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Abstract

Cortical control of neuroprosthetic devices is known to require neuronal adaptations. It remains unclear whether a stable
cortical representation for prosthetic function can be stored and recalled in a manner that mimics our natural recall of motor
skills. Especially in light of the mixed evidence for a stationary neuron-behavior relationship in cortical motor areas,
understanding this relationship during long-term neuroprosthetic control can elucidate principles of neural plasticity as well
as improve prosthetic function. Here, we paired stable recordings from ensembles of primary motor cortex neurons in
macaque monkeys with a constant decoder that transforms neural activity to prosthetic movements. Proficient control was
closely linked to the emergence of a surprisingly stable pattern of ensemble activity, indicating that the motor cortex can
consolidate a neural representation for prosthetic control in the presence of a constant decoder. The importance of such a
cortical map was evident in that small perturbations to either the size of the neural ensemble or to the decoder could
reversibly disrupt function. Moreover, once a cortical map became consolidated, a second map could be learned and stored.
Thus, long-term use of a neuroprosthetic device is associated with the formation of a cortical map for prosthetic function
that is stable across time, readily recalled, resistant to interference, and resembles a putative memory engram.
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Introduction

Research into the development of brain–machine interfaces

(BMIs) [1] has flourished in the last decade, with impressive

demonstrations of rodents, nonhuman primates, and humans

controlling robots or computer cursors in real time [2–17]. Studies

of closed-loop cortical BMIs have further demonstrated that

improvements in performance require learning [3–7,11,12,14–

17]. Basic research into the neural basis of such adaptations has

indicated that changes in the directional tuning properties of

neurons are associated with the process of learning [5,6,14,17].

However, the neural plasticity and the cortical dynamics

associated with long-term BMI use remains unclear. Studies into

the neural plasticity associated with BMI use typically incorporat-

ed variable ensembles of neurons from day to day [3–7,11,12,14–

17]. In addition, the transform of cortical activity into a prosthetic

motor output (i.e., the decoder) was modified at the start of each

daily session. Under such conditions, it is likely that novel neural

adaptations were required each day to learn the new transform

between neural activity and neuroprosthetic control [5,6,12,16–

18]. Thus, it remains unclear whether a neural representation for

prosthetic function can be stabilized and recalled in a manner that

mimics our natural ability to recall motor skills.

A better understanding of the cortical dynamics during long-

term neuroprosthetic use is important, both from a basic

neuroscience point of view as well as from the perspective of

neuroprosthetics. Past studies of the neural basis of natural motor

control have presented conflicting evidence for a stable neuron-

behavior relationship in motor areas [19–25]. For example,

whereas some studies have found that the neuron-behavior

relationship in primary motor cortex (M1) is constant during

stereotyped movements [24], others have shown that this

relationship can be nonstationary [20,23]. Specifically, it remains

unclear whether the directional tuning properties of M1 neurons

are truly stable across time. It would also be valuable to

understand these dynamics during long-term neuroprosthetic

control. For example, in the scenario that the neural code for

prosthetic control is inherently unstable across time, sophisticated

adaptive algorithms may be necessary for long-term reliable

performance [21,25].

To fully delineate the ensemble cortical dynamics during the

process of learning and reliably using a BMI, we specifically paired

a fixed decoder with stable recordings from ensembles of neurons

in two macaque monkeys across a period of up to 19 d. The

incorporation of a stable ensemble of putative single neurons

across days allows us to track specific changes in neural properties

over time. Moreover, as we are primarily interested in under-

standing the long-term neural adaptations to a fixed transform of

neural activity into cursor movements, the decoder was held

constant over the time period of each experiment. Using such
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conditions, we demonstrate for the first time, to our knowledge,

the long-term reorganization of motor cortex activity associated

with daily practice of a center-out task under brain control. We

found that the motor cortex is able to form and consolidate an

ensemble cortical map for prosthetic control. This neural

representation was found to be remarkably stable across time

and could be readily recalled at the start of a daily session.

Results

Stability of Recorded Neural Ensembles
Two macaque monkeys were first trained to manually perform

delayed center-out reaching movements using a robotic exoskel-

eton that limited movements to the horizontal plane (i.e., manual

control, MC). This commercially available robotic system allows

precise and accurate measurement of kinematic parameters [26].

Following implantation of microelectrode arrays in bilateral

primary motor cortex (M1) (128 microelectrodes in each of the

two monkeys), each animal was trained to perform the same

center-out task in brain control (BC), in which the neural activity

directly controlled the position of the cursor (Figure 1A). In each

animal, we could record approximately 75–100 well-isolated units

during each daily session. However, consistent with reports in the

literature [15,19,24,27–31], several months postimplantation, a

small ensemble of units were found to be extremely stable across a

period of days to weeks. Past studies have demonstrated that

ensembles of a similar size can be successfully used for two- or

three-dimensional control of neuroprosthetic devices [4,5].

In the specific experiments presented here, we ensured that the

ensemble of neurons used for BC were stable over the time frame

of the experiment (hereafter referred to as a ‘‘stable neural

ensemble’’). Stability of well-isolated units across days was first

assessed by the stationarity and quality of waveforms (Figure 1B).

In order to also quantify the stability of waveforms, we compared

waveform characteristics across multiple days using principal

components analysis (see Figure S1). Recent studies have indicated

that this is a valid metric of waveform stability across days [27–31].

