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Abstract
Background—It is not known how carbohydrate and fat intake impact the development of left
ventricular (LV) hypertrophy and contractile dysfunction in response to pressure overload. We
hypothesized that a low carbohydrate/high fat diet prevents LV hypertrophy and dysfunction
compared to high carbohydrate diets.

Methods and Results—Rats were fed high carbohydrate diets comprised of either starch or
sucrose, or a low carbohydrate/high fat diet, and underwent abdominal aortic banding (AAB) for two
months. AAB increased LV mass with all diets. LV end diastolic and systolic volumes, and the ratio
of the mRNA for myosin heavy chainβ/α were increased with both high carbohydrate diets, but not
with the low carbohydrate/high fat diet. Circulating levels of insulin and leptin, both stimulants for
cardiac growth, were lower, and free fatty acids higher, with the low carbohydrate/high fat diet
compared to high carbohydrate diets. Among AAB animals LV volumes were positively correlated
with insulin, and LV mass correlated with leptin.

Conclusion—A low carbohydrate/high fat diet attenuated pressure overload-induced LV
remodeling compared to high carbohydrate diets. This effect corresponded to lower insulin and leptin
concentrations, suggesting they may contribute to the development of LV hypertrophy and
dysfunction under conditions of pressure overload.

Introduction
Chronic hypertension is a major cause of left ventricular hypertrophy (LVH) which, despite
optimal pharmacotherapy, frequently progresses to left ventricular dysfunction and heart
failure1, 2. Thus new approaches are needed to prevent hypertension-induced LVH and heart
failure, specifically interventions that are independent of current therapies that address blood
pressure regulation and neurohormonal activation3. Prevention of LVH and heart failure
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through nutritional intervention is particularly attractive because any clinical improvement
would likely be additive with medicinal therapies. While nutritional guidelines generally
recommend a high carbohydrate/low fat diet to prevent heart disease4, recent epidemiological
studies found a twofold increase in risk of coronary heart disease in women consuming a diet
with a high glycemic index (i.e. foods rich in simple sugars and rapidly digested
polysaccharides5), and no benefit to reducing fat intake by 25% over an 8 year period6.
Recently, we observed that a low carbohydrate/high fat diet (20% of energy from carbohydrate/
60% fat) prevented development of contractile dysfunction and LV dilatation, and increased
survival compared to a high carbohydrate diet (70% carbohydrate/10% fat), despite similar
levels of hypertension in Dahl salt-sensitive rats7–9. The physiological mechanisms for this
protective effect of a low carbohydrate/high fat diet are not well understood7–9.

In the setting of pressure overload, dietary intake of carbohydrates and fats may affect
cardiomyocyte size and function via changes in circulating insulin, leptin, and free fatty acid
concentrations3. A high carbohydrate diet increases both leptin and insulin, and lowers plasma
free fatty acid concentration compared to a low carbohydrate/high fat diet3, 10. Insulin and
leptin both stimulate cardiac growth in isolated cardiomyocytes, suggesting that diet-induced
increases in their circulating concentrations could stimulate LVH independent of afterload3,
11, 12. In patients with hypertension there is a positive relationship between plasma insulin
concentration and LVH that is independent of blood pressure 13–16. In addition, increased
plasma leptin levels are correlated with LVH and congestive heart failure17, 18. Insulin
receptor stimulation activates phosphoinositol-3 kinase (PI3K) and subsequent
phosphorylation and activation of the pro-growth serine-threonine kinase Akt, resulting in
increased protein synthesis and suppression of protein breakdown19, 20. Both insulin and
leptin can activate AMP-activated protein kinase (AMPK)21 which could also affect cardiac
protein synthesis and hypertrophy22, 23. In addition, a high fat diet increases the plasma
concentration of free fatty acids, which activates peroxisome proliferators-activated receptors
(PPARs), especially PPARα10, 24, and increases expression of genes encoding proteins
involved in fatty acid metabolism25. The impact of dietary fat and carbohydrate intake on the
activation of Akt, AMPK and PPARα under conditions of pressure overload are not known.

