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Abstract
Registration based mapping of geometric differences in MRI anatomy allows the detection of subtle
and complex changes in brain anatomy over time that provides an important quantitative window on
the process of both brain development and degeneration. However, methods developed for this have
so far been aimed at using conventional structural MRI data (T1W imaging) and the resulting maps
are limited in their ability to localize patterns of change within sub-regions of uniform tissue.
Alternative MRI contrast mechanisms, in particular Diffusion Tensor Imaging (DTI) data are now
more commonly being used in serial studies and provide valuable complementary microstructural
information within white matter. This paper describes a new approach which incorporates
information from DTI data into deformation tensor morphometry of conventional MRI. The key
problem of using the additional information provided by DTI data is addressed by proposing a novel
mutual information (MI) derived criterion termed diffusion paired MI. This combines conventional
and diffusion data in a single registration measure. We compare different formulations of this measure
when used in a diffeomorphic fluid registration scheme to map local volume changes. Results on
synthetic data and example images from clinical studies of neurodegenerative conditions illustrate
the improved localization of tissue volume changes provided by the incorporation of DTI data into
the morphometric registration.
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1. Introduction
The spatial and temporal patterns of tissue volume loss and integrity change occurring in
neurodegenerative conditions are not only of scientific interest aimed at understanding
neurodegenerative processes, but are also of key clinical interest for disease diagnosis and
treatment monitoring. By relating brain anatomy to cognitive performance, such findings
contribute on a more fundamental level to a better understanding of brain function and dys-
function. Tracking of change in brain anatomy over time from MRI has emerged as a powerful
tool in detecting and studying changes relating to disease diagnosis and progression in
neurodegeneration and development. In particular, non-rigid registration based methods have
been developed to map subtle geometric changes in brain anatomy and separate true volume

© 2008 Elsevier B.V. All rights reserved.
E-mail address: E-mail: colin.studholme@ieee.org.

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2009 June 26.

Published in final edited form as:
Med Image Anal. 2008 December ; 12(6): 742–751. doi:10.1016/j.media.2008.03.010.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



changes from tissue displacements (Freeborough and Fox, 1998; Studholme et al., 2006;
Cardenas et al., 2007). Such methods have been almost entirely focused toward the analysis
of conventional T1 weighted (T1W), T2 weighted (T2W) or proton density weighted (PDW)
structural MRI data. These images provide basic contrast between gray matter, white matter
and cerebrospinal fluid, but are limited in their ability to spatially localize geometric change
within regions of uniform tissue. In particular, current serial morphometry of MRI cannot probe
within the bulk of white matter that holds the underlying connections between functional brain
regions. White matter is known to be lost during normal aging (Jernigan et al., 2001) and many
forms of dementia, and its volume can change in substance abuse and recovery. White matter
tracts are critically important in relating structural changes occurring over time in different
anatomical regions, in a range of neurodegenerative conditions including Alzheimer's,
Semantic (Studholme et al., 2004) and Frontotemporal Dementia (Cardenas et al., 2007),
alcohol abuse and HIV.

DTI data (Basser et al., 1994) provides significant microstructural information about tissues
in the brain, which significantly compliments that provided by high resolution T1W imaging.
There has been significant recent work on the alignment of diffusion tensor imaging to diffusion
tensor imaging, both within and between subjects. The alignment problem of DTI is more
complex than the alignment of conventional scalar MRI values because the inherent local
geometry of the diffusion measurements is modified by spatial transformation of images. DTI
data itself, unlike T1W imaging, provides relatively calibrated measurements which are
consistent between studies and this motivates the direct application of tensor metrics to evaluate
their alignment. Recent work has seen the incorporation of these ideas into deformable DTI
registration algorithms such as the elegant work of Cao et al. (2005). The work of Zhang et al.
(2000) derives a novel method of incorporating the diffusion rotational information into an
elastic registration scheme to align tensor orientations and locations simultaneously. These
methods importantly are aimed at using not just scalar measures of diffusion, but the directional
diffusion information within the registration process. This allows the registration and any
resulting morphometric analysis to localize changes to regions that may have the same scalar
diffusion properties as their neighbours, and simply differ from surrounding tissues in their
diffusion orientation. In particular, the recent work of Zhang et al. (2007) shows the importance
of using directional diffusion information in the registration, as opposed to simple scalar
metrics (such as fractional anisotropy) of diffusion properties derived from diffusion
measurements. This motivates our interest in making use of the full diffusion tensor information
in the registration.

