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Abstract
When a stimulus supports two distinct interpretations, perception alternates in an irregular manner
between them. What causes the bistable perceptual switches remains an open question. Most existing
models assume that switches arise from a slow fatiguing process, such as adaptation or synaptic
depression. We develop a new, attractor-based framework in which alternations are induced by noise
and are absent without it. Our model goes beyond previous energy-based conceptualizations of
perceptual bistability by constructing a neurally plausible attractor model that is implemented in both
firing rate mean-field and spiking cell-based networks. The model accounts for known properties of
bistable perceptual phenomena, most notably the increase in alternation rate with stimulation strength
observed in binocular rivalry. Furthermore, it makes a novel prediction about the effect of changing
stimulus strength on the activity levels of the dominant and suppressed neural populations, a
prediction that could be tested with functional MRI or electrophysiological recordings. The neural
architecture derived from the energy-based model readily generalizes to several competing
populations, providing a natural extension for multistability phenomena.

Introduction
When observers are presented with an ambiguous stimulus that has two distinct interpretations,
their perception alternates over time between the different possible percepts in an irregular
manner, a phenomenon known as perceptual bistability. Bistability arises in many domains of
perception: ambiguous figures (Necker 1832), figure–ground segregation (Rubin 1921),
ambiguous motion displays (Hupé and Rubin 2003), auditory segmentation (Pressnitzer and
Hupé 2006), and—the domain that has been studied most extensively—binocular rivalry
(Blake 1989, 2001; Levelt 1968; Logothetis 1998; Tong 2001; Wheatstone 1838). In addition
to generating much experimental work, binocular rivalry has attracted much attention
theoretically, and many models have been proposed for it (Bialek and DeWeese 1995; Blake
1989; Dayan 1998; Freeman 2005; Laing and Chow 2002; Lehky 1988; Lumer 1998; Wilson
2003). Although there are fewer quantitative studies of other bistable perceptual phenomena,
there is evidence that they share many properties of binocular rivalry alternations (Rubin and
Hupé 2004; van Ee 2005). Thus models of binocular rivalry may be generalized to other bistable
perceptual phenomena.

Although the alternations seem haphazard, for a fixed stimulus the durations are drawn from
a stationary distribution that resembles a skewed Gaussian, typically fit by a gamma or log-
normal function (e.g., Lehky 1995; Levelt 1968; Rubin and Hupé 2004). Importantly,
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alternations occur not only when the two percepts are balanced in strength (equal mean
dominance durations), but also when one is significantly stronger than the other. When stimulus
parameters that affect the relative strength of the two interpretations are varied continuously,
the relative time spent perceiving each changes gradually (Hupé and Rubin 2003; Levelt
1968). In the domain of binocular rivalry, where the strength of each competing percept can
be manipulated independently (e.g., by the contrast of the monocular images), two additional
important observations were summarized by Levelt (1968). His “Proposition II” states that the
imbalance in dominance time caused by weakening only one image (while keeping the other
fixed) occurs mainly through an increase of the mean dominance duration of the other
(unchanged) image, with little or no effect on the dominance durations of the manipulated one.
(Note that this is a statement about absolute mean durations; the fractions of dominance time
of each percept obviously both change because they must add up to one.) Levelt's “Proposition
IV” states that when the monocular images are strengthened simultaneously, the mean
durations of both eyes decrease (i.e., the rate of alternations increases, although the fraction of
time spent perceiving each image remains unchanged).

What causes the alternations? Although this is a central question about perceptual bistability,
the mechanisms underlying the perceptual switches are not well understood. In most current
models alternations between dominance of two or more competing neuronal populations arise
from some form of slow adaptation acting on the dominant population, either in its firing rate
or in its synaptic output (synaptic depression) or both, which leads to a switch in dominance
to the competing population (Kalarickal and Marshall 2000; Lago-Fernandez and Deco
2002; Laing and Chow 2002; Lehky 1988; Matsuoka 1984; Stollenwerk and Bode 2003;
Wilson 2003). In the absence of noise or finite-sized induced fluctuations, models in which
switches are caused by adaptation generate alternations with perfect periodicity; we therefore
term them oscillator models. Importantly, in such models noise is assumed to be an inessential
(albeit experimentally inevitable) component of the perceptual alternations.

An alternative possibility is that the main cause of perceptual switching is noise—external,
internal, or both. Noise, in the form of unavoidable perturbations, is ubiquitous in the brain at
multiple scales, from vesicular release and spiking variability to fluctuations in global
neurotransmitter levels. Furthermore, external noise can cause perceptual alternations (cf.
Kanai et al. 2005; Lankheet 2006) as can some internally generated noise (e.g., blinks). This
raises the possibility that noise is the primary cause for alternations. In this scheme, dominance
of each of the competing percepts can be viewed as a stable state of the neuronal dynamics
(i.e., attractor; Hertz et al. 1991), with noise causing the system to alternate between them. We
therefore term these noise-driven attractor models. (Additional involvement of neural
adaptation may still be present, but in this scheme it would not play the primary role and would
not lead to alternations in the absence of noise.) Attractor models make a fundamentally
different prediction than do oscillator models about the consequence of eliminating noise from
the system: rather than showing perfectly periodic alternations, they predict that the perceptual
alternations would cease—i.e., the system would settle down in one of the two percepts and
stay there indefinitely. Although this is a thought experiment that cannot be performed
practically, exploring the distinction between the two alternatives theoretically is important for
our understanding of the underlying mechanisms.

Herein we present an attractor-based framework in which alternations are induced by noise
and are absent without it. The proposal that bistable transitions may be mediated by noise has
been made before (e.g., Brascamp et al. 2006; Freeman 2005; Haken 1994; Kim et al. 2006;
Lankheet 2006; Riani and Simonotto 1994; Salinas 2003). Our work goes beyond previous
models of noise-driven bistability by constructing a neurally plausible attractor model that
produces behaviors consistent with the experimental findings summarized earlier. A particular
challenge is posed by Proposition II introduced by Levelt (1968) because it implies that

Moreno-Bote et al. Page 2

J Neurophysiol. Author manuscript; available in PMC 2009 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increasing input strength to one attractor reduces the energy barrier for the other attractor (Kim
et al. 2006), and such behavior does not arise in commonly used energy functions (see, e.g.,
Hertz et al. 1991). We therefore start by formulating a simple two-well energy function that
includes coupling between the input strength to one attractor and the energy barrier of the other.
We then derive from the energy function dynamical equations of a rate-based (mean-field)
model. The equations suggest a novel network architecture, where information about the input
strength of each percept is sent not only to the population representing it but also to the
population representing the competing percept. This, in turn, leads to the novel prediction that
increasing stimulus strength to one population will reduce the activity level of the competing
population by recruiting more inhibition while it is dominant. Finally, we show that the model
can also be realized in a spiking neuronal attractor network, using the neuronal architecture
derived for the rate-based model, thus providing a more realistic description of the neuronal
dynamics during perceptual bistability.

Results
We start by positing that each of two neuronal populations, labeled A and B, represent a different
possible interpretation of the stimulus. The neural correlate of competition for perceptual
dominance is a competition between these populations for higher activity. The activities of the
populations are described by their mean firing rates, rA and rB. We denote by Aon and Bon the
states of dominance of populations A (rA ≫ rB) and B (rB ≫ rA), respectively.

Hypothesizing noise-driven alternations means a fundamentally different structure of the
trajectories in state space (the space of neuronal activities). This is illustrated in the left and
right panels in Fig. 1A, which visualize on the plane of population firing rates (rA, rB) the
evolution of the two models over time. (Time is not explicit in this representation: rather, points
along the trajectory correspond to snapshots of the state of the system at regular time intervals.)
In both oscillator and noise-driven attractor models, perceptual alternations correspond to
alternations between points Aon and Bon. However, the trajectories in state space that move the
system between these states are fundamentally different in the two cases. In oscillator models
(Fig. 1A, left), the alternations follow a cyclic trajectory in the plane (rA, rB), caused by the
deterministic effect of the slow negative feedback provided by the adaptation. Thus the system
is characterized by a limit cycle, with a large proportion of the time spent around Aon and
Bon. In contrast, in our noise-driven model (Fig. 1A, right) Aon and Bon are stable fixed points,
or attractors, like those obtained from a stimulus that activates only one of the populations
(e.g., by turning off one of the monocular images in binocular rivalry). All trajectories in state
space approach either Aon or Bon, depending on which side of the diagonal (separatrix) they
originate from. The alternations between the two stable states are attributed to noise that
occasionally allows the system to overcome the energy barrier between them. In the presence
of noise, dominance alternates over time as the system visits the states Aon and Bon in turn (Fig.
1, center plot, oriented diagonally). In the absence of noise, the system would flow into one of
the stable states (depending on initial conditions) and stay there indefinitely.