The present study examined the effects of dietary carbohydrate and fat on the development of
LVH, LV remodeling, and contractile dysfunction in a rat model of chronic pressure overload
induced by abdominal aortic banding (AAB). We hypothesized that a low carbohydrate/high
fat diet would lead to a decrease in the concentrations of leptin and insulin compared to a high
carbohydrate/low fat diet, and thus reduce activation of Akt and AMPK and prevent LVH and
LV dysfunction. In addition, the increase in plasma free fatty acids and activation of PPARα
in the heart would increase expression of genes encoding proteins involve in cardiac fatty acid
metabolism, and correspond with less LVH, LV remodeling, and contractile dysfunction.
Studies were performed in the well-established rat model of LVH induced by AAB. Animals
were fed a high carbohydrate diet comprised of either sucrose or corn starch (70% of energy
from carbohydrate/10% fat), or a low carbohydrate/high fat diet (20% carbohydrate/60% fat).
LV mass, and clinically relevant echocardiographic measures of LV function were assessed
after two months of pressure overload.

Methods
Experimental Design

Measurements were performed with investigators blinded to treatment. The animal protocol
was conducted according to the guidelines for the care and use of laboratory animals (NIH
publication No. 85–23) and was approved by the Institutional Animal Care and Use Committee
of the Case Western Reserve University. Animals were maintained on a reverse 12-hour light-
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dark cycle. All procedures were performed in the fed state between 3 and 6 hours from initiation
of the dark phase of the light/dark cycle.

Male Wistar rats (180–200g) were fed either a high fat, high starch or high sucrose chow. After
one week on the assigned diet, rats underwent sham or AAB surgery (n=9–11/group), and
dietary treatment was continued for 9 wks. Echocardiographic assessment of LV function was
performed 8 weeks post-surgery. Nine weeks after surgery, rats were weighed and anesthetized
with 1.5–2.0% isoflurane, and 3 mL of blood were drawn from the inferior vena cava for
metabolic measurements. The LV was quickly removed, weighed, freeze clamped and stored
at −80°C for biochemical analysis.

Diet
All diets were custom made by Research Diets Inc (New Brunswick, NJ). The macronutrient
compositions of the diets are given in Table 1. The high fat diet derived 58% of energy from
cocoa butter (fatty acid composition of 28% palmitate, 65% stearate, 5% oleic acid, and 2%
linoleic acid), as previously described10. Standard commercial rodent chows used in research
facilities are low in fat (10–15% of total energy) and high in carbohydrate (65–70% of the total
energy), with approximately 10–20% of the carbohydrate in the form of simple sugars (mainly
sucrose) and 80–90% as starches. Thus in the present study the dietary composition of the High
Starch diet (see Table 1) most resembles a standard commercial rodent chow.

Abdominal Aortic Banding
Rats were anesthetized with 2.0–2.5% isoflurane by mask. The suprarenal abdominal aorta
was exposed by a midline abdominal incision, and was tied with a 3–0 silk suture against a
blunt needle (19G). The needle was immediately removed, leaving the aortic lumen constricted
to the diameter of the needle. Sham operated animals were subjected to the same procedure
but without AAB.

Echocardiography
LV function was evaluated using a Sequoia C256 system (Siemens Medical) with a 15-MHz
linear array transducer as previously described 26. Briefly, rats were anesthetized with 1.5–
2.0% isoflurane by mask, the chest was shaved, the animal was placed supine on a warming
pad, and ECG limb electrodes were placed. 2-D guided M-mode, 2-dimensional, and Doppler
echocardiographic studies of aortic flows were performed from parasternal and foreshortened
apical windows. All data were analyzed offline with software resident on the ultrasound system
at the end of the study as described previously 7, 26.

Metabolic and biochemical variables
Plasma free fatty acid and triglycerides concentrations were measured using enzymatic
spectrophotometric assays (Wako and Sigma, respectively) 7. Blood glucose concentration
was measured with an enzymatic spectrophotometric assay from perchloric acid deproteinized
whole blood samples (Stannbio laboratories). Serum levels of leptin and plasma concentration
of adiponectin and insulin were measured by ELISA (ALPCO Diagnostics). Myocardial
activity of medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase was
measured spectrophotometrically as previously described7.

mRNA measurement
RNA was isolated from frozen powdered LV tissue using RNeasy Mini Kit (Qiangen)
following the manufacturer’s instructions. Quantitative RT-PCR was performed with TaqMan
PCR master mix (Applied Biosystem) using an ABI 7900 Detection System as previously
described27. RT-PCR was performed for each of the following genes, using TagMan Gene
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Expression Assay from Applied Biosystems: atrial natriuretic peptide (Nppa,
Rn00561661_m1); myosin heavy chain α (Myh6, Rn00568304_m1); myosin heavy chain β
(Myh7, Rn00568328_m1); PPARα (Ppara, Rn00566193_m1); MCAD (Acadm,
Rn00566390_m1); carnitine palmitoyl transferase I (cpt1b, Rn00566242_m1); uncoupling
protein 3 (ucp3, Rn00565874_m1); pyruvate dehydrogenase kinase 4 (Rn00585577_m1);
cyclophilin A (ppia, Rn00690933_m1). mRNA values for these genes were normalize to
cyclophilin A, and expressed relative to the High Starch Sham group.