This paper examines a related but different problem: one of incorporating DTI alignment
information within high resolution deformation morphometry of conventional T1W MRI data,
in order to provide additional spatial constraints in deformation morphometry. A key challenge
here is that T1W data is not directly compatible with the geometrically derived local diffusion
measurements, but provides much greater spatial resolution in many areas of the brain (basic
tissue boundaries and grey matter structure). The initial ideas for this work were originally
presented at the Information Processing in Medical Imaging conference in 2007 (Studholme
et al., 2007), and are expanded and applied here to both synthetic and clinical imaging data.

2. Method
2.1. Measures of registration of MRI and DTI

Entropy based methods, such as those using mutual information, have been used to form a
robust measure of image similarity between T1W images for accurate deformation
morphometry, where, unlike the DTI tensor components, the intensity and contrast is
essentially un-calibrated and can vary between imaging studies. Given a pair of conventional
T1 weighted images, with intensities m1(x) and m2(x) (superscripts denoting time point) in the
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same common space x ∈ X, we can derive a measure of the mutual information between the
sets of intensities M1 and M2 occurring together in the two images:

(1)

where H(M) = ∑m∈M – p(m) log(p(m)) is the marginal entropy and H(M1, M2) = ∑m1∈M1
∑m2∈M2 – p(m1, m2) log(p(m1, m2)) is the joint entropy of intensities m1 and m2 occurring
together. The local gradient of this criterion (Hermosillo et al., 2002) can be used to drive a
fluid registration allowing non-rigid diffeomorphic alignment of images as in (D'Agostino et
al., 2003). In this work, we want to build on this by introducing information from DTI data.

If we assume that we additionally have sets of reconstructed diffusion tensor values D1 and
D2 over the same field of view of the T1 weighted MRI data at each time point, then we want
to evaluate both MRI and DTI similarity simultaneously. In practice, here we will assume that
the tensor contains six individual diffusion measures D = {Dxx, Dyy, Dxy, Dxz, Dyz, Dzz}, but
the methods can be extended to larger numbers of directions. For DTI data these calibrated
tensor components can be related geometrically using a range of different approaches (Zhang
et al., 2000; Cao et al., 2005), to derive a measure of similarity for DTI alignment. However,
these measurements cannot be directly related to conventional scalar image data. Ideally, a
combined similarity measure is needed, which takes into account the changing relationship
between the local orientation of the DTI data and the conventional structural data, as well as
between the DTI information. A direct approach would be to evaluate the mutual information
between all seven image pairs (T1W intensity and the six diffusion tensor components)
acquired for two imaging studies. This would make use of multi-channel mutual information
methods previously proposed (Studholme et al., 1996; Studholme et al., 1996; Pluim et al.,
2003) to evaluate the collective mutual information between studies. For conventional
matching where there is some shared information between image types, as illustrated in the
upper part of Fig. 1, we can consider the shared information due to a combination of all the
images. Given that the spatial relationships within studies is fixed (Studholme et al., 1996),
the registration similarity between studies can be evaluated from the mutual information
between the two studies collectively,

(2)

where H(M1, D1) is the collective information provided by the first study, H(M2, D2) is the
collective information provided by the second study, and H(M1, D1, M2, D2) is the joint
information of the combined studies. However, this criterion requires, for six DTI directions,
the estimation of the (6 + 1) × 2 = 14 dimensional joint probability distribution for the joint
entropy H(M1, D1, M2, D2), i.e. we need to estimate the probability of co-occurrence of all

possible combinations of 14 different values . Any estimate of
this distribution would be sparsely populated and require expensive computational methods to
store and evaluate. One alternative approach is to simply ignore changes in shared information
between different types of images and form a measure from a simple summation of MI between
image pairs, each derived from the matching of one image type in one study to the same image
type in the second study,