Because bistable perceptual alternations are not regular, but rather appear stochastic, many
oscillatory models also assume a role for noise (Kalarickal and Marshall 2000; Lago-Fernandez
and Deco 2002; Lehky 1988; another proposal is that the irregularity of alternations arises from
finite-size effects; Laing and Chow 2002). It is therefore important to sharpen and clarify the
distinction we make between two types of models, and the two panels in Fig. 1A are particularly
useful for that.

We use the term “noise-driven attractor model” to refer to any system where the points Aon
and Bon in state space are stable fixed points, i.e., a system that will not undergo alternations
between these states in the absence of noise. Such a system may or may not also contain
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adaptation, as long as the adaptation is not strong enough to drive alternations by itself (i.e.,
when noise is eliminated). Indeed, as will be seen later, in our model we use weak adaptation
to adjust the form of the distributions of dominance durations so that they resemble those
observed experimentally. However, because this adaptation is too weak to drive alternations
when noise is eliminated, its inclusion does not change the noise-driven nature of the model.

Conversely, by “oscillatory model” we refer to one where the points Aon and Bon are not stable
fixed points, but rather belong to a limit cycle that is the only stable state (when both populations
A and B are stimulated). Such a system may or may not also contain noise (e.g., to introduce
jitter in the dominance durations) so long as the noise does not destroy the stable limit cycle.
(One may construct more complex systems where state space changes over time from having
attractors to oscillatory stable states; such systems would not fall into either preceding category
and we do not study them here.)

A one-variable energy model for bistability
The two-attractor structure of state space proposed in Fig. 1A (right) naturally leads to a
description by an energy function with two local minima, corresponding to Aon and Bon, and
a barrier corresponding to the separatrix (Fig. 1B). We therefore first sought to find an energy-
based formalism to describe the dynamics of perceptual alternations. This formulation will
later shed light on how to build more realistic rate-based and spiking neural networks. The
observations summarized by Levelt (1968) about the effect of stimulation strengths on the
mean dominance durations of each percept present an important challenge in the construction
of an energy function. A simplistic extension of commonly used energy functions would
produce a system where increasing the input strength to percept A would deepen its own
minimum. This would make it harder for the system to escape from A, which in turn would
increase its mean dominance durations. This is at odds with Levelt's Proposition II, which states
that the main effect of increasing the input strength to A is a decrease in the mean dominance
duration of B. As observed by Kim et al. (2006), the latter behavior implies that an increase of
the input to A has the effect of heightening the energy barrier of the population representing
percept B (Fig. 2A, right). Similarly, Proposition IV (alternation rate grows as both stimuli are
strengthened) implies that increasing both inputs lowers—not heightens—the energy barrier
(Fig. 2A, left). A simple energy function that has these two properties is

(1)

where the single variable Δr = rA − rB is the difference between the firing rates of the two
competing populations and gA and gB are their input strengths. The minima are located close
to Δr = ±1 (states Aon and Bon, respectively; for simplicity, the firing rates are dimensionless
here). The first term of the energy function ensures that there are two local minima for small
values of the stimulus strengths. The next two quadratic terms are proportional to the
stimulation strengths; each increases the energy of the competing minimum without changing
its own minimum energy.

For a model based on an energy function the dynamic variable satisfies dΔr/dt = − τ−1dE
(Δr)/dΔr. This means that the dependent variable Δr moves along the horizontal axis of the
energy function (Fig. 2A) toward the location of the closest minimum with a velocity
proportional to the slope of the function. Because the slope of the energy function is zero at
the minima, those points are fixed points of the dynamics. In addition to the deterministic rule
specified earlier, we introduce a noise source to allow random transitions between the minima.
The time evolution is therefore given by
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(2)

Here τ (set to 10 ms in the subsequent simulations) is the timescale in which Δr changes and
n(t) is a colored Gaussian noise (see Eq. A1, APPENDIX A). Because perception of stimulus
A happens whenever the firing rate of population A is higher than that for population B (rA >
rB), an alternation occurs when the variable Δr crosses zero. This dynamics generates
trajectories that linger for a short while around one of the fixed points and then move to the
other (Fig. 1B, middle, oriented diagonally).

When alternations between two states are driven purely by noise, the lifetimes of each state
are distributed exponentially (Kramers 1940). With refractory period or other biophysical
constraints, the distribution of dominance durations is nearly exponential, with the peak
determined by the timescale of the noise (e.g., Kramers 1940; van Kampen 2001). As can be
seen in Fig. 1C, this is also the case for the model as formulated in Eq. 2, where the peak of
the distribution of dominance durations is at the timescale of the noise we used, approximately
100 ms. This is very far from experimentally observed distributions, which typically peak at
timescales of seconds and have a shape resembling a skewed Gaussian (Lehky 1995; Levelt
1968). One may propose to address this by assuming that perceptual alternations are driven by
noise sources that act at a slower timescale, of seconds (e.g., originating from endogenous
attention modulations and/or global neurotransmitter levels). This approach is limited,
however: while it can certainly lengthen the dominance durations, it is not sufficient to fit the
shape of their distributions (see following text, Fig. 7). We therefore favor another approach,
which can yield both realistic means and shape of distributions of dominance durations. We
propose that biophysical noise sources characterized by fast timescales (∼100 ms) do play a
major role in causing alternations. However, unlike in the simple model of Eq. 2, we suggest
that in reality there are additional mechanisms that effectively reduce the probability that the
system leaves an attractor right after it has settled into it, compared with the probability of later
transitions. There is independent evidence for the existence of such “short-term persistence”
mechanisms (see DISCUSSION and Leopold et al. 2002), but their precise nature is not well
understood. In the model presented in the following sections, we achieve this tendency by
adding a weak adaptation current. The initial activity level of the dominant population (i.e.,
immediately after transitions) will be too high for the noise to push the system to the competing
state. Over time, however, the weak adaptation will bring the activity to a slightly lower level,
comparable to that of the noise amplitude, so that the probability of transition will increase.
Importantly, however, in our model adaptation alone (i.e., without noise) will not be enough
to cause alternations, i.e., they will still be noise driven. In terms of the state-space and the
energy landscape (Fig. 2), the effect of adaptation will be to add a slow, time-dependent forcing
that effectively reduces the depth of the minimum associated with the dominant percept over
time. However, the adaptation will be too weak to destroy the energy minima (i.e., to destabilize
the states Aon and Bon), and therefore noise will still be crucial for dominance switches.

The mean dominance durations of each attractor state, calculated from simulations of Eq. 2 for
different input strengths, show that the system indeed satisfies Levelt's propositions (Fig. 2B,
solid lines). This is a direct consequence of our choice of energy function, specifically the
dependence of the height of energy barriers on input strength. This dependence arises from the
two terms where the input strengths (gA and gB) are multiplied with the state variable (Δr).
Although the effect of gB on TA is much larger than that on TB (Fig. 2B, right), the effect on
TB is not negligible. This is because, although increasing gB greatly reduces the energy barrier
for Aon, it also slightly increases the barrier for Bon. This behavior is consistent with
experimental results (Brascamp et al. 2006). In the next section we will see that the coupling
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between the input strength to one population and the energy barrier of the other, posited to
obtain the experimentally observed dependencies of mean dominance durations on stimulus
strength, motivates a novel network architecture and leads to novel predictions about the levels
of activity of the neural populations.

Derivation of a rate-based model and network architecture
In this section we construct a rate-based network model based on the energy description of Eq.
1. We first extend Eq. 1 to a two-variable energy function (Eq. B1, APPENDIX B). This energy
describes the dynamics of two populations, A and B, through their firing rates rA and rB. We
then derive from the two-variable energy function two coupled differential equations
describing the dynamics of the two populations' firing rates in the presence of noise (Eq. B4).

The dynamics equations determine the time evolution of the firing rates of the two populations
and can be interpreted as originating from an underlying neural network. Indeed, the neural
populations in the architecture presented in Fig. 3A obey the dynamics derived from the two-
population energy function. Each population has recurrent excitation and each inhibits the other
through direct cross-connections. (Although the schematic indicates that both excitation and
inhibition emanate from a single population, this connectivity could be achieved with
excitatory and inhibitory subpopulations; not shown.) The network shares a basic feature with
many other models of bistability: to ensure that only one population is active at any time
(“mutual exclusivity”; Leopold and Logothetis 1999;Rubin 2003), mutual inhibition is exerted
between the two populations (Blake 1989;Laing and Chow 2002;Wilson 2003). Our model,
differing from some others, requires strong recurrent excitatory connections to produce robust
winner-take-all behavior for relatively weak inputs. However, for very weak inputs a single
low-activity resting state is the only attractor.