As an additional measure, we also ensured that the firing statistics

(i.e., interspike interval [ISI] distribution) of each putatively stable

single unit did not significantly change from day to day [31].

Figure 1C shows three representative ISI distributions for three

single units for two separate days. There were no significant

changes in the distributions (p.0.05, Kolmogrov-Smirnov Test).

Finally, as a measure of ensemble stability across time, we

periodically measured the directional tuning of each unit during

daily MC sessions. As shown in Figure S2, the ensemble tuning

properties were also stable across time.

Brain Control Performance with Stable Ensembles
In this study, we were primarily interested in understanding the

long-term neural adaptations to a fixed transform of neural activity

into cursor movements (i.e., a fixed decoder across days). As in

previous closed-loop BMI studies [4,6,11,14], we used a linear

decoder optimized for physical movements of the upper limb. The

linear decoder [6,21,24] remains a straightforward and transpar-

ent method to transform neural activity into a control signal for

closed-loop BMI experiments. As shown in Figure 1A, while the

animal physically performed center-out movements during MC,

the recorded M1 spike activity was regressed against the elbow and

shoulder angular positions to generate correlations for each

variable. We will use the term decoder to refer to the combined

transforms for both shoulder and elbow position. In BC mode

(Figure 1A), this decoder allowed neural activity to control the

computer cursor. For the initial set of experiments, BC

performance was measured in the setting of (1) recordings from

a stable ensemble of primary motor cortex (M1) neurons over

days, and( 2) a linear decoder that was held constant after training

Author Summary

Brain–machine interfaces (BMIs) have the potential to
revolutionize the care of neurologically impaired patients.
Numerous studies have now shown the feasibility of direct
‘‘brain control’’ of a neuroprosthetic device, yet it remains
unclear whether the neural representation for prosthetic
control can become consolidated and remain stable over
time. This question is especially intriguing given the
evidence demonstrating that the neural representation
for natural movements can be unstable: BMIs provide a
window into the plasticity of cortical circuits in awake-
behaving subjects. Here, we show that long-term neuro-
prosthetic control leads to the formation of a remarkably
stable cortical map. Interestingly, this map has the putative
attributes of a memory trace, namely, it is stable across
time, readily recalled, and resistant to the storage of a
second map. The demonstration of such a cortical map for
prosthetic control indicates that neuroprosthetic devices
could eventually be controlled through the effortless recall
of motor memory in a manner that mimics natural skill
acquisition and motor control.

Figure 1. Experimental setup and stability of ensemble
recordings. (A) Schematics for manual control (MC) and brain control
(BC). During MC, the animal physically performs a two-dimensional
center-out task using the right upper extremity while the neural activity
is recorded. Under BC, the animal performs a similar center-out task
using a computer cursor under direct neural control through a decoder
trained during MC. (B) Stability of putative single units across multiple
days. Upper panels show a set of waveforms on day 1 versus day 19.
The height and width of each box are 0.5 mV and 800 ms, respectively.
(C) Stability of firing properties across time. Interspike interval (ISI)
distributions are shown for days 1 and 19 for three representative units.
There were no significant differences between each pair of distributions
(p.0.05, Kolmogrov-Smirnov Test).
doi:10.1371/journal.pbio.1000153.g001

Stable Cortical Map for Prosthetic Control
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during the MC session on day 1 (hereafter referred to as ‘‘fixed

decoder’’).

Figure 2A quantifies the daily performance of the center-out

task in BC for two animals with a fixed decoder. Previous studies

have used a variety of tasks to study BC. Because these tasks range

from discrete to continuous control, it is difficult to directly

compare task performance across studies [3–17]. In this study, the

cursor was under constant neural control, and the subject was

required to perform multiple steps for a correct trial (including

initiation by movement to the center followed by a brief hold

period). Previous studies suggest that such continuous-control,

multistep tasks are significantly more difficult than single-step tasks

[6,12]. Accordingly, longer periods of practice were initially

required to learn this multistep task in BC. For the experiments

from Monkey ‘‘P’’ and ‘‘R’’ shown in Figure 2, ensembles of 15

units and ten units were used, respectively. For both subjects, with

daily practice with a fixed decoder, there was a monotonic

increase in BC performance and accuracy (Figure 2A).

As also evident in Figure 2A, there was a similar monotonic

decrease in the mean time to reach targets. Whereas the initial

cursor trajectories meandered, they became more direct with

practice (Figure 2D, comparison of representative trajectories from

day 3 and day 13 for Monkey P). It is important to note that the

subjects were not required to follow a straight path from the center

to each target. Interestingly, the mean trajectory to each target

became increasingly stereotyped over time, suggesting that a

relatively stable solution emerged for the path to each target. We

quantified the similarity between each set of daily mean trajectories

by performing pairwise correlations (see Materials and Methods). As

illustrated by the color map in Figure 2D, the correlation between

the mean paths for each day initially increased and then stabilized.

Similar results were obtained for Monkey R (see Figure S3)

Daily Rapid Recall of Performance
We conducted a detailed examination of the performance

during each daily session to identify whether BC ‘‘skill’’ could be

transferred from one day to the next with practice under these

conditions. Past studies have typically presented performance

characteristics for an entire session [4–7]. As evident in Figure 2B,

with practice, subjects could attain accurate performance at the

very start of each daily session. Closer examination of the first

5 min of performance each day produced striking evidence of this

accuracy at the start of a session (Figure 2C). As expected, there

was also a marked reduction in the variability of performance each

day under these conditions. Identical levels of performance were

also evident in a second animal (Monkey R). Thus, with daily

practice in the setting of a stable neural ensemble and a fixed

decoder, subjects developed a level of BC skill that could be readily

recalled at the start of a session.