(3)
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This simplification however clearly ignores any influence that one image type may have in
explaining the structure in the other image types. An alternative formulation explored here is
to use a simplification of the general case of Eq. (2). This simplification is based on the fact
that the information provided by the different diffusion directions within a study is relatively
un-correlated. For example, in conventional multi-channel MI based image registration,
meaningful shared information between channels occurs when regions of a given intensity in
one modality co-occur with intensities in a second modality (e.g. grey matter intensities in MRI
co-occur with some fraction of a ‘soft tissue’ intensity range within CT). In DTI data complex,
curved tracts are exhibited as different combinations of diffusion strengths in each axis along
its length. Thus, within a single DTI study, high values of diffusion components in the X axis
Dxx would not be expected to co-occur more frequently with a particular diffusion strength in
the Y-axis Dyy (i.e. given a diffusion strength in direction X, we cannot guess what the diffusion
strength in direction Y is going to be). However, considering the pairing of conventional MRI
with diffusion measurements: within regions of white matter as seen in T1W MRI, there will
be a certain fraction of voxels exhibiting a specific level of X-axis diffusion Dxx, and a certain
fraction exhibiting Y-axis diffusion Dyy, reflecting, for example anterior–posterior or inferior–
superior connections within white matter. In addition, low MRI T1W intensities delineate
regions of unreliable diffusion measurements in CSF and bone. Thus, the statistical co-
occurrence of DTI diffusion components and conventional structural MRI intensity can provide
a meaningful partitioning of diffusion information to clarify the alignment measure.

In order to account for shared structure between MRI and DTI at both time points, a measure
formed by combining mutual information measures evaluated between T1/Diffusion image
pairs, say (M1, ), at each time point can be considered. For each diffusion image, its match
to the same diffusion direction at the later time point can be evaluated, together with the match
of the high resolution T1W image intensities at each time point such that a single measure is
formed by summing mutual informations over paired directions,

(4)

where ϕ ∈ {xx, xy, yy, xz, yz, zz} are the set of tensor components considered. There are different

approaches to formulating the paired measure I(M1, , M2, ) of shared information between
image pairs at each time point. Two direct approaches we consider here are illustrated in Fig.
2.

The first approach (upper row in Fig. 1) is to use the difference in uncertainty between all four
images (MRI and a DTI tensor component at each time point) when considered separately and
then considered collectively, such that

(5)

We can term this as Diffusion Paired Mutual Information (DPMI). Because the first two terms
are in the fixed coordinate system of the first time point and we assume the overlap does not
change during the local deformable registration, this can be simplified by considering only
changes in the second time point scans such that

(6)
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An alternative is to use the differences in uncertainty when considering T1W-diffusion images
paired at the first and second time points and then collectively over both time points such that,

(7)

We can term this as Diffusion Paired Joint Mutual Information, as we are considering joint
densities only in this case. As above, for the purposes of serial registration, we can assume the
first term remains constant during alignment so that the measure,

(8)

is maximised during registration.

Importantly, both of these formulations (8 and 6) require only four-dimensional joint intensity
distributions to be estimated, but take into account the co-occurrence of structural and diffusion
measures as image alignment is evaluated. Considering the effect of the spatial transformation
on these two formulations, from Fig. 2, we can see that the only difference in their value should
be from the shared information between the DTI-MRI data values within a given study
(highlighted in grey). These factors should be independent of the spatial transformation
between the studies, if there is no change in overlap between the images (which would change
the marginal entropies). This is reasonable to assume for the local non-rigid registration step,
which is bounded to the region of brain within the common overlap of all the image acquisitions.