A novel feature of the model that is clearly visible in the architecture is that the local inhibitory
subpopulations (small circles in Fig. 3A) are driven by the total external stimulation. A crucial
point here is that the external input to these subpopulations constitutes not only a copy of the
external input to “their” excitatory population, but also the input sent to the competing
population (e.g., to the other eye). Moreover, the rate-based equations (Eq. B4) require that
this total external input be gated by the activity level of the corresponding excitatory population,
so that each recurrent population k (k = A, B) receives back inhibition equaling (gA + gB)rk.
This feature is a consequence of the multiplicative terms gk(Δr ± 1)2 in the one-variable energy
function (Eq. 1). Recall that those terms were required to make the model behave in accordance
with propositions II and IV of Levelt (1968). Inspection of Eq. B4 now sheds light on how the
multiplicative terms give rise to these behaviors. Increasing the input to one population, say
A, results in stronger inhibition to it when it is dominant (i.e., when rA = 1) and also in stronger
inhibition to population B when the latter is dominant (i.e., when rB = 1). At the same time,
the increase of gA also provides additional excitatory input to population A, and therefore the
total input to it remains largely unaffected when it is dominant. In contrast, population B does
not enjoy stronger excitatory input from the increase in gA, and therefore its total input, although
dominant, is reduced by an amount −gArB. Consequently, the mean dominance duration of B
is reduced because less noise is now required to kick it out of dominance; meanwhile, the mean
dominance duration of population A remains nearly unchanged (Levelt's proposition II)
because there is not much change to its total input while dominant. This argument does not
apply when the input to A is so large that state Bon is close to disappearing and Aon becomes
the only stable state of the system (see last subsection in RESULTS). Similarly, simultaneous
increases of the input strength to both populations cause enhanced inhibition to both during
dominance, and therefore an increase in alternations rate (Levelt's proposition IV). As for the
question how the multiplicative terms (gA + gB)rk may be implemented, they can be realized
in a biophysically plausible way by a nonlinear input–output transfer function for the neurons

Moreno-Bote et al. Page 6

J Neurophysiol. Author manuscript; available in PMC 2009 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the inhibitory subpopulations (see, e.g., the quadratic function in the next version of the
model, Eqs. B5–B7).

Finally, we modify the architecture to achieve more plausible generalization to perceptual
multistability, i.e., when the number of competing percepts N is >2 (Rubin 2003; Suzuki and
Grabowecky 2002). A simplistic generalization of the architecture in Fig. 3A would require
each of the N populations to send direct inhibitory connections to all other populations, causing
the number of connections to grow as N2 and implying that each population needs to have
knowledge of all its potential competitors. These problems are solved by the alternative
architecture shown in Fig. 3B, which consists of a common neural pool that is driven by all of
the external inputs, and sends by excitatory connections information about the total summed
input to all of the local inhibitory subpopulations, which in turn inhibit their respective
excitatory populations as discussed earlier. This eliminates the need for direct connections
between the neural populations representing the different percepts and reduces the number of
required connections from O(N2) to O(N).

Dynamics of the noise-driven rate-based model and the role of weak adaptation
We have simulated a two-population rate-based model using the architecture in Fig. 3B with
the addition of weak adaptation currents (for details see APPENDIX B, second section). Figure
4 presents time courses for the relevant dynamical variables of an excitatory neuronal
population that undergoes an alternation from the suppressed to the dominance state and back
to the suppressed state. Traces are shown for two different conditions: weak (gray) and strong
(black) stimulation. [Equal stimulation was applied to the two populations in each case; to
facilitate direct comparison between the two conditions, we used the same noise n(t) for both
simulations.]

We first use Fig. 4 to further explain the effect of the weak adaptation in our model because it
is fundamentally different from that in oscillatory models. The dashed curved traces in Fig. 4,
A and B show the activity level of the dominant population and of the total input to it,
respectively. A slight decline over time is clearly evident in the noise-free system, but it also
exists for the mean activity and mean total input in the presence of noise. This decline is caused
by the gradual increase of the adaptation current (Fig. 4D; the adaptation does not exhibit rapid
fluctuations because it integrates the activity slowly; cf. Eq. B5). Because the total input to the
excitatory population is given by

(cf. Eq. B5), its mean decreases as the adaptation current increases over time. Note, however,
that the asymptotic value of the total input is well above the transition threshold of the system
(horizontal line in Fig. 4B). The adaptation is therefore not sufficient to drive dominance
switches by itself. Instead, transitions occur by chance, when noise-evoked fluctuations bring
the total input below the threshold. Thus if noise is removed from the model, the system would
never show alternations. This noise-driven switching mechanism is fundamentally different
from what happens in oscillator models: in those, the adaptation is taken to be strong enough
to cause switching in dominance by reducing the total input below the transition threshold,
even in the absence of noise.

Although the weak adaptation does not drive alternations in our model, it serves another
important purpose: it provides a mechanism to make the probability of transition time
dependent. Because the mean and the amplitude of the fluctuations in our model do not change
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over time, without adaptation the probability that the noise would cause the total input to dip
below threshold would have been constant in time. This, in turn, would have yielded
exponential-like distributions of dominance durations, peaking at the timescale of the noise
(recall that without weak adaptation brief dominance durations of ∼100 ms are much more
likely to occur; Fig. 1C). The weak adaptation provides a time-varying mean input that
disfavors early transitions in comparison with later transitions, thus providing a form of “short-
term persistence.”

In terms of the energy landscape (Fig. 2), the weak adaptation can be thought of as causing
slow changes in the shapes of the energy wells around Aon and Bon and the energy barrier
between them (but without completely destabilizing the two attractors). Specifically, over time
there is a decrease in size of the basin of attraction associated with the dominant percept,
together with a shift of the separatrix (approximately the peak of the energy barrier) toward
the same attractor. Figure 5 provides an example of an individual trajectory of the system,
illustrating a transition from Bon to Aon on the plane (rA, rB), the change in the location of the
seperatrix over time, and the absence of transition without noise.

Returning to Fig. 4, we next examine it to gain further understanding of the dependence of
dominance durations on stimulation strength. During dominance, the activity level and the total
input (Fig. 4, A and B, respectively) are both slightly higher in the weak stimulation condition
(gray traces) than in the strong stimulation condition (black traces). This, in turn, results from
a higher inhibition when the competing stimulus is stronger (Fig. 4C). As a result, the total
input during dominance is closer to the threshold for stronger competing stimuli, so that
transitions tend to occur sooner, in accordance with Levelt's propositions II and IV. The dotted
lines in Fig. 2B confirm that the rate-based model indeed obeys these propositions over a wide
range of stimulus strengths. For weak enough inputs, alternation behavior gives way to
quiescence: the bistable attractor states disappear and a single (resting) low-activity attractor
state for both populations is the only available firing pattern. The transition regime between
the alternation mode (Aon or Bon) and quiescence is sharp, and it is characterized by the presence
of random sequencing between three states: Aon alone, Bon alone, and the resting state. For
weak inputs, the resting state dominates most of the time, whereas for less weak inputs the
Aon and Bon states alternate. Although sharp, the transition regime is continuous, with the
resting state occupying an increasing fraction of time as the stimulus strength decreases. One
may interpret this continuous transition as corresponding to the stimulus detection threshold.
For very large input strengths, the system can oscillate even without noise because of the
presence of weak adaptation; for yet stronger stimuli, steady coactivity of the two populations
occurs (the latter is also observed in adaptation-based models; Shpiro et al. 2007). However,
such large inputs are not likely to be experienced in reality because of gain control mechanisms
that operate at multiple levels of sensory processing. The existence of a large range in which
a winner-take-all regime is present between the low- and high-input strength regimes is
controlled by the strength of the recurrent connections of the excitatory populations. We have
established a set of conditions for the network connectivity parameters that approximately
determine when the attractor states exist (APPENDIX B, third section).

