
amygdala activation only during anticipation of pain (p=0.012).

To examine whether activation within bilateral DLPFC and PAG during pain stimulation was
related to recruitment of pain modulatory systems, we correlated percent signal changes within
these areas with subjects’ post-scan ratings of temperature stimuli (see Methods). We found
significant inverse correlation between percent signal change within right DLPFC and subjects’
post-scan ratings of pain intensity in the MDD (r=-0.6, p=0.019), CON (r=-0.64, p=0.012) and
in the combined groups (r=-0.57, p=0.001) (Figure 4b). Correlations between left DLPFC and
PAG and subjects’ intensity ratings or between bilateral DLPFC and PAG and subjects’
unpleasantness ratings did not reach statistical significance in MDD, CON or the combined
groups (p’s > 0.08).

Comment
Three main results were observed. First, increased activation of the amygdala, anterior insular
region and ACC was observed during pain anticipation in MDD subjects, suggesting that
depressed individuals experience increased affective processing even before they actually
experience painful stimuli. Second, greater right amygdala activation during pain anticipation
in MDD was associated with greater levels of perceived helplessness, which was specific to
this disorder. Third, for the same perceived intensity of painful stimulation, MDD subjects
seemed to show maladaptive activation of a neural network that is involved in pain and emotion
modulation 39. Taken together, these findings extend previous research describing affective
biasing of the pain experiences in MDD 22, 23, 40, 41, and are consistent with the
conceptualization of MDD as a disorder of abnormal anticipatory processing and
hypervigilance. These findings may also suggest that altered functional responses within a
specific neural network during anticipatory processing in MDD may lead to an impaired ability
to modulate not only the experience of pain, but also negative affective states.

To our knowledge, this is the first study to examine the neural correlates of anticipatory pain
processing in young, unmedicated individuals with current MDD. Cognitive models of
depression suggest that depressed individuals negatively bias their expectations, thereby
creating conflict with the environment (reviewed in 10). The increased activation within
amygdala, AI and ACC in MDD subjects during anticipation of pain found here is consistent
with this cognitive model, and may represent a neural correlate of hypervigilant monitoring
42 of negative information in MDD 43. Both the ACC and insula receive afferent information
via the Lamina I homeostatic pathway 44. According to recent neuroanatomical and
neuroimaging evidence, this pathway subserves all homeostatic emotions, including pain, i.e.,
feelings and motivations associated with changes in the body’s physiological condition and
with the autonomic responses and behaviors that occur in order to restore an optimal balance
44, 45. Moreover, evidence from rodents and non-human primate studies describes strong
anatomical connections between the insula and both the amygdala and ACC 46. Related
functional neuroimaging evidence shows that the AI, ACC and amygdala are also the main
nodes within “emotional salience” network that is active during undirected mental activity
47, further indicating that these structures are directly involved in homeostatic processing.
Inappropriately large responses within the brain’s homeostatic and emotional salience network
to a stressor or upcoming pain suggest an exaggerated experience of emotional distress or
affective biasing in MDD, even before the actual painful stimulation occurs. Interestingly,
MDD subjects showed increased affective biasing during anticipation of pain even though the
perception of pain intensity was not different. This suggests that the difference between the
expected and the actual body state, or the interoceptive error signal, may be higher in MDD.
Neuroanatomical and functional neuroimaging evidence shows that the AI plays a major role
in detecting the mismatch between cognitive and interoceptive states, reflecting subjects’
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awareness of the perceived (and not the actual) interoceptive state 44, 48, 49. Increased AI
activation during anticipation of pain in our MDD subjects is consistent with the idea that the
awareness of the interoceptive state during anticipation of impending pain is heightened in
MDD. This heightened awareness of the interoceptive state creates a mismatch between the
observed and expected body state similar to the ideology behind anxiety disorders 50. Thus,
in much the same way that MDD individuals have a maladaptive interpretation of the
environmental cues they also may have impaired interoception.