2.2. Derivation of image registration forces
For these experiments in deformation based morphometry, a dense field diffeomorphic image
registration scheme is used, where the local voxel mapping from one image to the other is
described by the concatenation of a sequence ι = 1,...,S of diffeomorphic displacement fields
xι+1 = xι + uι(xι) which are steps along a fluid flow. To estimate this sequence of displacement

fields, the local gradient of a registration measure, , with respect to the
current local displacement parameters u is evaluated to drive the images into alignment. These
forces can be derived from the sum of the gradients of each of the paired MI terms

. These, in turn, can be derived using the approach of Hermosillo et al.
(2002), to create a single force field driving the image sets into alignment.

Diffusion paired MI (Eq. 6) can be expressed as an integration over the space of image values
co-occurring in the four images such that

(9)

This can be differentiated with respect to u to form a force on a given point x1 of
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(10)

Here, the first set of terms, which are a function of the 4D joint probability of intensity pairs,
cluster intensity values in 4D by seeking deformations which move points to locations that
form more probable DTI-MRI intensity combinations. This tends to reduce uncertainty and
therefore joint information content in the collective image. The later terms containing marginal
probabilities penalize for deformations which decrease uncertainty in the individual images,
maximising information in the deforming images. Substituting this into Eq. 4 gives, for each
point, a summation over the gradients in each diffusion direction pairing:

(11)

Diffusion paired Joint MI (Eq. 8) can be similarly expressed as an integration over intensities:

(12)

Differentiation with respect to the deformation field u then provides a registration force field
of the form,

(13)

As with DPMI, the first set of terms cluster intensity values in 4D, by seeking deformations
which move points to locations that form more probable DTI-MRI intensity combinations. The
later terms containing 2D joint probabilities penalize for deformations which decrease
uncertainty in paired images at each time point. Substituting this into Eq. (4) gives, for each
point a summation over the gradients in each diffusion direction pairing,

(14)

2.3. Fluid registration methodology
The initial deformation between imaging studies is set to a zero displacement field, which is
composed with a rigid transformation between the T1W images. Each iteration step can be
broken down into separate parts: Firstly, the set of six 4D joint probability distributions between
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the structural T1W MRI data paired with each of the diffusion measurements at each time point
is estimated for the current deformation estimate, using cubic intensity interpolation. A discrete
binned estimate, using 64 bins in each intensity range, is then formed by passing through the
3D volume and interpolating values of the second time point into the coordinate system of the
first time point. From this probability distribution, a force field is estimated from the observed
intensities and intensity gradients of the T1W and diffusion images, forming a vector field at
each voxel in the coordinate system and sampling of first time point T1W image. To provide
a continuous model of the probability distribution for a given set of MRI and DTI intensities,
the histogram is first smoothed. This 4D joint probability distribution p(i1, i2, i3, i4) is then
used to form discrete 2D and 1D marginal probability distributions p(i3, i4), p(i3) and p(i4) by
summing counts across the appropriate dimensions of the 4D distribution. For a given set of
intensities at each voxel, the joint and marginal probabilities and their gradients with respect
to intensity are estimated. To ensure continuity of the gradients, a probability approximation
scheme is used. In this case we have used 4D, 2D and 1D Cubic B-Spline approximations
(Wahba, 1990) for the corresponding 4D, 2D joint, and 1D marginal probabilities, respectively.
As described by Thevenaz and Unser (2000), the B-spline provides a positive function of data
values essential for a continuous approximation model of probability values.

A registration force field  is then derived from the local gradient of
the similarity measure with respect to the local displacement estimate, making use of the spatial
derivatives of intensity values estimated by finite differences across the image space, and
intensity derivatives of the joint and marginal probability values estimated using differentiated
B-Spline kernels. This map of registration force vectors is then used to drive a velocity based,
viscous fluid deformation model to ensure topology preservation. The solution to the
registration is formed by integrating steps along an instantaneous velocity field which is itself
derived from a balance between the registration force field F(x) and the energy of a flowing
viscous fluid. The instantaneous velocity vector v(x) of a point in the image is estimated such
that

(15)

where μ and λ are constants determining the relationships between stresses in the flow field.
This is solved numerically in a similar way to Christensen et al. (1996) and Freeborough and
Fox (1998), using Successive Over Relaxation (Press et al., 1992). From this velocity field
estimate, a gradient ascent approach is used to refine the displacement estimate at each iteration.
We include an updating of the local diffusion directions using the method of preserving the
principal directions of diffusion (Alexander et al., 1999), during the iterative registration.