To further examine the effect of noise on dominance transitions we calculated averages of the
time courses of input noise synchronized to specific transition events [“switch-trig-gered-
averages” (STAs)]. The solid curve in Fig. 6A shows the STA for transitions from suppressed
to dominant states of one population (arbitrarily chosen) and the dashed curve shows the STA
for the reverse transitions of the same population. The curves indicate that transitions tend to
occur when there are simultaneous increases in input noise to the population switching to
dominance and decreases in input noise to the population becoming suppressed. (Note that the
transitions occur with a short delay after the coincidental noise fluctuations in the two
populations, reflecting the neuronal integration timescale.) Figure 6B shows that this tendency
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holds for individual transitions, not just for averages. Each point in the figure represents the
values of the input noise to population A against that of population B at moments of transition.
In spite of the variability in the noise values at individual transition events, there is a clear and
an almost complete separation between the two clouds, with the dot symbols, indicating
transitions of population A from suppressed to dominant, clustering in the bottom right
quadrant (i.e., when nA > 0 and nB < 0), and the cross symbols, indicating the opposite
transitions, clustering in the opposite quadrant. Furthermore, the clouds of points are elongated
with slope near one, suggesting that a stronger-than-average positive fluctuation in the input
to A can push it to dominance even if B receives a weaker-than-average negative fluctuation,
and vice versa.

Recently, Lankheet (2006) conducted an experiment to test the effect of modulations in the
external (stimulus) noise on perceptual transitions. Two random-dot kinematograms with
different directions of motion were used as competing stimuli in a binocular rivalry paradigm.
The coherence levels were modulated in a pseudorandom fashion as observers continually
indicated their percept. Lankheet then calculated the STAs of the coherence in the two stimuli.
STAs associated with transitions from suppression to dominance of an eye showed a peak just
before the transition and those of the other eye show a negative (if weaker) peak. The
experimental STAs resemble our simulated STAs in Fig. 6A. At the same time, there are a few
notable differences between Lankheet's results and the STAs shown in Fig. 6A. First, only one
of Lankheet's subjects showed a negative peak in the STAs of the transitions from dominance
to suppression, whereas the STAs produced by our model show positive and negative peaks
of approximately the same height. Dissimilar heights can be obtained in a slightly modified
version of our model, too, by injecting the noise directly into the inputs of all populations that
receive external stimulation, rather than as a perturbation to the excitatory populations only
(not shown), which is more similar to the Lankheet (2006) paradigm of perturbing the external
stimuli. Second, some of Lankheet's subjects showed wide and shallow peaks in their STAs
several seconds before the narrow peaks immediately preceding the transition, which are not
observed in our simulations. To mimic the experimental observations, we ran a simulation with
a noise timescale of 500 ms as that used in the experiment (instead of the much shorter 100-
ms timescale used to compute the STAs in Fig. 6A). The new STAs resemble those found
experimentally, including the presence of wide and shallow peaks preceding the sharp peaks
right before transitions (Fig. 6C, solid lines). Using simulation results of a competition model,
Lankheet (2006) interpreted the shallow peaks as the consequence of firing rate adaptation.
However, even after we removed adaptation from our model altogether (and increased the noise
level so that the alternation rate is kept constant, around 0.25 Hz), the shallow peaks did not
disappear (Fig. 6C, dashed lines). This suggests that adaptation is not necessary to produce
those peaks.

The interplay between noise and adaptation levels and its effect on the distribution of
dominance durations

With appropriate choice of the amplitudes of noise and adaptation current, the rate-based Eq.
2 produces noise-driven switches whose distribution of dominance durations (Fig. 7A) agrees
with those typically observed during rivalry, being well fit by gamma or log-normal functions
(Lehky 1988;Levelt 1968). The timescale and amplitude of both noise and adaptation affect
the shape of the distributions. Figure 7B presents the distributions obtained for two other
conditions, stronger and weaker adaptation (dashed and dotted lines, respectively; conditions
were compared with the mean dominance durations kept approximately constant, which means
that as adaptation strength was increased, the noise amplitude was reduced accordingly.) When
adaptation is strong, alternations are dominated by the dynamics of this outward current,
making the durations less variable. The distribution becomes narrower and symmetrical around
the mean dominance duration (Fig. 7B, thin solid curve). The limiting case of strengthening
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adaptation (relative to noise amplitude) produces a noise-free oscillatory system; i.e., the
distribution of dominance durations becomes a delta function (not shown). At the other
extreme, when adaptation is removed altogether, the distribution becomes severely skewed
with its peak shifted down to a value closer to the timescale of the noise (100 ms in our case).
These results indicate that to obtain realistic distributions of dominance durations adaptation
should be present, but weak. Importantly, the values of adaptation and noise in our model that
produce realistic distributions are such that adaptation cannot generate switches by itself, i.e.,
when noise is removed from the system. In the presence of adaptation there should be
correlations between the durations of consecutive percepts, but because in our model the
adaptation is weak, correlations are small (not shown), in accordance with experimental
evidence (Fox and Herrmann 1967;Rubin and Hupé 2004). Nevertheless, the role of adaptation
is important and twofold. It produces a time-dependent probability of transitions that gives
realistic distributions of dominance durations. Also, adaptation's slow time-scale in companion
with the noise amplitude sets the timescale (seconds) of alternations.

Bistability and alternations in a spiking neural attractor network
In this section we present results from simulations of a cell-based network with spiking neurons
based on the rate model presented above (see APPENDIX C). The architecture was like that
in Fig. 3B (without population C), with 100 neurons per population. We used leaky integrate-
and-fire neurons with weak adaptation currents (to obtain dominance durations consistent with
experimental observations; see above). The connectivity between neurons in each stimulus-
selective excitatory population was all to all. In addition, each neuron projected to all other
neurons in a target population. Background synaptic conductance input was modeled using
fast kinetics like those of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and γ-aminobutyric acid type A (GABAA) receptors receiving white noise, uncorrelated
between the neurons. Excitatory recurrent connections were mediated by slow synaptic
conductances, like those used to model N-methyl-D-aspartate (NMDA) receptors, which
ensures that states with low firing rates are stable (Wang 1999). Indeed, the simulations show
that even states with firing rates as low as 10 Hz can engage in rivalry alternations (Fig. 8A).
The mean dominance duration as a function of the conductance (inputs) reproduces Levelt's
propositions (Fig. 8B; see following text) and the distribution of their durations follow a skewed
Gaussian (Fig. 8C).

As found for our rate model, alternations in the spiking neuronal network are not mediated by
adaptation; rather, they are noise driven. There are two sources of activity fluctuations in the
spiking network model: noise in the synaptic input arriving from background sources (external
to the network), and variability from nonsynchronous, individual, synaptic inputs generated
within the network. In the network described earlier, transitions were driven by the latter source
of noise. We verified this by increasing the size of the network while proportionally scaling
down the unitary synaptic conductances, such that the mean total conductance to each neuron
was kept constant, alhough the size of its input fluctuations was reduced (external noise is kept
fixed here). As the network size increased, there was a point at which alternations ceased (at
10,000 neurons; not shown), revealing that the cause of the transitions was internally generated
noise in the form of spiking neuronal variability. In addition to identifying the cause of
alternations, this result also shows that adaptation alone cannot produce alternations in our
model because the adaptation modulation was not affected by this manipulation. This last result
also indicates that larger networks would require a mechanism that maintains the internal
spiking variability to ensure that switching would be maintained. This could be obtained by
small amounts of externally correlated noise (Moreno et al. 2002; Moreno-Bote and Parga
2006; Renart et al. 2007; Zohary et al. 1994). Indeed, simulations of a large-scale network
(10,000 neurons per population) showed alternations when a small fraction of the external noise
(∼1%) was the same for all neurons in a population (not shown). Note that the firing rate models
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with added noise presented in the previous sections are thought to represent such large networks
with correlated fluctuations that cannot be averaged out. Because it is not feasible to perform
long enough simulations of very large spiking networks to obtain reliable statistics, we
simulated mainly small networks and therefore used completely uncorrelated external noise.

An interesting property of the model is presented in Fig. 9, which shows the mean firing rate
as a function of the stimulus strength for the dominant and suppressed populations during
rivalry, as well as the mean firing rate of a single population under nonrivaling conditions (e.g.,
when the competing monocular stimulus is turned off in binocular rivalry). During nonrivaling
conditions, the mean firing rate of the stimulated population increases with input strength. In
contrast, during rivalry the mean firing rate of the dominant population shows little dependence
on stimulation strength. Furthermore, the activity during rivalry is lower than that during
nonrivaling conditions throughout the range of stimulation strength. A similar reduction in
activity was also observed in the rate-based and energy models (data not shown). Therefore a
lower activity during rivalry is a robust feature in all versions of our model. This prediction
can be tested experimentally using functional magnetic resonance imaging (fMRI) or
electrophysiology (see DISCUSSION).