Cognitive coping styles play an important role in the anticipation and processing of negative
emotional information, and the amygdala is directly involved in these processes. Specifically,
the amygdala has been linked to “passive coping” strategies, such as helplessness 51 and
catastrophizing 52. For example, a lack of controllability during painful stimulation was
associated with increased amygdala activity in healthy human subjects 53. Likewise,
unsolvable cognitive problems that induce a state of learned helplessness in humans are
associated with increased amygdala activity 54. Furthermore, in fibromyalgia patients, passive
attitudes toward pain are significantly associated with activity in extended amygdala 52.
Exaggerated activation of the amygdala in our MDD patients during anticipation of pain was
significantly predicted by a measure of helplessness towards pain in these patients and this
relationship was specific to the MDD patients. Acute antidepressant treatments can
significantly diminish resting metabolism and functional activation within amygdala towards
negative emotional stimuli and the amount of decrease can predict relapse 55, 56. Although
speculative, the mechanistic relationship between helplessness and amygdala activation found
in our study may suggest that the therapeutic effects of cognitive therapy directed toward
reducing passive cognitions in depression, may be grounded in the effects of therapy on
amygdala functioning.

When dealing with pain, cortical and subcortical modulatory systems are normally activated
57, 58, which are aimed to elicit adaptive behaviors to stressful exposures. Our findings suggest
that MDD is associated with a heightened alarm signal during anticipation of pain.
Nevertheless, despite this heightened alarm signal in MDD, the brain shows ineffective or
maladaptive recruitment of pain and emotion modulatory pathways during the experience of
pain. Studies that have examined the mechanisms of pain and emotion modulation using, for
instance, placebo 57, 59 and/or attentional diversion to a secondary task 60, 61 consistently
show increased activation within rostral ACC. This region of the ACC is connected to PAG,
which, in turn, is one of the main nodes of the endogenous pain inhibitory circuits 58, 62.
Furthermore, regions of the lateral and medial prefrontal cortex play important role in emotion
regulation, showing increasing activation as a function of the emotion and pain suppression
process (e.g., reappraisal) (reviewed in 37, 39) or placebo analgesia 36. In the current study,
all of these structures were significantly more activated in healthy compared to MDD subjects
during actual pain experience, supporting maladaptive response within pain- and emotion-
modulatory circuits in MDD. Furthermore, right DLPFC activation during pain experience in
our study showed significant negative correlation with average subjective pain intensity
ratings, suggesting that decreased activation of this structure during painful stimulation in
MDD might be related to maladaptive cortical pain modulation in this disorder. These findings
are consistent with ineffective emotional regulation 63-66 and altered endogenous opioid
neurotransmission on mu-opioid receptors in MDD 67. Deficient endogenous pain modulation
has been implicated in chronic and functional pain disorders, including fibromyalgia 68 69,
chronic tension-type headache 70, irritable bowel syndrome 71 and central post-stroke pain
72. Deficient endogenous pain modulation is one of the possible mechanisms leading to sensory
allodynia in chronic pain disorders, i.e., when stimuli that are normally perceived as non-
painful become painful 73. In our study, groups were matched on the perceived intensity of
non-painful and painful stimuli, i.e., the sensory experience of thermal stimuli was not different
between the groups. However, as we observed previously 22, MDD subjects demonstrated

Strigo et al. Page 7

Arch Gen Psychiatry. Author manuscript; available in PMC 2009 June 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“emotional allodynia”, i.e., experiencing non-painful warm stimuli as unpleasant. In fact, a
recent study showed that this concept also applies to fibromyalgia patients who rated non-
painful muscle sensation as unpleasant or emotional 74. It is plausible that the decreased
activation within the brain’s pain and emotion modulation circuitry observed in our MDD
patients is due to ineffective functioning of these systems or a side effect of emotional allodynia.
Further studies should examine how decreased activation of endogenous pain/emotion
regulatory systems relates to experience of emotional allodynia and whether compromised pain
modulation contributes to high vulnerability to chronic pain in depression.

We also observed decreased activation within bilateral precuneus and posterior cingulate cortex
in MDD compared to healthy control subjects in our study. This finding is consistent with the
notion of competing cognitive networks 75 and prior observations in MDD patients 76, 77. In
addition this region appears responsive to treatment in MDD 76, 77 and can predict prognosis
in mild cognitive impairment 78. Future studies need to examine the role of the posteromedial
cortex in pain-depression comorbidity.

Our results are in direct agreement with our own psychophysical observations 22 of increased
emotional reactivity to painful stimuli in young depressed adults without comorbid chronic
pain condition. Considering increased pain affect to experimental pain in students with
increased and/or induced depressive moods 79, 80, increased affective biasing to daily pain in
chronic pain patients with history of depression 81, 82, as well as increased affective processing
in comorbid chronic pain and depression 20, these results suggest that depression has profound
acute, as well as chronic effects on the emotional behavior and brain circuitry. Therefore, even
acute changes in the affective state of an individual may significantly influence interoceptive
state, which then affectively biases behaviors and feelings towards environmental stimuli.
Therapeutic interventions directed towards supporting and restoring interoceptive/homeostatic
functioning, by building resilience, for example, have been relatively successful in comorbid
depression and chronic pain conditions 83.