Dynamics of Changes in Ensemble Tuning Properties
with Practice

We subsequently characterized the changes in M1 neural

activity accompanying the sustained improvements in task

performance. For the 19-d experiment shown in Figure 2A, a

stable level of performance was evident after day 8. We first

examined the neuron-behavior relationship during that period

(i.e., days 9 through 19) by calculating the directional modulation

of neural activity during BC [32]. The directional modulation of

neural activity was initially measured with respect to the intended

target. Interestingly, we found that a remarkably stable neuron-

behavior relationship was associated with proficient task perfor-

mance. Figure 3A and 3B illustrate the directional modulation of

two representative single units during a single BC session. The insets

in Figure 3A and 3B illustrate the stability of this directional tuning

relationship for BC across a period of 10 d (no significant changes in

preferred direction [PD], bootstrap method, false detection rate

[FDR] corrected for multiple comparisons). Overall, 14 of the 15

units did not experience a significant change in PD (bootstrap

method, FDR corrected for multiple comparisons). We also

evaluated whether this was evident at the level of the neural

ensemble. As illustrated by the series of color maps in Figure 3C, we

again calculated the daily directional tuning relationship for all units

within the ensemble during BC. To compare each daily ‘‘ensemble

map,’’ we performed pairwise correlations among each daily set of

ensemble tuning properties [6]. The similarity among daily

ensemble maps initially increased and then stabilized (Figure 3C).

To compare the temporal course of skill acquisition with the

process of map stabilization, we calculated a measure of map

similarity across days. Thus, for each day, we calculated the mean

correlation for comparisons between a given daily map and all

other maps (i.e., mean of each column in the right panel of

Figure 3C with exclusion of comparison to self). Remarkably,

changes in map similarity closely tracked improvements in task

performance for both animals (Figure 3D). Thus, stable task

performance was strongly associated with the consolidation of an

ensemble activation pattern (a ‘‘prosthetic motor map’’).

Figure 2. Brain control performance with practice. (A) Changes in
BC performance for consecutive days in the setting of a fixed decoder
and a fixed set of units in two monkeys (inset = Monkey R). The top
panel shows the mean accuracy per day, and the bottom panel shows
the mean time to reach each target with training. Error bars represent
62 standard errors of the mean (s.e.m.). (B) Trends of performance for
select days for Monkey P. For each day, the moving average (i.e.,
percentage of correct trials for a moving window of 20 trials) of
performance is shown. (C) Performance during the first 5 min of BC for
each daily session. Each bar represents an initiated trial (red = error trial,
blue = correct trial). (D) Left: representative examples of single-trial
cursor trajectories during the initial (day 3, n = 1/target) and the late
(day 13, n = 5/target) phases of BC performance. The targets are shown
in grey. Right: color map of the comparison of mean trajectories for
each day. Each pixel represents the pairwise correlation between the
mean paths from the center to each of the eight targets. R = correlation
coefficient.
doi:10.1371/journal.pbio.1000153.g002

Stable Cortical Map for Prosthetic Control
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Figure 3. Stable task performance is associated with stabilization of ensemble tuning properties. (A) Tuning properties of a single unit
in BC across multiple days. The top panel shows the spiking activity of a neuron during BC (n = 26 trials per target). The rasters are arranged to reflect
the eight targets in the center-out task (target angles shown in red). Also shown are 200 randomly selected waveforms from two separate sessions
(days 9 and 19). The inset shows overlapping tuning curves for each daily session for 10 consecutive days of BC. The shown voltage (V) is the peak-to-
peak amplitude for both the shown waveforms. (B) Tuning properties of another unit in BC for ten consecutive days. The panel is arranged similarly to
(A). (C) The three color maps to the left illustrate ensemble tuning in BC for days 3, 14, and 18 (specific units from [A] and [B] are labeled accordingly).
The units were sorted on day 3 with respect to preferred direction. On the right is a color map of pairwise correlations of ensemble tuning (i.e., map)
for each BC session. Warm colors represent a higher level of correlation. (D) Comparison of the learning rate with changes in ensemble tuning for two
monkeys. The black solid line reproduces the learning rate from Figure 2. The red solid line represents the average correlation between a daily map
and all other ensemble maps (directional tuning was assessed with 2 s of activity relative to intended target. The dotted red line shows the same
relationship for directional tuning assessed with a 0.2-s window. The red line with superimposed red dots illustrates the relationship for directional
tuning relative to actual cursor movements.
doi:10.1371/journal.pbio.1000153.g003

Stable Cortical Map for Prosthetic Control
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We next examined in greater detail the temporal windows

during ‘‘movement execution.’’ For instance, cursor control from

the center to each target likely has an initial feedforward stage

followed by a period in which visual feedback can lead to path

corrections. We thus tested whether a similar stable map emerged

when only taking into account the initial stages of execution. As

shown in Figure 3D (dotted lines), a similar process of map

stabilization also occurred for the first 200 ms of neural activity.