2.4. Data pre-processing for human image data
The DTI data of each human study was reconstructed into a rank 2 tensor and the b = 0 image
was rigidly and then non-rigidly aligned to the T1 MPRAGE data using a method derived from
Studholme et al. (2000). The non-rigid deformation estimate of the data was then applied to
bring the diffusion tensors into the coordinate system and sampling resolution of the MPRAGE
data (using cubic interpolation), taking into account the local change in geometry using the
method of preservation of principal directions (Alexander et al., 1999). The initial rigid
transformation mapping between the two MPRAGE images of the two studies was then
estimated by maximization of normalized mutual information between scans (Studholme et
al., 1999).
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3. Experimental setup
3.1. Synthetic image data

In order to explore the basic behavior of the registration process and resulting morphometric
maps created, we constructed a set of synthetic 3D T1W and DTI image pairs of simple
geometric scenes with 1mm cubic voxel size. These images were smoothed to simulate a
realistic resolution for image data. The scenes contained contrasting structure in the
conventional T1W and DTI components in the form of spheres of tissue with sizes modified
between the two studies. These data are illustrated by the images in Fig. 3.

3.2. Human image data
For these experiments longitudinal imaging data was used that was acquired by investigators
Dr. M. Weiner and Dr. D. Meyerhoff in their imaging studies of neurodegenerative disease
and substance abuse at the center for imaging of neurodegenerative disease at the VA hospital
in San Francisco. Each imaging study included 3D T1 weighted MPRAGE acquisition with a
resolution of 1 × 1 × 1 mm (256 × 256 FOV with 256 × 256 matrix, 176 slices) acquired with
a sagittal orientation with RF spoiling. The scan time is 5 min 30 s. The phase encoding
direction is anterior to posterior. The TR/TE/TI/flip angle = 2300 ms/3.37 ms/950 ms/7°. The
acquisition was carried out using an 8 channel coil, using Grappa encoding and an acceleration
factor of 2, with 50 reference lines of phase encoding. A diffusion tensor imaging protocol was
then acquired consisting of a 2D double refocused spin echo EPI sequence with a spatial
resolution of 2 × 2 × 3 mm with 4 averages. The overall scan time was 3 min with an axial
acquisition of 40 slices without a gap between slices. The field of view 256 × 224 mm and the
slice thickness is 3 mm. The acquisition uses an interleaved scan with TR/TE = 6 s/77 ms and
a Matrix size of 128 × 128. An 8 channel coil is used with Grappa reconstruction using 2
acceleration factors and 35 reference lines. For directional encoding of diffusion, two b-values
(0 and 800 s/cm2) and six diffusion directions were used.