Dependence of mean dominance durations at large input strengths
Our energy-based, population rates, and spiking network models produce Levelt's Proposition
II in a wide range of input strengths (Figs. 2B and 8B). This behavior is robust in our models
as long as the input strength to the affected eye is smaller than or similar to the input strength
to the other, unaffected eye (that whose input strength, e.g., image's contrast is kept fixed).
However, consideration of the situation when the input strength of the affected eye is made
much larger than that of the other eye suggests that, at some point, a different behavior than
that stated in Levelt's Proposition II must emerge. This is readily apparent when one considers
the limiting case, when the image contrast to the affected (say, the right) eye has been raised
well above that of the other eye. Clearly, at this point perception will be dominated by the
image given to the right eye, and presumably its mean dominance duration must be much higher
than that of the other (left) eye. Therefore at a point around or soon after the contrast of the
right eye is increased above the (fixed) contrast of the left eye, the mean duration of the right
eye must start increasing, in violation of Levelt's Proposition II. This is precisely the behavior
produced in our models, as shown in Fig. 10A. As the input strength to population B is made
larger than that to population A, the mean dominance duration of B increases much more than
the mean dominance duration of A is reduced. Figure 10B provides an intuitive explanation of
this result in terms of the effect of input strength on the energy function. The energy function
in Eq. 1 is plotted for several values of gB, all of them larger than gA. As gB increases, state
Aon starts to lose stability because its energy well becomes shallower. Crucially, at the same
time the energy well of state Bon becomes deeper, thus increasing its mean dominance duration.
Recently, Brascamp et al. (2006) showed that the behavior described earlier is indeed observed
experimentally in binocular rivalry, i.e., that there is a significant violation of Levelt's
Proposition II so that as the contrast of the affected eye is increased well above that of the
unaffected eye, the mean dominance durations of the former rise rapidly. The same authors
also showed that this behavior is found in purely oscillator models, although more analysis
about its robustness is required.

Discussion
The mechanisms by which perceptual alternations occur during binocular rivalry are not well
understood, nor is it known whether there are commonalities (e.g., similar architectures) with
the mechanisms that cause perceptual switching in other bistable perceptual phenomena. The
work presented here shows that attractor networks, as a class of models, provide a plausible
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framework to describe the dynamics of perceptual bistability. Our approach differs from most
existing models of bistability, which assume the alternations are driven by some form of slow
adaptation acting on the dominant population (Kalarickal and Marshall 2000; Lago-Fernandez
and Deco 2002; Laing and Chow 2002; Lehky 1988; Matsuoka 1984; Stollenwerk and Bode
2003; Wilson 2003). In those models, the adaptation precludes the persistence of the dominant
state over time. The threshold for switching and the activity state slowly drift toward each other
and autonomously coalesce, leading to a switch. The oscillation between the two competing
populations is the only stable state in the system. In contrast, in our model the competing states
remain stable fixed-points at all times, and it is noise (e.g., the spiking variability observed
commonly in vivo) that causes alternations in dominance. Thus alternations cease if noise is
removed (Figs. 1 and 6), although in its presence the interplay between adaptation and noise
sets the timescale of alternations. Finally, the same sources of noise in our model also cause
the variability in dominance durations observed experimentally; i.e., there is no need to invoke
an ad hoc assumption about the presence of noise to explain this variability.

Our model goes beyond previous energy-based conceptualizations of perceptual bistability
(e.g., Haken 1994; Kanai et al. 2005; Kim et al. 2006; Riani and Simonotto 1994), by presenting
a neurally plausible attractor model that behaves consistently with experimental findings, most
notably the increase in alternation rate with stimulation strength observed in binocular rivalry
(Levelt 1968; Fig. 2B). This behavior would not arise automatically in an attractor-based model
but rather depends on the network architecture. In particular, if the effect of increasing stimulus
strength in an attractor model was to deepen the energy well of the corresponding attractor,
this would have the opposite outcome of lengthening of the durations the network spends in
that attractor. Furthermore, comprehensive analysis of oscillator models revealed that they,
too, produce dominance durations that increase with stimulus strength in large parts of
parameter space (Shpiro et al. 2006). The different behavior in our model (a shortening of the
time spent in the competing attractors with increasing stimulus strength) arises from
introducing in the energy function terms coupling the attractors' energy barriers with the input
strength (Fig. 2A). In the network architecture of our model this was realized by feeding into
each local inhibitory population a signal equal to the total external input [either directly (Fig.
3A) or by a global excitatory pool (Fig. 3B)], which is gated (multiplied) by the activity level
of the corresponding excitatory population. Our network thus illustrates a class of models in
which the wiring can be dynamically modified, as opposed to being hard-wired. As for the
question what brain region may act as the excitatory pool in Fig. 3B (i.e., compute the total
strength of all sensory inputs), note that this need not be a cortical region. Broad tuning like
that expected from this hypothesized region is more characteristic of subcortical structures,
which receive projections from a multitude of sensory cortical areas, and therefore could
compute the global signal our model requires and send it back to the cortical local inhibitory
subpopulations as schematized in Fig. 3B.

Noise versus adaptation as possible causes of perceptual alternations
The success of our model in reproducing salient dynamical behaviors of perceptual bistability
suggests that noise may be the primary cause of perceptual alternations in bistability. This
contrasts with the prevalent view that perceptual alternations are caused by some form of
adaptation or fatigue (e.g., Kalarickal and Marshall 2000; Lago-Fernandez and Deco 2002;
Laing and Chow 2002; Lehky 1968; Matsuoka 1984; Stollenwerk and Bode 2003; Wilson
2003). It is therefore important to note that, although it is known that there are multiple forms
and mechanisms of adaptation in the brain, in the specific context of bistability a direct link
has not been established to point to adaptation as the primary cause of alternations. An
important observation in this context is that there is no evidence for dependence between the
durations of successive dominance periods (e.g., a tendency for shorter periods to follow
particularly long periods or vice versa; Fox and Herrmann 1967; Lehky 1995; Necker 1832;
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Rubin and Hupé 2004), as may be expected if adaptation played a major role in causing
alternations. Thus if adaptation plays any role in causing the alternations it would have to
involve mechanisms with a very fast reset, so that all trace of it is essentially gone soon after
the system has switched to the competing percept. Also at time-scales longer than individual
dominance durations, data from long trials (5–10 min) of several binocular rivalry and plaid
stimuli reveals that both the durations' means and their variances remain remarkably stable
over time (Rubin and Hupé 2004), again showing no evidence for buildup of adaptation over
time.

The distinction between oscillator models (where adaptation is the cause of alternations and
noise is inessential) and noise-driven attractor models (where adaptation is inessential for
alternations) is conceptually useful. However, given the ubiquity of adaptation mechanisms in
the nervous system, in reality bistable networks most likely contain some form(s) of adaptation
and this, in turn, may affect some aspects of the alternations. Indeed, we included adaptation
in both our rate-based and spiking neuronal networks. Note, however, that in isolation (i.e.,
without noise) adaptation could not instigate alternations in our model and its function was
rather to produce distributions of durations that resemble the skewed Gaussians observed
experimentally. Specifically, the weak adaptation provided a natural and theoretically tractable
way to implement a form of short-term persistence that disfavored the system leaving the
attractor state right after it has settled into it, compared with the probability of leaving it later
in time. However, other ways to implement such a tendency may be equally valid, such as
synaptic facilitation of local inhibition by the selective excitatory population.

A few experimental studies examined the role of adaptation in perceptual bistability. Blake et
al. (1990) modified the standard binocular rivalry paradigm by “forcing” one eye to dominate
for long periods of time (30 s); they found that, on removal of the forcing, this eye's dominance
durations were shorter by about a factor of two. Although this implicates adaptation in the
dynamics, the crucial question is not whether adaptation is present, but whether it is responsible
for the alternations. If that were the case, then the very long forcing should have led to very
fast or even instantaneous transitions, with narrowly distributed durations. Instead, Blake et
al. (1990) observed durations with a mean of about 2 s and large variability, suggesting that
even such saturated adaptation does not instigate immediate transitions. In another experiment
Leopold et al. (2002) showed, for a host of bistable stimuli, that alternations can be slowed
down dramatically if the stimulus is periodically removed from view, again suggesting that if
adaptation is involved in bistability, its influence does not carry over from one dominance
epoch to another. Moreover, as these authors noted, their results suggest the involvement of a
short-term implicit perceptual memory that, as discussed earlier, could produce distributions
of dominance duration consistent with experiments without the need to invoke adaptation.