We also performed an additional set of analyses to exclude a

potential confounder. As evident in Figure 2D, there was

considerable variability in the path taken from the center to each

of the targets. It is possible that the apparent evolution of ensemble

tuning properties reflects changes in the path as opposed to changes

in intrinsic neuronal properties. We thus took into account moment-

to-moment changes in the cursor trajectories (i.e., 100-ms steps, see

Materials and Methods) when calculating the directional modula-

tion of neural activity (Figure 3D). Unlike the previous analysis based

on the intended target, this measure accounts for changes in tuning

solely resulting from a modified cursor path. This analysis revealed

that the tuning properties of neurons evolved during the period of

learning independent of any changes in the actual cursor path.

Long-Term Changes in the Mean Firing Rate and the
Depth of Modulation

The analysis described above focused on changes in preferred

direction during learning and long-term use of a neuroprosthetic

device. However, past studies have also indicated that other

changes in neural properties can also be present [6,17]. We thus

examined the daily changes in the mean firing rate and the depth

of modulation of the neural tuning curves. We first compared the

mean changes in firing with practice. For Monkey P, eight of 15

units were found to experience long-term changes in the mean

firing rate with practice (p,0.05. t-test comparing days 1–5 with

days 15–19, FDR correction for multiple comparisons). Of the

eight neurons, seven experienced a net increase, and one

demonstrated a slight but significant increase. For Monkey R,

six of the ten neurons experienced a significant increase in the

mean firing rate with time.

We next evaluated for systematic changes in the depth of

modulation associated with long-term neuroprosthetic use.

Figure 4A and 4B illustrate representative examples of units with

a persistent increase in the depth of modulation (p,0.05. t-test,

FDR correction for multiple comparisons). For Monkeys P and R,

respectively, seven of 15 and five of ten units demonstrated similar

persistent increases in the depth of modulation. The remaining

units did not experience significant changes in the depth of

modulation. Taken together, these results further highlight the

long-term stability of changes in neural properties that tracked

improvements in task performance for both animals.

Importance of the Ensemble Map for Brain Control
Our results thus far suggest that a stable pattern of neural

activity is associated with stable BC performance. We next

examined whether the entire ensemble is actually involved in

BC. For instance, it is possible that only a small fraction of

neurons are actually being used for closed-loop BC. We thus

generated an ‘‘online’’ neuron dropping curve to quantify the

effects of ensemble size on BC performance. After a session in

which BC performance was demonstrably accurate (.95%

accuracy), a random number of neurons were excluded during

subsequent closed-loop BC. Each of these sessions lasted

10 min. We subsequently confirmed that the level of perfor-

mance returned to the previous baseline. These experiments

were performed for both the ten- and the 15-neuron ensembles.

As shown in Figure 5, removal of three neurons (i.e., 20% vs.

30% of neurons, depending on the ensemble size) resulted in a

greater than 50% drop in accuracy. Moreover, for correct trials

under such conditions, it took significantly longer to reach each

target (mean time to target of 2.5 s vs. 5.3 s, p,0.05, t-test).

These results indicate that once a neural representation for

neuroprosthetic control is consolidated, the entire ensemble map

appears to be actively involved in BC.

Stable Ensemble Map Formation with a Shuffled Decoder
Our results suggest that an ensemble of motor cortex neurons

can settle upon a remarkably stable activation pattern for

prosthetic control in response to a constant decoder. We tested

the limits of this conclusion by evaluating whether ensembles of

neurons can learn an arbitrary, fixed transform. We thus applied a

‘‘shuffled’’ version of a decoder trained during a MC session. In

comparison to the reliable predictions of the actual decoder shown

in Figure 6A, the ‘‘shuffled decoder’’ could not reliably predict

limb position across time as expected (new ensemble in Monkey P,

n = 41 neurons). Surprisingly, accurate prosthetic control was

Figure 4. Stable long-term changes in the depth of modulation.
(A) Changes in the depth of modulation for a single unit accompanying
increases in BC performance (Monkey R). Each dot represents the
modulation depth of the neural firing rate (in hertz) for a given BC
session. Representative tuning curves from the initial (days 1 and 3 in a
lighter color), and late phases (days 4 and 8 in a darker color) of BC are
shown in the upper left corner. The shaded circle around each dot
identifies sessions represented by the tuning curves. The dotted grey
line represents the mean depth of modulation for the respective cluster
of dots. (B) Long-term changes in the depth of modulation for a
representative single unit from Monkey P, arranged similarly to (A).
doi:10.1371/journal.pbio.1000153.g004

Stable Cortical Map for Prosthetic Control
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achieved after several days of BC practice in the presence of the

shuffled decoder (days 3–8: correct trials = 9461%, mean6-

standard deviation [SD]; mean time to target = 2.560.3 s,

mean6SD). Moreover, a stable prosthetic motor map also

emerged under these conditions (Figure 6B). In addition to

suggesting that a decoder unrelated to arm movements (i.e., a

nonbiomimetic decoder) can be learned, this experiment further

supports the notion that a stable decoder is crucial for the

formation of a stable cortical representation for prosthetic control.