We would like to acknowledge that our findings are based on a mixed sample of relatively
modest size. Although we observed large statistical differences between MDD and CON
groups, further studies confirming our results would aid in generalizing the present findings.
Future studies examining brain responses to pain stimulation and anticipation in MDD patients
of greater diversity without chronic pain and in patients with co-morbid chronic pain and MDD,
as well as in older medicated depressed adults would aid in clarifying the relationship between
pain and depression. Specifically, future studies should examine how different subpopulations
of MDD patients (i.e., older vs. younger age, many vs. few comorbidities and prior episodes,
earlier vs. later age of MDD onset) respond to anticipation and receipt of experimental pain.

In summary, using pain as a probe of emotional circuitry, we have shown that unmedicated
young adults with recurrent MDD and without comorbid chronic pain conditions show
increased affective bias during aversive anticipation in several brain regions, including anterior
insular region, ACC and amygdala and decreased response during pain experience in regions
responsible for cortical and subcortical pain modulation. The anticipatory brain response may
indicate hypervigilance to impending threat, which may lead to increased helplessness and
maladaptive modulation during the experience of heat pain. This mechanism could in part
explain the high comorbidity of pain and depression when these conditions become chronic.
Future studies that directly examine whether maladaptive response to pain in MDD is due to
emotional allodynia, maladaptive control responses, lack of resilience, and/or ineffectual
recruitment of positive energy resources will further our understanding of pain-depression
comorbidity.
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Figure 1. Experimental Paradigm
All subjects completed the paradigm in the scanner. In order to ensure similar engagement
between the groups, subjects were asked to engage in the continuous performance task (CPT)
[circle - LEFT, square - RIGHT button, 1 trial / 2 secs]. The stimuli change color (red -
anticipate pain, green - anticipate warmth, 4-8 seconds) for the anticipation condition. The
stimulus condition consists of a hot-painful or warm-non-painful stimulus for 5 seconds. The
four experimental conditions are: A. Painful heat stimulus is given during CPT; B. Painful heat
stimulus is given alone; C. Non-painful warm stimulus is given during CPT; D. Non-painful
warm stimulus is given alone. There are two regressors of interest for each task condition
(anticipation: A1, B1, C1, D1) and (stimulus: A2, B2, C2, D2). Two linear contrasts of
interest were obtained: [(A1+B1)-(C1+D1)] to examine group differences during pain
anticipation; and [(A2+B2)-(C2+D2)] to examine group differences during painful stimulation.
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Figure 2. Average Post-Scan Subjects’ Ratings of Temperature Stimuli
Subjects reported the average intensity and unpleasantness of non-painful heat and non-painful
warm stimuli following each functional run to ensure similar perceptual ratings between the
groups. The intensity of painful and non-painful temperatures was rated on two separate 11-
point Likert scales (see Methods). No significant group differences in the subjective ratings of
painful heat intensity, painful heat unpleasantness, and non-painful warm intensity were
observed (p’s > 0.2). MDD subjects reported higher unpleasantness ratings to non-painful
warm stimuli (p=0.03).

Strigo et al. Page 15

Arch Gen Psychiatry. Author manuscript; available in PMC 2009 June 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Significant Group Differences during Anticipation (A) and Stimulation (B) Periods
Bar graphs show % BOLD changes for the (Painful Heat - Non-painful warmth) contrast for
MDD and CON groups. C.f. Table 2 for details. Images are shown in neurological orientation.
dACC- dorsal anterior cingulate cortex, R. AI - right anterior insular region, DLPFC - dorso-
lateral prefrontal cortex, PAG - periaqueductal grey
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Figure 4. Brain-behavior Correlations
A) Right amygdala showed significantly higher BOLD signal change in MDD versus CON
individuals during pain anticipation (c.f. Table 2 for details). Extracted % signal changes within
amygdala showed significant positive correlation with helplessness scores in MDD subjects
during pain anticipation (r = 0.65, p <0.05), which was specific to this disorder; B) Right dorso-
lateral prefrontal cortex (DLPFC) showed lower BOLD signal change in MDD versus CON
individuals during pain experience (c.f. Table 2 for details). Extracted % signal change within
right DLPFC showed significant negative correlation with post-scan subjects’ ratings of pain
intensity in MDD, CON and in the combined group (r’s>0.5, p’s<0.05).
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