Two recent studies provide experimental evidence for an important role for noise in causing
perceptual alternations. Brascamp et al. (2006) studied the role of noise in causing alternations
by focusing on the prevalence of “return transitions,” cases when the dominant percept gives
way to a mixed percept but then the system returns to the same percept that was dominant
before (rather than the competing one). Brascamp et al. (2006) found a high prevalence of such
transitions that, as they noted, is more consistent with noise than with adaptation as driving the
alternations. Kim et al. (2006) studied the effect of weak contrast oscillations on the alternation
rate of two rivaling images. They found the presence of stochastic resonance, that is, a
maximum effect of the frequency of the oscillatory signal when it matches that of the
alternations, an effect that can be explained only if a large amount of noise is present in the
system.
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The nature and sources of noise
In all three levels of description, the noise was fast compared with the timescale of alternations
[O(100 ms) vs. O(1 s), respectively]; i.e., the transitions between states were not a trivial
consequence of noise at the same scale. The noise timescale we posited is plausible biologically.
In the spiking neuronal network, recurrent connections are dominated by NMDA-like synaptic
receptors, and therefore the current fluctuations inherit the timescale of those synapses, of the
order of 100 ms (Moreno-Bote and Parga 2005b; Titz and Keller 1997; Umemiya et al.
1999). Such receptors have been invoked in other models, e.g., to stabilize sustained activity
in prefrontal cortex during a delayed-match-to-sample task (Wang 1999), and to account for
the slow ramping behavior of neurons in posterior parietal cortex during a discrimination task
(Wang 2002). Although in our simulations fast AMPA noise is present as an external source,
internally generated noise is dominated by slower NMDA-generated fluctuations so as not to
lead to fast population activity fluctuations that could destabilize the attractor dynamics.

There are other conceivable sources of noise in the synaptic input to cortical neurons.
Modulations in ongoing cortical activity patterns, measured with optical imaging and local
field potential recordings, are known to affect spiking responses in single neurons (Arieli et
al. 1996). Moreover, although the underlying mechanisms are not well understood, changes in
the level of coherent cortical activity at those timescales have been tied to modulations in
attention and perceptual performance (Fries et al. 2001; Salinas and Sejnowski 2001;
Womelsdorf et al. 2006). Thus variability appearing as mere noise in the context of perceptual
bistability may arise from changes in internal network states that have functional roles in other
situations. Finally, it is reasonable to assume that other sources of internal noise, including
some that act at slower timescales (e.g., variations in global neurotransmitter levels,
endogenous attention modulations, blinks) could also play a role in producing some of the
switches.

Model predictions and experimental tests
An important feature of our model that has arisen from the energy formulation is the presence
of inhibition from the input layer that is targeted at the competing population(s) (directly, as
in Fig. 3A, or by an excitatory pool, as in Fig. 3B). This leads to a new prediction that can be
tested with electrophysiological and neuroimaging studies. The model predicts that activity
during rivalry should be lower compared with when the neural population receives the same
input under nonrivaling conditions (Fig. 8). (Note that we use the term “rivalry” here in the
general sense of two competing interpretations of a stimulus and, correspondingly, two rivaling
neural populations. Therefore the prediction is not restricted to binocular rivalry but also holds
for other bistable perceptual phenomena.) The reason is that during rivaling stimulation, local
inhibition is enhanced due to the higher signal from the external input, leading to a reduction
in the activity of the dominant excitatory population. Furthermore, the difference in activity
between the two conditions grows as the stimulation strength increases (Fig. 9). In contrast,
this prediction does not arise for models in which the dynamics is governed by adaptation
currents (oscillator models). There, when a population becomes dominant, it receives no
inhibitory inputs (because the only possible source is the suppressed population), and therefore
no reduction of activity is expected compared with when the competing stimulus is turned off.
The predictions that oscillator and our attractor model make in this regard are clearly different
and could be used to determine which model better describes the neuronal dynamics during
rivalry.

Interestingly, recent human fMRI studies of binocular rivalry provide some evidence to support
the prediction of our attractor model. Reduced blood oxygenated level–dependent signal during
rivalry compared with nonrivaling vision have been shown in the lateral geniculate nucleus
(Haynes et al. 2005; Wunderlich et al. 2005) and visual cortical areas V1 through V4 (Lee and

Moreno-Bote et al. Page 14

J Neurophysiol. Author manuscript; available in PMC 2009 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Blake 2002; Polonsky et al. 2000). In higher visual areas, an fMRI study found no differences
in activity between rivalry and nonrivalry conditions in the fusiform face and parahippocampal
place areas (Tong et al. 1998), whereas electrophysiological recording in monkeys have shown
reduced activity during rivalry in inferotemporal cortex and the superior temporal sulcus
(Sheinberg and Logothetis 1997). Further investigation is therefore needed to examine this
issue across the brain and for different bistability phenomena.

In conclusion, we have proposed a novel framework to model the bistable perceptual
alternations observed during exposure to ambiguous or rivaling sensory stimuli. Our approach
is based on the assumption that each of the competing percepts corresponds to a neuronal stable
state, and the transitions between them are caused by noise. This differs from the prevalent
view that the transitions are caused by an adaptation or fatigue process, which implies that the
alternations reflect a limit cycle (oscillations) in neuronal state space. Starting from an energy-
based model chosen to meet specific experimentally observed characteristics, we derived
neurally plausible rate-based and spiking attractor neuronal networks, which are the first
implementations of this broad class of models showing a dynamical behavior consistent with
salient properties of perceptual bistable phenomena. Our results suggest that the hypothesis
that competing percepts may correspond to the activation of different attractor states of neural
activity, and that alternations between them may be driven by noise, is sustainable from a
theoretical point of view, and should be examined experimentally with more care.
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Appendix A: Energy Model
This model is defined by a two-well energy function (Eq. 1). The variable Δr evolves according
to Eq. 2 with time constant τ = 10 ms. The noise n(t) is an Ornstein–Uhlenbeck process (Risken
1989) with zero mean and deviation σ (σ = 0.7)

(A1)

where τs = 100 ms and ξ(t) is a white noise process with zero mean and 〈ξ(t)ξ(t′)〉 = δ(t − t′).
See numerical procedures in APPENDIX E.

Appendix B: Rate-Based Models

Model with direct cross-inhibition
Based on the single-variable energy function of Eq. 1, we formulate an energy function for a
network with two populations, A and B, that are firing at rates rA and rB, respectively. This
energy function
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(B1)

has quadratic potentials placed at the states (rA, rB) = (1,0) and (0, 1). For simplicity, the firing
rates are dimensionless here, measured in relation to a maximum firing rate so that 0 ≤ rA, rB
≤ 1. Here, f(−1) denotes the inverse function of a neuronal population's input–output relation
[i.e., firing rate = f(input)]. For weak stimuli and with f idealized as a step function [i.e., f(u) =
0 for u < 0, and f(u) = 1 elsewhere], the energy function is simply

 it has two minima, placed at (rA, rB) = (1, 0) and (0,
1), within the plane [0, 1] × [0, 1], where the firing rates are defined. Thus in this parameter
range the inhibition each population exerts on the other is strong enough to preclude the two
populations from being active at the same time.

The following network dynamics

(B2)

minimizes the energy function E(rA, rB). Strictly, E(rA, rB) is a Lyapunov function for the
dynamics defined in Eq. B2. That is, E is nonincreasing along trajectories

(B3)

assuming that f is a nondecreasing function and τ > 0 (Hertz et al. 1991).

Once stochastic input terms nA and nB are added, the dynamics produces transitions between
the two local minima of the potential function, according to the equation set

(B4)

The two noise terms are taken to be independent, continuous random processes as in the single-
variable energy-based model (Eq. A1).

Model with inhibition driven indirectly by an excitatory pool and with weak
adaptation

Here we derive the rate-based model for the architecture in Fig. 3B, with an excitatory pool
projecting to all local inhibitory populations to mediate the mutual exclusivity, instead of direct
cross-inhibition between the percept-specific populations. Despite the differences in
architecture between this and the previous model, they can be mapped one onto the other for
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particular parameters sets, as shown in the next section. Parameters below were chosen to allow
this mapping.

The activity of the excitatory population A, rA, is described by the equation set

(B5)

with α = 0.75, β = 0.5, γ = 0.1; f is the input–output curve, modeled as a sigmoid function

(B6)

with threshold θ = 0.1 and k = 0.05. The inputs to the neuron consist of: recurrent excitation
(with strength or efficacy α); local inhibition (with strength β) that grades linearly with the
inhibitory firing rate rA inh; a hyperpolarizing current, aA(t), with a maximum amplitude γ and
time constant τa = 2 s that produces weak adaptation; and the noise variable nA(t), with SD σ
= 0.03.