Specificity of Neural Adaptations
We subsequently tested the specificity of neural adaptations to

the initial fixed decoder. Although many options are available to

perturb the transform of neural activity to cursor movements

[4,17], we chose to retrain the linear decoder prior to select BC

sessions. The linear decoder was created using multivariate linear

regression techniques [33]. It is well known that multivariate linear

regression can result in variable model parameters when multiple

colinearity is present in the dataset [22,33]. Thus, two models can

be equally effective in predicting a parameter but have different

model structures. For prediction of movement parameters from

neural data, this can result in slightly different decoder structures

(i.e., weight given to each neuron) even while the overall

movement prediction is stable [22,33]. Such variability in the

weights can occur for sequential datasets from the same recording

session [21,22,33]. As shown in Figure 7A (upper panel), similar

findings were also evident when two decoders were trained on

different days. We thus used daily retraining of the decoder as a

means to perturb the transform of neural activity to cursor

movements.

Interestingly, substitution of the learned decoder (DecoderOLD

in Figure 7A, black bar in upper panel) with a newly trained

decoder (DecoderNEW, green bar) caused a drop in BC

performance. However, the animal could rapidly resume accurate

BC upon reinstatement of the well-learned decoder. A significant

drop in overall performance was evident for multiple experiments

conducted on different days for both animals (Figure 7B). These

results suggest that small but significant changes in the model

weights are sufficient to prevent an established cortical map from

being transformed into a reliable control signal.

We subsequently tested whether a stable prosthetic motor map

can emerge in the presence of variability in the decoder. For

example, the brain may settle upon a solution that takes into

account the inherent variability of the neuron–cursor relationship.

We again specifically made use of the variability in the model

parameters present with retraining the decoder each day. Under

such conditions, more variable daily performance was observed,

likely the result of having to relearn the relationship for cursor

control each day (see Figure S4A). Moreover, there was no similar

Figure 5. Dependence of BC performance on size of the neural
ensemble. Relationship between changes in the neural ensemble size
and brain control performance after consolidation of an ensemble map.
Plot of changes in BC performance (relative to performance at baseline)
after random removal of one to six neurons from the neural ensemble.
The error bars represent the standard error of the mean (s.e.m.). For
experiments with an n = 1, only the mean is shown. For the respective
experiments in which only one and six neurons were dropped, the
s.e.m. was sufficiently small to be covered by the black dot. Number
next to each point represents the number of separate experiments
performed. The dotted line represents a linear fit (R = 0.95).
doi:10.1371/journal.pbio.1000153.g005

Figure 6. Map stabilization with a shuffled decoder. (A) Comparison of the ‘‘offline’’ predictive ability of an intact and a shuffled decoder. The
dark traces are the actual movements. The light blue traces are predictions with each decoder. For each set, the upper trace is the shoulder angular
(Ang.) position, and the lower trace is the elbow angular position. R is the correlation between the actual and the predicted movements. (B) Temporal
course of task performance (solid line) and map stabilization (red dots) for BC with a shuffled decoder. This plot is arranged similarly to Figure 3D. The
color map inset shows the pairwise correlation among each daily ensemble tuning map.
doi:10.1371/journal.pbio.1000153.g006

Stable Cortical Map for Prosthetic Control
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trend of cortical map stabilization within the timeframe of the

experiment (see Figure S4B). Thus, variability in the decoder

impedes the emergence of a stable cortical map for prosthetic

control.

Coexistence of Two Ensemble Maps
The results presented above further indicate that the formation

of a stable and readily recalled prosthetic map is closely associated

with stable task performance. Once stabilized, is a specific

prosthetic motor map resistant to interference from learning a

second map? To address this question, we examined whether an

animal could simultaneously learn and recall cursor control for

two distinct biomimetic decoders using the same set of neurons. As

shown by our results, a retrained decoder can prevent accurate

transformation of neural activity (Figure 7). We thus allowed a

subject to practice BC each day using both a ‘‘new’’ biomimetic

decoder and a well-consolidated (‘‘old’’) biomimetic decoder

(Figure 8A). The new decoder was trained during a MC session

on day 1. In comparison to the old decoder, there were significant

changes in four of the 15 weights (p,0.05. t-test, FDR correction

for multiple comparisons) for the elbow decoder, and seven of the

15 weights for the shoulder decoder (p,0.05. t-test, FDR

correction for multiple comparisons).

As expected, introduction of the newly trained decoder reduced

task performance (Figure 8A, day 1). Reintroduction of the

consolidated decoder, however, rapidly restored BC performance.

Over the course of several days, the subject demonstrated skilled

performance with each of the two decoders (day 4, 97.5% vs. 99%

trials correct, mean time to target of 2.3 vs. 2.4 s). Surprisingly, the

prosthetic motor map was distinct for each of the two decoders.

Figure 8B shows examples of changes in directional tuning during

BC under each condition (insets i and iii). Nine of 15 units

exhibited significant changes in directional tuning (bootstrap,

p,0.05, FDR corrected). Moreover, although the previously

consolidated map remained stable (n = 6 comparisons,

R = 0.8660.03, mean6SD), the new prosthetic motor map was

less similar to previous maps (n = 6, R = 0.360.05, mean6SD).

As suggested previously, these changes in directional tuning

could be the result of a change in the cursor path. As the subjects

were not required to reach the targets with a straight path, there

was some variation between the cursor paths for trials under each

of the two decoders (See Figure S5). We next tested whether

changes in the path could account for the observed change in

directional tuning. We again computed the directional modulation

of neural activity with respect to the actual cursor path during the

first 200 ms (as opposed to direction of intended movement to a

given target). Using this measurement, the calculated PDs were

somewhat different for each neuron (compare tuning curves in

Figure 8B with those in Figure S6). This likely reflects the

difference between the actual curved paths taken in comparison to

an idealized straight path (i.e., directional modulation based on the

intended direction). As such, there was a systematic shift in the

respective PDs for each neuron (e.g., Figure 8B vs. Figure S6: [i]

PDnew decoder = 29u vs. 96u; [ii] PDnew decoder = 352u vs. 74u). Most

importantly, even after taking into account the variations in the

actual path of the cursor, significant changes in neural tuning were

evident during BC with each of the two decoders (see Figure S6).