Western blot analysis
Protein was extracted from frozen LV tissue 28, separated by electrophoresis in 10% SDS-
PAGE gels, transferred onto a nitrocellulose membrane, and incubated with specific antibodies
to either phospho-AMPK (Thr172 of α subunit) or phospho-Akt (Ser473) (all at 1:1000, from
Cell Signaling Technology, Inc.) Fluorescence-conjugated secondary antibodies (IRDye
680/800, 1:5000; LI-COR Bioscience) were used for incubation before the membranes were
scanned with Odyssey® infrared imaging system (LI-COR Bioscience). The digitized image
was analyzed with Odyssey® software. Membranes were then stripped (Pierce Restore®
stripping buffer) and re-probed for total-AMPK and Akt (1:1000; Cell Signaling Technology,
Inc).

Statistical Analysis
Comparisons were made using an analysis of variance (ANOVA) with the Bonferroni test for
multiple comparisons. Effect of diet on cardiac structure and function were examined with the
AAB group only using one-way ANOVA and post-hoc t-test. To examine which circulating
metabolic or biochemical variables were uniquely predictive of cardiac change in the AAB
group, multiple regression analyses were used examining cardiac measurement as dependent
measures and circulating variables as predictor variables using stepwise procedures. Values
are presented as means± S.E.M and a p<0.05 was considered significant.

Results
LV Mass and Function

Body mass was not different among groups prior to surgery (data not shown) or at the end of
the study (Table 2). Compared to shams, 9 weeks of AAB increased LV mass normalized to
tibia length in all groups (Figure 1a). Additionally, the increase was greater in the high starch
diet compared to the high fat diet. There were no differences among groups in tibia length or
right ventricular mass (data not shown).

With both high starch and high sucrose diets, there was significant LV remodeling and systolic
dysfunction with AAB compared to sham, as seen in the increase in end diastolic and systolic
volumes and a reduction in ejection fraction. These effects were not observed with the high fat
diet (Figure 1c–d, Table 2). Additionally, end systolic volume was significantly increased and
ejection fraction was significant reduced in high sucrose sham animals compared to high starch
sham (Figure 1d, Table 2). There was no different among groups in heart rate (Table 2).

Metabolic and Biochemical Variables
Plasma insulin levels were increased in both high starch and high sucrose diets compared to
the high fat diet in both sham and AAB animals (Figure 2b). Serum leptin was unaffected by
diet in the sham animals, but was significantly elevated in the ABB animals fed the high starch
diet compared to both high fat and high sucrose diets (Figure 2a). Additionally, the animals
fed the high fat diet had higher plasma free fatty acid concentration compared to rats on the
high starch or high sugar diets, and the high fat fed AAB animals had higher plasma fatty acids
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than their respective sham (Figure 2c). Neither diet nor AAB affected glucose, triglycerides or
adiponectin concentrations (Table 3).

AAB caused a switch in the mRNA for MHC from the α isoform to β in both high starch and
high sucrose, as seen in the increase ratio MHCβ/α, but not in the high fat diet group (Figure
1b and Table 4). The mRNA for ANF was increased in all animals with AAB (Table 4). The
mRNA for PPARα and PPARα-regulated genes were similar among groups except for an
increase in UCP3 and PDK4 mRNA in the sham high fat, and UCP3 mRNA in the sham high
sucrose group (Table 4). The activities of citrate synthase and MCAD were similar among
groups except for a significantly lower activity of MCAD in the AAB high sucrose group (Table
3).

There were no differences among groups in either total or phosphorylated Akt, or the ratio of
phosphorylated to total Akt, as assessed by western blot, (Table 5). Similarly, there were no
differences in total or phosphorylated AMPK, or the ratio of phosphorylated to total AMPK
except for an increase the ratio of phosphorylated to total AMPK in the AAB high starch group
(Table 5).

Association between circulating variables and cardiac measures
LV mass was positively correlated with serum leptin and plasma insulin concentrations (Figure
3a–b), but not other variables (data not shown). LV end diastolic and end systolic volumes
were positively correlated with plasma insulin, and inversely correlated with plasma free fatty
acid concentration (Figure 3c–h), but were not associated with serum leptin concentration (data
not shown). Ejection fraction was positively correlated with plasma free fatty acid and inversely
correlated with plasma insulin concentration (Figure 3). The mRNA expression of PPARα
regulate genes were positively correlated with plasma free fatty acid concentration, with
correlation coefficients of 0.55, 0.50, 0.46, and 0.54 (p<0.05) for MCAD, CPT1β, UPC3 and
PDK4, respectively. There were no significant relationships between the mRNA expressions
for PPARα-regulated genes and LV mass, echocardiographic measurements, or hormone levels
(data not shown).