The local inhibitory population A is assumed to respond instantaneously to its inputs (i.e., fast
recruitment) with a quadratic input-output relation. The quadratic form allows the system to
be easily mapped onto the previous architecture (see following text), although other steep
nonlinear functions (e.g., cubic) also produce similar network behavior. Its firing rate is given
by

(B7)

where η = 0.5 is the ratio between the strength of the excitatory feedback (see Fig. 3) and the
input from the excitatory pool, rpool.

The excitatory pool receives inputs from the network (weighted by φ = 0.5) and from the
external stimulation, and we assume that it responds with a short recruitment timescale and
linearly in response to its inputs. Its firing rate is therefore given by

where [•]+ denotes linear thresholding (note that the rate of the pool is nonnegative even when
inputs are negative, allowing one to define the system also in that input regime). Similar
equations define the dynamics of the population selective to stimulus B.

Relation between the models with and without direct cross-inhibition
Despite the large differences in the architecture between the two rate-based models we have
presented, it is possible to map approximately one into the other for particular sets of
parameters. In fact, parameters in the model without cross-inhibition have been chosen to allow
this mapping, and therefore to have dynamics consistent with Levelt's propositions. We next
explain the mapping.
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Let us start from the case with no direct inhibition. Because the response properties of interest
are found with small stimulation strengths (gA,B ≪ 1), we may approximate the activity of the
local inhibitory population (Eq. B7) by

During rivalry alternations values of rA,B are either close to 0 or 1 because the input–output
relation for the excitatory population is rather steep and saturates (Eq. B6). Suppose that
population A is dominant, so that B is inactive (rB ∼ 0); then

Therefore the dynamics of rA when B is suppressed are approximately governed by

(B8)

Now compare this equation with the corresponding Eq. B4 from the case with direct inhibition.
If we set 2β(φ + η) = 1 (or approximately so) both equations depend identically on the
stimulation strengths. Although the term  differs between the two models, this
difference does not affect the qualitative behavior as the stimulus strengths are varied.
However, this term imposes a number of conditions that should hold to allow alternations and
to produce mutual exclusivity between the possible stationary states. Because the dominance
state should be stable, we have to impose the condition that the total synaptic input to the
population is on average above the firing threshold, that is α − β(φ + η)2 > θ. To guarantee
mutual exclusivity we demand that if both populations attempt to become active
simultaneously, the net input should be below threshold. This condition imposes α − β(2φ +
η)2 < θ. The preceding three conditions should hold to produce a dynamic properties that are
consistent with experimental observations. In simulations we have chosen α = 0.75 and β =
φ = η = 0.5, although others are also valid.

Besides the architecture, the main difference between the two models is the presence of
adaptation for the model with indirect inhibition. Adaptation shapes the distribution of
dominance durations but its influence is limited; we choose parameter values such that
adaptation by itself (without noise) does not generate transitions between percepts. This means
that the activity of a fully adapted dominant population cannot drop below the threshold of the
input-output relation. Because the maximum amplitude of adaptation is γ (see Eq. B5), this
condition translates into the parameter constraint (from Eq. B8) α − β(φ + η)2 − γ > θ, We have
used γ = 0.1 and, to generate alternations with a duration of a few seconds, we have chosen σ
= 0.03, unless noted otherwise.

Appendix C: Spiking Neuronal Network
We have simulated a cell-based network with the connectivity described in Fig. 3B. Each
population contains N = 100 leaky integrate-and-fire neuron models. Coupling is with
conductance-based synapses and all-to-all connectivity (each neuron receives connections
from all neurons in a presynaptic population). Model equations and parameters follow (Brunel

Moreno-Bote et al. Page 18

J Neurophysiol. Author manuscript; available in PMC 2009 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and Wang 2001;Moreno-Bote and Parga 2005a,b;Wang 2002). The voltage below the spiking
threshold for the excitatory neurons in the competing populations obeys

with membrane capacitance Cm = 0.5 nF, leak conductance gL = 25 nS, producing a membrane
time constant τm = Cm/gL = 20 ms, and resting potential VL= −65 mV. The neuron emits a spike
when the voltage reaches the threshold Vth = −54 mV, after which the voltage is reset to
Vreset = −60 mV. Isyn(t) is the total synaptic current delivered to a neuron. Iadap(t) is a slow
conductance-driven adaptation current: Iadap(t) = gadap(t)(V − Vadap); gadap is increased by
Δg = 0.075 nS with each spike and decays to zero exponentially with time constant τadap = 2
s; Vadap = −80 mV. Voltage equations for the inhibitory populations and the pool are the same,
but without adaptation current.

The synaptic currents to the excitatory (E), inhibitory (I) populations, and the pool (P) are
Isyn,E(t) = INMDA,rec(t) + IGABA(t) + Iext,E(t) + Iback(t), Isyn,I (t) = IAMPA(t) + Iext,I(t) + Iback(t),
and Isyn,P(t) = IAMPA(t) + Iext,P(t) + Iback(t), respectively. The NMDA recurrent synaptic current
is modeled with a linearized driving force (valid below threshold) as

 (Brunel and Wang 2001; Moreno-Bote and Parga 2005b),
where VE = 0 mV and gNMDA,i(t) is the individual conductance generated by the presynaptic
neuron i, defined as

Here, τNMDA = 100 ms, gNMDA,max = 0.15 nS is the individual synaptic maximum conductance,

and the sum represents the spikes emitted by neuron i at previous times . Equations for the
AMPA and GABA currents are (k = AMPA, GABA) given by Ik = gk(V − Vk), where the
conductance is

with τAMPA(GABA) = 10 ms (20 ms), VE(I) = 0 mV (− 80 mV), and the sum of spikes now extends
to all presynaptic neurons i. The unitary conductance for E to P connections is gE→P,unit =
0.075 nS, gP→I,unit = 0.23 nS for the P to inhibitory population (I) connections, gI→E,unit =
0.175 nS for the I to E connections, and gE→I,unit = 0.1 nS for the E to I synapses.

External inputs are modeled as constant excitatory conductances to produce a current
Iext,E,A(B) = gA(B)(V − VE) for the E populations A(B), Iext,I,A(B) = fIgA(B)(V − VE) for the I
populations A(B), and Iext,P = fP(gA + gB)(V − VE) for P, following the architecture of Fig. 3B.
The factors fI = fP = 0.1 measure the effect of the external inputs on I and P populations in
relation to E, and they control the slope in Fig. 9.
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Each neuron receives an independent source of noisy conductance with AMPA and GABA
contributions mimicking spontaneous external activity (Destexhe et al. 2003; Moreno-Bote

and Parga 2005a), defined by , where
nk(t) is a colored noise as in Eq. 3 with timescale τAMPA(GABA) = 10 ms (20 ms). The means
(gk) and dispersions (σk) for the background conductances are gAMPA(GABA) = 5 nS (7.5 nS),
σAMPA(GABA) = 3.53 nS (3.53 nS), equal for all neurons.

The parameters are chosen as follows: Background conductances alone should produce low
firing rates in all populations. Connections between E and P, and P to I should be strong enough
to produce winner-take-all behavior. Recurrent NMDA connections should be tuned to support
attractor states and also allow transitions between them. Connections between E and I also
need to be strong.

Appendix D: Log-Normal and Gamma Fits to the Distribution of Dominance
Durations

The distributions of dominance durations in Fig. 7A have been fitted with log-normal and
gamma distributions. The log-normal distribution is defined as

and the gamma distribution as

where C is the normalizing factor. Maximum likelihood fits of the simulated distributions with
a log-normal distribution give the values μ = 1.24 and σ = 0.35, and with the gamma distribution
give α = 8.66 and β = 0.41. The quality of both fits is very similar.