Discussion

In summary, this study demonstrates that the motor cortex can

form a stable neural representation for neuroprosthetic control. The

stability of the emergent cortical map across days is remarkable

given that these neurons also participate in the control of natural

arm movements for a greater part of the day (in comparison to the

approximately 2 h of BC each day). Our results further suggest that

the stationarity of this relationship relies upon the constancy of the

decoder that transforms neural activity into cursor movements.

Interestingly, under such conditions, even nonbiomimetic shuffled

decoders allowed the formation of a cortical map that is readily

transformed into cursor movements and reliable task performance.

Formation of a Stable Cortical Map for Neuroprosthetic
Control

Our analysis of the neural activity during the period of learning

indicates that the neuronal tuning functions (i.e., PDs, mean firing

rates, and the depth of modulation) appear to undergo a period of

modifications after which a stable ensemble activity pattern

Figure 7. Specificity of neural adaptations to the decoder. (A)
Reversible drop in performance with a change in the applied decoder.
The upper panel compares the two applied decoders. Pair of bars
shows the mean weight for each neuron in each decoder (paired t-test,
an asterisk [*] indicates p,0.05, FDR corrected for multiple compari-
sons). The lower panel shows the number of correct and incorrect trials
in the presence of DecoderOLD (black bar) and DecoderNEW (green bar).
a.u., arbitrary units. (B) Changes in performance for similar trials (n = 4)
in both monkeys with substitution of newly trained decoders
(mean6standard error; ANOVA, p,1025; the asterisk [*] indicates
p,0.05, FDR corrected for multiple comparisons).
doi:10.1371/journal.pbio.1000153.g007
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emerges. These tuning functions were estimated using either the

intended direction of motion (i.e., idealized straight path to the

target) or the actual motion of the cursor. For natural motor

control, different brain areas may represent each of these aspects

[34]. During BC, although these two methods can result in

different estimations of neuronal tuning properties (depending of

cursor path), they provide complementary estimates of the neuron-

behavior relationship during prosthetic control [5,6]. Together,

they indicate that a truly stable neuron-behavior relationship

emerges with practice.

The stability of neuronal properties at the level of the ensemble

further suggests that a functional cell assembly may have formed

during the process of learning and continued daily practice [35].

Accordingly, it is possible that systematic alterations in the dynamics

of interneuronal correlations also accompany the long-term

modifications of single neuronal tuning properties [36].

A topic for future research is the relationship between

feedforward ‘‘internal models’’ and feedback during active

neuroprosthetic control [37]. The emergence of stable ensemble

activity patterns during the early part of each trial (e.g., the first

200 ms of cursor movement) suggests that BC practice leads to the

formation of an internal model for cursor control. It is less likely

that visual feedback is responsible for shaping these early time

periods [16,38].

A better understanding of these two factors will elucidate principles

of trajectory formation during BC. Interestingly, the emergence of

stereotyped trajectories that are not necessarily straight is consistent

with a recent study suggesting that the process of motor learning

balances the acquisition of reward states with the costs of movement

[39]. Under this formulation, optimal paths do not necessarily follow

a straight trajectory. Consistent with this concept was also the finding

that cursor trajectories under each of the two decoders were both

curved and somewhat different for each set of trials.

Stability of the Neuron-Behavior Relationship
Our findings add to the recent debate on the stability of the

neuron-behavioral relationship for both natural motor control and

for neuroprosthetic control. Studies have presented conflicting

evidence for the notion of a stable neuron-behavior relationship for

stereotyped and free-arm movements [19–25]. Possible reasons for

the apparent variability include the process of learning a novel

motor relationship [40–42], postural changes, and subtle changes in

the pattern of muscle activation [20,23]. Our experimental setup

allowed us to address this in a setting in which the output of an

ensemble of neurons can be controlled. Thus, neural activations for

a purely disembodied BC task can achieve a stable neuron-behavior

relationship after an initial period of instability during learning.

Comparison to Past Studies
Past studies have presented evidence of long-term improve-

ments in neuroprosthetic control with practice [3–7,11,12,14–17].

As indicated by our results, however, there are at least two distinct

mechanisms for such long-term improvements in performance.

There are improvements in learning as a result of the formation

and consolidation of a neural representation for prosthetic control.

Alternatively, long-term improvements in performance can be the

result of daily relearning and the formation of a novel neural

representation. Our experiments indicate that incorporation of

stable neural ensembles and a fixed transform of neural activity

allows for monotonic and reliable improvement in performance.