Multivariate regression analyses were used to examine the relative importance of circulating
variables for cardiac outcome measures. Serum leptin levels were associated with LV mass
(β = 0.53, p = 0.006), plasma insulin with end diastolic (β = 0.55, p = 0.004) and end systolic
volumes (β = 0.54, p = 0.005). Plasma free fatty acid and adiponectin were associated with
ejection fraction (β = 0.49, p = 0.010 and β = 0.40, p = 0.028, respectively).

Taken together, these data are consistent with the concept that under conditions of pressure
overload, cardiac hypertrophy is minimized by low circulating levels of insulin and leptin, and
that LV remodeling and dysfunction is reduced by elevated free fatty acids and low insulin.

Discussion
In the present study, a low carbohydrate/high fat diet attenuated pressure overload-induced
LVH, and reduced LV remodeling and contractile dysfunction compared to high carbohydrate/
low fat diets comprised of either starch or sugar. The lower LV mass was associated with lower
circulating leptin and insulin concentrations, consistent with the concept that these hormones
directly stimulate cardiac growth11, 12, 29, 30. The prevention of the increase in LV end
systolic and diastolic volumes corresponded with lower circulating insulin levels and a higher
free fatty acid concentration, but not leptin. These finding support the paradigm that
consumption of a low carbohydrate/high fat diet attenuates the development of LVH,
remodeling and contractile dysfunction with pressure overload compared to a high
carbohydrate/low fat diet.
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Clinical observations show that hypertensive patients with high plasma insulin have a greater
occurrence of LVH13–16. Our results extend this concept to suggest that reducing plasma
insulin with a low carbohydrate/high fat diet may reduce LVH and prevent ventricular
dysfunction in response to chronic pressure overload (Figures 2 and 3). Multivariate regression
analyses indicated that insulin was the best predictor of end diastolic and systolic volumes.
Insulin stimulates cardiac growth via insulin receptor stimulation and activation of a complex
network of signaling pathways, resulting in increased protein synthesis and suppression of
protein breakdown19, 20. Evidence for a key role for insulin signaling in LVH comes from
studies in transgenic mice, where deletion of the insulin receptor on cardiac myocytes reduces
activation of Akt and its downstream targets19, 20, 31, and results in a smaller heart29. Over-
expression of Akt increases insulin-stimulated protein synthesis, inhibits protein breakdown,
and causes massive LVH31, 32. We found no evidence for Akt activation by either AAB or a
high carbohydrate diet, illustrating that activation of Akt is not essential for the greater LVH
observed in the present investigation.

As previously reported, in this non-obesity model of low carbohydrate/high fat feeding, there
is a decrease in serum leptin concentration7, 10, 33 Clinical research on leptin has largely been
focused on its role as a potential mediator of cardiac hypertrophy and heart failure in obese
patients17, 18. Leptin receptors are expressed in the heart 34, suggesting that leptin has a direct
effect on cardiomyocytes11, 12. In the present study on non-obese animals, the suppression of
leptin levels with low carbohydrate/high fat diet was significantly associated with reduced
LVH in response to AAB (Figure 2 and 3). While leptin was the strongest predictor of LVH,
there was no relationship between leptin and activation of either AMPK or Akt, suggesting
that leptin is not signaling through these kinases that are known to elevate cardiac protein
synthesis and hypertrophy3, 22, 23. We previously noted that the reduction in serum leptin
following treatment with the same low carbohydrate/high fat diet for 12 weeks in normal rats
corresponded to a reduction in epididymal fat mass and greater thoracic fat mass. In the present
study there were no differences in epididymal, thoracic, or visceral fat mass (data not shown),
suggesting that the reduction in plasma leptin was not due to changes in fat distribution. Taken
together, these finding suggest that lowering leptin through dietary manipulations is
cardioprotective in the setting of pressure overload. In contrast, studies in rat and mouse models
of obesity show that leptin may have a protective effect on the heart through suppression of
appetite, increased cardiac fatty acid oxidation, and reduced accumulation of toxic lipid
compounds in the heart35, 36.