4. Results
4.1. Results on synthetic data: comparison of MI, DPMI and DPJMI

The fluid registration procedure was applied using different registration measures to the
synthetic image data using the T1W data only and incorporating diffusion information. The
Jacobian of the resulting sequence of transformations was calculated and its determinant
mapped over the image space to indicate the pattern of volume increases and decreases required
to adapt the first time point image to match the second. Dark regions here indicate contraction,
white regions indicate expansions and grey indicate no volume change. For the purposes of
registration, the evaluation of the deformation field was limited to a spherical region 10 voxels
outside the sphere itself. The results, shown in Fig. 4, clearly show the contribution of the
additional diffusion information in the morphometric maps when using DPMI and DPJMI
compared to MI of T1W images alone. The division of the internal space of the sphere into
different diffusion directions provides a strong boundary creating a clear contrast in the pattern
of contractions occurring within the uniform sphere. This illustrates how these measures can
be used to localize volume changes in the brain. In addition we found, as would be expected
from their derivation, that experimentally the two formulations for the diffusion paired
measures (DPMI and DPJMI) behaved in a very similar way, with differences varying only at
a level of numerical rounding errors. For the results of our later experiments, maps are presented
using DPMI only, since equivalent results were found using both formulations.
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4.2. Mapping brain volume increases: recovery from alcohol abuse
In previous work (Cardenas et al., 2007), T1W based morphometry has been used to study
patterns of volume change over the brain in recovery from alcohol abuse using repeated T1W
1.5 T imaging. In more recent work combined DTI and MRI imaging has begun to be used at
4 T to study the same changes. In this paper, data were used from a cigarette smoking alcohol
dependent volunteer enrolled in a program of treatment for alcohol dependence, who was
imaged 6 days after his last alcoholic drink and then again after 39 days. We applied
conventional T1W MRI morphometry and DTI-MRI morphometry using DPMI. Fig. 5
illustrates the data and changes observed. Firstly, the left two columns show the structural
changes in terms of a simple subtraction of rigidly aligned T1W MRI data after accurate
registration. This indicates ventricular CSF volume decreases from the shift in CSF-white
matter boundaries. Slices through the 3D DTI and morphometric estimates are then shown on
the right two columns. Conventional deformation based morphometry (bottom right column)
indicates large scale volume changes distributed over white matter, with no ability to localize
the volume change pattern. DPMI driven morphometry (top right column) highlights focal
changes. A display of the corresponding DTI data in terms of the principal direction of diffusion
is included to show the additional structure in the same region of tissue. A second example
slice from these studies is shown in Fig. 6, again illustrating the significant localization of
volume changes by the tissue diffusion structure. Both of these DPMI derived maps show focal
increases in white matter volume that correspond to regions that have previously been shown
in cross-sectional studies of alcohol dependent individuals to have lower fractional Anisotropy
that light drinking controls (Yeh et al., 2007).

4.3. Mapping brain volume decreases: Alzheimer's disease
A subject with an initial clinical diagnosis of Alzheimer dementia was imaged on a 4T Siemens
imaging system twice over a period of 9 months. MI and DPMI driven fluid registration was
applied to the data and the determinant of Jacobian matrix of the estimated deformation field
was evaluated at each point in the first time point image and used to create a map of relative
expansions and contractions required to force the anatomy at the first study to match the
anatomy of the second. Results comparing the use of the proposed approach with conventional
T1W deformation morphometry are shown in Fig. 7, for a subject diagnosed with Alzheimer's
disease. This figure shows an improved localization of tissue contractions around the medial
temporal lobe, when incorporating a measure of DTI alignment into the mapping process.
Without DTI information, contractions of white matter around the expanding ventricle are
significantly less constrained by the T1W imaging alone. We include a slice of the DTI data
in the same region of the brain to illustrate the directional structure available in this region.

5. Discussion
A new general approach to the problem of localizing tissue volume changes in morphometric
studies was proposed. This work is motivated by the need to localize patterns of tissue volume
change within bulk regions of tissue visible in conventional MRI data. Such types of
morphometric analyses are becoming increasingly important as DTI data is more routinely
being acquired in imaging studies of anatomy and its change over time. We can classify such
approaches, that make use of multiple contrast mechanisms such as DTI and MRI, as dense
feature morphometry. They in effect attempt to make use of features at almost every voxel in
the brain to localize tissue volume changes, as opposed to those methods driven only by the
location of basic tissue boundaries. Developing and refining such approaches will allow us to
probe for focal losses within the bulk of white matter holding connections between functional
brain regions, and may provide an important new understanding of structural and functional
changes occurring over time in neurodegenerative conditions and during their treatment.
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This paper describes the first approach to making combined use of both DTI and MRI in
deformation based morphometry. The approach is based on multi-channel mutual information
and uses the complimentary information provided by the different modalities. It contrasts to
DTI only registration methods in that it must deal with balancing conventional MRI alignment
with DTI alignment. The new approach makes use of the relative independence of DTI
components to derive a registration measure based on four-dimensional joint intensity
probability estimates, making its implementation computationally more tractable. Two closely
related criteria are formulated: diffusion paired mutual information (DPMI) and diffusion
paired joint mutual information (DPJMI), and expressions are derived for their derivative with
respect to the local deformation field. These derivatives are then used as force fields to drive
a diffeomorphic registration between imaging studies.