Figure 8. Simultaneous retention of two maps without interference. (A) Changes in performance in the presence of two decoders over 4 d
of training. DecoderNEW (red bar) was introduced on day 1. DecoderOLD (blue bar) represents the set of weights that were learned over the course of
19 d of training (as shown in Figures 2 and 3). The panels on the left show a moving average of the performance over the entire session (window
size = 20 trials), and the panels on the right represent the mean session performance. (B) Changes in directional tuning for units during BC under
DecoderNEW and DecoderOLD. Each inset (i–iii) shows the relationship (color convention as in [A]) for the firing rate versus direction (dotted line and
filled circles, respectively). The error bars represent the s.e.m. The solid line represents the cosine fit for directional modulation of the firing rate.
Shown on the right are 100 randomly selected waveforms for each unit under each of the two conditions. The numbers represent the preferred
direction (PD). The asterisk (*) indicates p,0.005 for bootstrap analysis with correction of FDR for multiple comparisons.
doi:10.1371/journal.pbio.1000153.g008
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That consolidation of a cortical representation was important for

these improvements is suggested by (1) evidence for rapid recall of

performance at the start of each daily session, and (2) stabilization

of neural tuning functions.

Choice of Decoding Technique for Neuroprosthetic
Control

Our primary interest in this study was to characterize the long-

term dynamics of the neuron-behavior relationship for direct

cortical control of a cursor. This was best achieved by applying a

constant decoder across time while observing the changes in

neural activity. Although many decoders are likely to be useful for

this purpose, the linear decoder has proven to be effective and

offers a ready comparison to past successful BMI studies [4–7].

Moreover, our results suggest that cortical map formation can be

truly independent of the exact decoder used (e.g., Figure 5 shows

learning across days with a shuffled decoder).

One implication of our findings is that cortical control of a

prosthetic device depends on specific neural adaptations to the

applied decoder [1,43]. Whereas two decoders may both predict

MC movement parameters equally well, there may be significant

variability in the parameters assigned to a specific neuron [33]. As

shown by our results, this variability prevents the formation of a

stable neural representation. Minimizing decoder variability would

be less important if an entirely new set of neurons are recorded

each day. However, in the more likely scenario where subsets of

neurons are stable across time [15,19,24,27–31], it will be

important to consider parameters assigned to stable units. Taking

into account such information could allow ‘‘graceful degradation’’

of function, where the loss of a subset of units would not be

catastrophic. This may also minimize the extent of required

relearning with changes in the recorded ensemble.

Role of a Stable Neural Representation for Prosthetic
Control

Our results further indicate that the formation and stabilization

of a cortical map for prosthetic function is closely linked to the

process of long-term neuroprosthetic skill acquisition. Strikingly,

the features of this map (i.e., readily recalled, stable, and resistant

to interference) resemble properties often attributed to a putative

long-term memory engram [44]. It is easy to imagine that in real-

world situations, complicated neuroprosthetic control will require

consolidation of an analogous ‘‘prosthetic motor memory’’ for

long-term retention of skilled function [45]. With continued

improvements in technology [46,47], neuroprosthetic devices

could be controlled through effortless recall of such a motor

memory in a manner that mimics the natural process of skill

acquisition and motor control.

Materials and Methods

Surgery
Two adult male rhesus monkeys (Macaca mulatta) were

chronically implanted in the brain with arrays of 64 Teflon-

coated tungsten microelectrodes (35 mm in diameter, 500-mm

separation between microwires) in an 868 array configuration

(CD Neural Engineering). Monkey P was implanted in the arm

area of primary motor cortex (M1) and the arm area of dorsal

premotor cortex (PMd), both in the left hemisphere, and the arm

area of M1 of the right hemisphere, with a total number of 192

microwires across three implants. Monkey R was implanted

bilaterally in the arm area of M1 and PMd (256 microwires across

four implants). Localization of target areas was performed using

stereotactic coordinates from a neuroanatomical atlas of the rhesus

brain [48]. Implants were targeted for pyramidal tract neurons in

layer 5, and were typically positioned at a depth of 3 mm in M1

and 2.5 mm in PMd. Depth of electrode placement was guided by

intraoperative monitoring of spike activity. All procedures were

conducted in compliance with the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and were approved by

the University of California at Berkeley Institutional Animal Care

and Use Committee.

Electrophysiology
Unit activity was recorded using the MAP system (Plexon). For

this study, only units from primary motor cortex were used. Only

single units that had a clearly identified waveform with a signal-to-

noise ratio of at least 4:1 were used. Activity was sorted prior to

recording sessions using an on-line spike-sorting application (Sort-

Client; Plexon). Large populations of well-isolated units (,75–100)

were recorded during each daily session in both monkeys (typical

number of units was defined by waveform quality and ISI

distributions). Consistent with reports in the literature [24,27–31],

several months postsurgery, we found a subset of stable units

whose waveform shape, amplitude, and relationship to other units

on a channel varied little from day to day (i.e., the sorting template

in the Sort-Client required no or very minor daily modifications).

The stationarity of such properties was the first criterion for a

putative stable unit. We also examined the properties of the ISI

distribution and the presence of an absolute refractory period to

confirm the presence of a stable single unit. We also confirmed the

stability of the waveforms using commercially available software

(Wavetracker; Plexon). Specifically, we utilized the features that

allow mapping of waveform characteristics into a two- and three-

dimensional principal components space. Stability of waveforms

could be assessed by comparison of the stability of the projections

across time (please see Figure S1 for examples). Multivariate

ANOVA tests allowed statistical comparison.

Moreover, we also estimated the PD in MC of select ensembles

of putative stable units. For these subsets of ensembles, MC

sessions were performed each day to estimate the directional

tuning curves (e.g., Figure S2 shows the similarity of the tuning

curves within an ensemble across days). Moreover, the precise

number of units per experiment was determined by examining all

recorded units over a period of several days to ascertain units with

stationary properties. Our conclusions did not appear to depend

on ensemble size.