Appendix E: Numerical Procedures
The dynamical equations for energy, rate-based, and spiking network simulations are integrated
using Euler's method with time step δt = 0.1 ms. Recomputing with a shorter integration time
step did not produce appreciable differences in any of the results that we obtained and reported
with the standard time step. The dominance durations for each percept in the energy model are
defined by the amount of time in which the variable Δr is below (or above) Δr = 0. For the
rate-based model, a transition occurs when the firing rate becomes larger (or smaller) than the
firing rate of the other population. For the spiking network, a transition occurs when the
averaged population firing rate (number of spikes emitted by the excitatory population over
time window Δt = 100 ms divided by the number of excitatory neurons) reverses order with
the firing rate of the competing population. In this case, due to the large activity fluctuations,
we impose the additional constraint in defining a transition that the firing rate of the population
that becomes dominant must be at least >5 Hz. Energy and rate-based models typically run for
105 s (model time), generating around 104 durations for each percept. Means in all the plots
are computed from the time series generated with these long simulations and error bars
correspond to SDs of the means. Also the distributions and switch-triggered averages obtained
from these time series are smooth and robust. For the spiking network simulations, shorter runs
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were used due to the large number of neurons per population being simulated. These spiking
network simulations typically run for 104 s, producing on the order of 103 alternations. We
used Fortran 90 custom code to simulate the models, and Matlab to analyze and plot the data,
along with a random generator for white noise that generated long nonrepetitive series.
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FIG. 1.
Oscillator vs. attractor models for bistability. A, left: in oscillator models, slow negative
feedback (spike frequency adaptation or synaptic depression) produces periodic alternations
between 2 states, Aon and Bon, seen as a closed trajectory on the plane of the population rates
(rA, rB). Right: in attractor models, 2 possible steady states coexist, Aon and Bon. When the
system is initialized in one or the other side of the separatrix (diagonal), it evolves and settles
down in the closest attractor state. B: diagonally oriented panel shows the behavior of attractor
models. Without noise, the system does not alternate; rather, trajectories lie on either side of
the separatrix (dashed line) and approach one of the 2 states (attractors). In the presence of
noise, alternations are produced. Time course of the difference between the 2 population firing
rates, Δr(t) = rA − rB, is represented by the projection of a true random trajectory in the (rA,
rB) plane onto a diagonal joining the points Aon and Bon (middle). Bottom left: energy function
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underlying the dynamics of Δr(t), which consists of 2 minima at Aon and Bon, and a local
maximum at zero. C: distribution of dominance durations for the attractor model with equal
input strengths.
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FIG. 2.
The bistable energy model produces Levelt propositions II and IV. A: energy functions when
both stimuli are strengthened simultaneously, gA = gB (left), and when gA is kept fixed and
gB is varied (right). Energy wells change with gB as indicated by the arrows. B: mean dominance
durations for states Aon and Bon, denoted TA and TB, respectively, when the stimulation
strengths vary simultaneously (left; Levelt's proposition IV) and when only gB is varied
(right; Levelt's proposition II). Full lines are for the one variable model in Eq. 2. Dashed lines
are for the 2-variable rate-based model. Right: gA is kept fixed at 0.1 and 0.05 for the one- and
2-variable models, respectively.
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FIG. 3.
Architectures of network models for bistability. A: 2 recurrent neuronal populations that
represent percepts A and B mutually inhibit each other directly. A prominent feature of this
architecture is that separate local inhibitory subpopulations relay information about the total
strength of external stimulation, gA + gB. B: for the architecture to generalize to multistability
(between more than 2 competing percepts; here A, B, and C are shown), an excitatory pool is
included that provides information about the total external stimulation to all local inhibitory
subpopulations. This network does not require direct mutual inhibition between the competing
populations because inhibition is delivered to them indirectly by feedback through the global
excitatory pool.
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FIG. 4.
Dynamical properties of the 2-variable rate-based model. Time courses of dynamical variables
of an excitatory neural population in Eqs. B5-B7. The population undergoes transitions
between suppressed and dominant states. During dominance, its activity (A) and total input
(B) are lower for strong stimulation (gA,B = 0.05, black curves) than for weak stimulation
(gA,B = 0.01, gray curves). This reduction occurs due to stronger inhibition (C). Adaptation
current (D) is affected by stimulus strength the same way as the activity. Horizontal line in B
corresponds to the threshold (θ = 0.1) of the input–output transfer function of the excitatory
neurons (Eq. B5). For the low-stimulation case, the dashed curves are the rate (A) and the total
input (B); they correspond to the attractor's asymptotic or steady-state values for activity (A)
and total current (B) in the absence of noise and given the instantaneous level of adaptation.
Notice that this asymptotic level is well above the transition threshold (horizontal line) of the
system. Identical external noise was used for the simulation in the 2 cases.
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FIG. 5.
Adaptation alone, in a noise-free network, does not produce alternations. Smooth trajectory in
the (rA, rB) phase plane starts from the initial point Bon and evolves to a steady-state point,
marked by “×”; the trajectory does not reach the separatrix (diagonal line t1) and therefore no
alternation occurs. When noise is added, the trajectory (wiggly curve) wanders around Bon
passing through the points t1, t2; at the same time the separatrix is drifting leftward (due to
adaptation). Strong adaptation would have led to a transition even in the absence of noise.
However, in our model the adaptation is weak and the separatrix remains far from Bon.
Therefore a large noise fluctuation is needed to cross it; once this occurs, around point t3, a
switching to state Aon occurs; the switch occurs very rapidly and therefore the trajectory looks
smooth during the transition. This geometrical representation illustrates that, to induce a switch
to dominance in A, perturbations that are orthogonal to the separatrix are more effective, i.e.,
perturbations that increase rA and reduce rB simultaneously (see also Fig. 6B). Value of the
stimulation was equal for both populations (g = 0.1).
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FIG. 6.
Noise directly drives alternations in the rate-based model. A: switch-triggered averages (STAs)
of time courses of the input noise n(t), time locked to network transition events. Solid curve is
for transitions from the suppressed to the dominant state; the dashed curve is for the reverse.
Switches are associated with simultaneous occurrence of lower-than-average noise to the
dominant population and higher-than-average noise to the suppressed population. B: values of
the noise input at moments of a transition (t = 0 in A) when population A becomes dominant
(dots) or suppressed (crosses). This plot illustrates that individual switching events (say,
termination of A's dominance, crosses) occur primarily during simultaneous negative
fluctuations in nA(t) and positive fluctuations in nB(t). Clouds of points are oval rather than
circular, indicating that population A can become suppressed even if it experiences a positive
fluctuation, as long as population B simultaneously receives a large enough transient positive
input. C: comparison with Lankheet's (2006) experimental STAs. Timescale of the noise in the
model was lengthened (500- instead of the 100-ms timescale used previously) to match the
slowly filtered noisy inputs used in the experiment. STAs (solid lines) show sharp positive and
negative peaks just before the transition, which are preceded by wider and shallower opposite
peaks. The presence of the latter peaks was not due to the interaction between the timescale of
the noise and the long timescale of the adaptation: the same simulation with no adaptation
reproduced the shallow peaks (dashed lines; to keep the mean dominance durations at about 4
s, the strength of the noise was increased from σ = 0.03 to σ = 0.05).
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FIG. 7.
A combination of strong noise and weak adaptation provides a fit to experimental duration
distributions. A: distribution of dominance durations resulting from the 2-variable rate-based
model (thick line) is plotted along with log-normal (thin line) and gamma (dashed line) fits
(see APPENDIX D for more details). B: distributions for 3 different amplitudes of adaptation,
γ = 0.2 (strong), 0.1 (weak; same as in A), and 0 (no adaptation). Mean dominance period is
kept approximately constant in all cases by setting σ = 0.0125, 0.03, and 0.04, respectively. In
all cases gA = gB = 0.01.
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FIG. 8.
Rivalry alternations in the spiking neural network. A, top: raster plot of the spike times of
neurons belonging to an excitatory population. Middle: mean firing rates of the 2 competing
excitatory populations show alternations. Bottom: mean firing rates of the 2 corresponding
inhibitory subpopulations. In all 3 panels, inputs are the same for the 2 populations: gA,B = 2
nS. B: spiking network behaves in accordance with Levelt's propositions IV (top) and II
(bottom; here gA is fixed at 3 nS). C: distribution of dominance durations has a skewed Gaussian
shape (inputs as in A).
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FIG. 9.
Activity during rivalry is lower than that during nonrivaling vision. Mean population firing
rate during nonrivaling vision, and in the dominant and the suppressed states during rivalry,
as a function of stimulation strength (equal to both populations in the rivalry case and zero to
the competing population in the nonrivalry case).
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FIG. 10.
Dominance durations at large input strengths. A: mean dominance durations for the energy
model in Eq. 2 as a function of gB for fixed gA = 0.1. When gB becomes larger than gA, the
mean dominance duration for percept B is mostly affected, unlike what happens in the range
gB < gA (see also Fig. 2B) and in violation of Levelt's (1968) proposition II. B: energy function,
Eq. 1, for several values of gB ≥ gA (gB = 0.1, 0.2, and 0.4); gA is fixed at 0.1. Percept A loses
stability and percept B gains stability.
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