PPARα is activated by fatty acids, and thus acts as a lipid sensor in cardiomyocytes, increasing
the capacity for fatty acid uptake and catabolism in response to greater exposure to lipid25.
Previous studies found that a high fat diet increases plasma free fatty concentration, activates
PPARα, and stimulates expression of key mitochondrial proteins involved in fatty acid
oxidation in the heart10, 25. Here we show that LV end diastolic and end systolic volumes are
inversely correlated with plasma fatty acid concentration among AAB animals (Figure 3). Data
from the literature on the effects of activation of PPARα on cardiac hypetrophy are conflicting.
There is evidence to suggest that PPARs are negative regulators of LVH, based on the decreased
expression of PPARα in the heart in response to hypertrophic growth in cell culture or with
LVH following aortic banding24, 25. On the other hand, PPARα −/− mice have a normal heart
mass/body mass ratio37, and mice with cardiac-restricted overexpression of PPARα38 have
modest cardiac hypertrophy. Treatment with a PPARα agonist or a CPT-I inhibitor39, 40 can
increase the expression of PPARα-regulated genes and LV mass41, 42; however, cardiac
hypertrophy is not observed with the lower degree of PPARα activation that occurs with high
fat feeding10, 42.

In contrast to our findings, a previous report which showed that sucrose supplementation
blunted the up-regulation in MHCβ expression and the decrease in sarcoplasmic reticulum
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Ca2+-stimulated ATPase with in rats with pressure overload-induced LVH43. These animals
were fed regular chow and low amount of sucrose was supplied in the drinking water (0.8%,
w/v). In the present study sucrose was supplied at a high amount in the chow. Most recent
studies have shown adverse effects in animals fed diets high in simple sugar27, 44.

There are important limitations to the present investigation that need to be addressed. First, we
did not measure arterial or LV blood pressure, thus we cannot eliminate the possibility that the
effects of diet were partially mediated by changes in afterload. Previous studies indicate that
long-term administration of leptin results in an increase in blood pressure45, 46 in response to
sympathetic stimulation47. However, a strong positive correlation has been reported between
plasma leptin and LV wall thickness that is independent of blood pressure17, suggesting leptin
directly induces cardiomyocytes hypertrophy. Second, a high protein/low carbohydrate diet,
which is frequently used for weight control48, was not studied in the present investigation,
thus we do not know if replacing carbohydrate with protein would have an effect similar to
replacing carbohydrate with fat. Future studies should incorporate high protein/high fat/low
carbohydrate diets, similar to the “Atkins diet”, in nutritional studies of heart failure. Third,
we did not assess histological indices of cardiac pathology (e.g. interstitial fibrosis,
cardiomyocyte hypertrophy, or apoptosis) which may have provided insight into the effects of
diet on LV pathology. Lastly, the present study used a relatively short duration of treatment,
which is different from most clinical LVH and heart failure, which develop over several years.
Future studies should assess the effects of more prolonged pressure overload and dietary
treatment.

In conclusion, a low carbohydrate/high fat diet attenuated pressure overload-induced LV
dysfunction compared to a high carbohydrate diet comprised of either starch or sugar. This
effect corresponded to lower circulating insulin and leptin, and elevated free fatty acids. These
results add further support for the concept that a diet low in carbohydrates and high in fat
minimizes pathologic LV hypertrophy through multiple changes in the hormonal and metabolic
milieu. These intriguing observations in rodents provide motivation to perform clinical studies
to determine if this concept is valid in hypertensive patients.
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Figure 1.
LV mass/Tibia length ratio (a), and the ratio of mRNA expression for myosin heavy chain
MHCα to MHCβ (b) in the left ventricle determined by qRT-PCR (Data represent as the fold
change in gene expression relative to the High Starch Sham group). Echocardiographic
assessments of LV end diastolic volume (c), and end systolic volume (d). *p<0.05 vs. respective
Sham; #p<0.05 vs. High Fat diet; &p<0.05 vs. High Starch diet (n=9–11/group).
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Figure 2.
Circulating leptin (a), insulin (b) and plasma free fatty acids (c) concentration. *p<0.05 vs.
respective Sham; #p<0.05 vs. High Fat diet; &p<0.05 vs. High Starch diet (n=9–11/group).
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Figure 3.
LV mass/Tibia length ratio plotted as a function of leptin (a) and insulin (b) concentration. LV
end diastolic volume plotted as a function of insulin (c) and free fatty acid (f). LV end systolic
volume plotted as a function of insulin (d) and free fatty acid (a). Ejection fraction plotted as
a function of insulin (e) and free fatty acid (h) in AAB group.
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