A mutual information based approach to deriving measures was used because of the known
issue of changing tissue contrast in many neurodegenerative conditions. Evolving tissue
properties can influence both conventional T1W contrast between different tissue types, as
well as relative diffusion strength within tissues measured in DT imaging. As a result, repeated
imaging of brain anatomy may differ both in shape and contrast as a degenerative or
developmental process proceeds. As discussed and illustrated in Studholme et al. (2006), it is
important for a morphometric registration to separate changes in tissue contrast from true
geometric changes in order to provide physically meaningful quantitative shape measurements.
Information theory based approaches provide robustness to global changes in relative contrast,
which simpler measures such as intensity correlation (Freeborough and Fox, 1998), that assume
a linear relationship between intensities, cannot provide.

The process of pairing DTI with MRI directly improves the evaluation of DTI alignment: Many
regions in brain diffusion images contain low or zero signal, particularly within fluid spaces,
where they provide unreliable directional information. However, regions of low or high
diffusion signal correspond to different intensities within the structural MRI data (dark CSF
and bright tissue). At its simplest level, the use of the paired MI of values between structural
and diffusion images can be seen as partitioning the DTI data into more and less useful regions
of directional information. The conventional structural MRI data provides the majority of
shared content between the two studies, since it has highest resolution and contrast to noise.
However, in regions of uniform white matter, the gradient of the similarity measure will contain
stronger contributions from the DTI data.

The methodology was applied to synthetic image data to evaluate the basic approach and to
compare the behavior of the alternative formulations of DPMI and DPJMI. The methods were
then applied to clinically typical imaging data acquired in cases of both tissue volume increase
and volume loss. These two cases clearly show the promise of the technique with the possibility
of new findings in the pattern of tissue volume change that may contribute to an improved
understanding of neurodegenerative and neurodevelopmental processes. The improvement in
the localization of volume changes is particularly important in relating any anatomical changes
to specific functional measures, and understanding, for example how different subjects respond
differently in the recovery from alcohol dependence.

An alternative approach to the registration problem would have been to derive scalar,
orientation independent measures of image values from the DTI data, and combine these with
conventional image data. However, sub-structures in white matter are characterized by both
rotationally invariant microstructural tissue integrity (FA, diffusivity) and the microstructural
orientation. Neighboring regions of white matter may have identical integrity but differing
orientation of tracts. This information is provided by the orientation components of the
diffusion tensor, not FA or diffusivity. By using the diffusion values directly, but including
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their re-orientation during the warping process, we can use their relationship between studies
to more fully constrain the deformation solution within white matter.

One key issue in any quantitative morphometric analysis making use of DTI data, especially
when acquired at higher fields, is the presence of geometric distortion, particularly those
distortions arising from susceptibility effects in Echo Planar imaging. In this paper we have
used imaging protocols currently used at the VAMC in San Francisco which do not incorporate
additional acquisition techniques such as reverse gradient or field mapping to allow direct
correction of DT imaging. As a result, we have used retrospective correction of the DTI data
to structural MRI derived from earlier work on spin echo EPI imaging (Studholme et al.,
2000; Studholme et al., 1999), which incorporates a physical model of the distortion process
occurring in spin echo EPI to constrain the geometric mapping to a T1W image. Further work
is underway to explore how distortions and their correction can influence the measurements
of anatomical changes seen in clinical imaging studies.

From the initial work here, the general approach taken appears to provide promising results
and motivates work on a new area of morphometric analysis. Such approaches promise to
provide significantly refined maps of brain shape changes and improve our understanding of
anatomy and brain function in different clinical conditions. Further work is underway to extend
this methodology to improve the registration, allow improved spatial normalisation for group
comparisons, deal with geometric and intensity distortions and evaluate the quantitative
accuracy of the approach on a larger range of clinical data.
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Fig. 1.
An illustration of the derivation of different MI measures of similarity between multiple sets
of images for conventional scalar images (top) and combined scalar and DTI data types
(bottom). In conventional MRI data sets (T1W, PDW, T2W) there is appreciable shared
information. For DTI data, there is little shared information between individual diffusion
direction maps. We can therefore consider the simplified relationship between DTI directional
measurements separately paired with conventional MRI.
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Fig. 2.
An illustration of different multi-channel formulations for measures relating the change in
information in pairs of images. We can either consider the change in information between each
of the images considered independently and when combined (top), or consider the change in
information content between separately paired images and pairs combined (bottom). We name
these diffusion paired mutual information (DPMI) and diffusion paired joint mutual
information (DPJMI) respectively. The key difference is the constant factor indicated in grey
for the DPMI measure, which is not a function of the mapping between studies.
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Fig. 3.
Digital phantom data for evaluation: Top two rows show orthogonal slices through synthetic
image volumes created to simulate loss of tissue in T1W MRI data. Lower two rows show
additional synthetic diffusion data in the form of an overlay of principal diffusion directions,
illustrating the different diffusion properties in the left and right halves of the partially
contracting sphere. These two diffusion regions have the same fractional anisotropy, but differ
simply in their orientation. This simulates neighbouring tracts with different directions, but
with the same strength of connectivity.
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Fig. 4.
Resulting maps of volume changes estimated when driving the fluid registration using
conventional Mutual information (top) based on the T1W images only and using Diffusion
Paired Mutual Information (DPMI) middle and Diffusion Paired Joint MI (DPJMI) bottom.
Volume changes are shown as a simple grey scale with dark indicating contraction of the first
time point to match the second, mid grey no change and white indicating expansion. Without
the diffusion data there is no image structure to constrain the deformations within the bulk of
tissue making up the sphere, resulting in a smooth gradient of contractions across the sphere.
With DTI data, the orientation information provided by the diffusion tensors strongly partitions
the pattern of contractions within the sphere so there is no inferred contractions in the opposite
half of the sphere. The maps provided by DPMI and DPJMI (bottom two columns) are, within
numerical rounding, the same, which confirms our observations in the derivation of the two
measures.

Studholme Page 16

Med Image Anal. Author manuscript; available in PMC 2009 June 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Data and results of applying deformation tensor morphometry to studies acquired on a subject
before and after a period of abstinence from heavy drinking. Left two columns show enlarged
view of the subtraction of rigidly aligned T1W MRI data. Right column shows estimated
volume changes as a colour overlay on the first time point MRI of the determinant of the
jacobian of the deformation sequence. Gross increases of tissue volume over bulk white matter
are observed from T1W imaging alone. DTI-MRI morphometry created by maximising DPMI
(top right) provides significant localisation of tissue volume changes, localizing changes in
patterns around the ventricles and following the white matter tract structure seen in the DTI
data.
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Fig. 6.
Axial slices through DTI (shown as principal diffusion direction) and MRI (left) at the two
time points before and after abstinence from heavy drinking. Right: corresponding slices
though volume change maps derived from MRI and MRI-DTI combined (using DPMI)
displayed as a colour scale of percentage change overlaid onto the first time point MRI. Volume
changes constrained by MRI data alone show diffuse increases in white matter volume after
abstinence from heavy drinking. DTI-MRI constrained results show significantly localized
volume increase patterns constrained to regions of tracts. Localization of greater changes are
particularly visible in the corpus callosum (seen in mainly in red on the diffusion tensor maps).
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Fig. 7.
A subject diagnosed with Alzheimer's dementia scanned twice with an interval of 9 months
(MMSE 25, age 61.7), exhibiting tissue loss and ventricular expansion. The scan pairs were
fluidly aligned using MI (bottom row) and DPMI (top row). Sagittal and axial slices are shown
along with a corresponding coronal slice through the DTI data at the same location. Here, in
contrast to the alcohol recovery study, mainly tissue contractions are observed (blue). The
incorporation of the additional structural information in white matter provided by DTI assists
in constraining the local volume changes mapped by the fluid registration within a more focal
region. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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