Experimental Setup and Behavioral Training
Monkeys were trained to perform a center-out delayed reaching

task using a Kinarm (BKIN Technologies) exoskeleton. In this

device, the shoulder and elbow are restricted to move in the

horizontal plane, giving two degrees of freedom (flexion/

extension). During training and recording, animals sat in a

primate chair that permits limb movements and postural

adjustments. Head restraint consisted of the animal’s headpost

fixated to a primate chair. Recording sessions typically lasted 2–

3 h per day. Kinematic variables (position, velocity, and

acceleration) were continuously monitored and recorded.

The behavioral task consisted of hand movements from a center

target to one of eight peripheral targets (i.e., center-out task)

distributed over a 14-cm diameter circle. Target radius was

typically 0.75 cm. Trials were initiated by entering the center

target and holding for a variable time period of 500–1,000 ms.

The ‘‘GO’’ cue (center changed color) was provided after the hold

period. A liquid reward was provided after a successful reach to

each target and a peripheral hold period (200–500 ms). Visual

feedback of hand position was provided by a cursor precisely
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colocated with the center of the hand (cursor radius = 0.5 cm).

During the task, the nontask arm was immobilized in a padded

splint.

In BC, the cursor was continuously controlled by neural activity,

and each animal received visual feedback of cursor movements.

The task-related hand (right) was removed from the exoskeleton

and restrained during BC. The cursor was under continuous

volitional control throughout the experiment. The subjects were

required to self-initiate each trial by bringing the cursor to the

center. As mentioned below, the hold period for BC was optimized

in order to minimize false-positive activations.

Typical BC trials required a fixed center hold period of 250–

300 ms. As in other studies [6], subjects experienced difficulty

completely stopping the cursor. During typical hold periods, the

cursor slowed down enough to trigger the GO cue. However, with

practice (e.g., after .6–7 d for a given set of neurons and a fixed

decoder), animals could perform tasks that required longer hold

periods (e.g., 1,000 ms) as well as variable hold periods. During

these trials, the cursor appeared to be actively held in place.

Moreover, reward was provided when the cursor was inside of the

peripheral target for .100 ms. Typically, a reduction in velocity

was sufficient to accomplish this.

A trial was considered incorrect if the cursor failed to reach the

target within 10 s after a GO cue. During selected sessions, we

concurrently performed video and surface electromyelogram

(EMG) recordings from proximal muscle groups. As in past

studies, neither animal moved their upper extremity during BC

[5,6]. The observation that movement was not critical for BMI

performance is further highlighted by the fact that a shuffled

decoder with no relation to actual movements could be learned.

During experiments in which new decoders were introduced

(e.g., see Figure 7), no cues were given. These blocks occurred in a

randomized, unpredictable manner. Moreover, these trials were

brief (,20 min). However, for experiments in which two decoders

needed to be learned, two different color-coding schemes were

used to indicate differences between BC sessions involving the two

decoders (e.g., data shown in Figure 8). For these experiments, the

color of peripheral targets was different for trials using either the

old decoder (blue) or the new decoder (yellow). The respective

color schemes for the center target (green) and the GO cue

(change from green to red) remained constant. In experiments

requiring relearning of a daily decoder (i.e., data shown in

Figure 4), animals were given longer sessions (1–2 h) in order to

adapt to the changes.

Finally, there was evidence of generalization of prosthetic

control beyond the stereotyped structure of the center-out task. In

selected experimental blocks, animals were able to generate novel

cursor trajectories in order to reach the targets (see Figure S7).

Decoding Motor Parameters from Neural Ensembles
Previous analyses [2,6,21] have demonstrated that hand

position and velocity can be accurately predicted with a linear

regression model. In this model (Equation 1), the inputs, X(t), were

a matrix with each column corresponding to the discharges of

individual neurons, and each row representing one time bin. The

output Y(t), was a matrix with one column per motor parameter.

The linear relationship between neuronal discharges in X(t), and

behavior (elbow and shoulder joint positions) in Y(t) was expressed

as

Y (t)~bz
Xn

u~{m

a(u)X (t{u)ze(t), ð1Þ

where a and b are constants, calculated to fit the model optimally.

First, a(u) are the impulse response functions required for fitting

X(t) to Y(t) as a function of time lag u between the inputs and the

outputs. Ten time lags were used during these experiments.

Second, b represents the Y-intercept in the regression. The final

term in the equation, e(t), represents residual errors. The linear

filter was generated using the techniques described above and

neural (spike activity from a select group of neurons binned into

100-ms bins) and kinematic data (continuous recordings of the

elbow flexion/extension and shoulder flexion/extension angles)

recorded from a 10-min session of MC (while performing the

center-out task). Past studies have shown that a bin size of 100 ms

is optimal [2,6,21]. A new decoder was trained by repeating the

algorithm outlined above during a MC session on subsequent day.

Shuffled decoder. The shuffled decoder was generated by

shuffling the exact relationship between the neurons used for

training and predicting. Thus, after training a new decoder (ten

lags/neuron), a randomized shuffle was performed such that each

set of ten lags was randomly assigned to a neuron. As shown in

Figure 5, this dramatically reduced the ability to predict limb

position over time.

It should be noted that unlike in other studies, we initially

created decoders that predicted joint kinematics as opposed to

hand-centered kinematics. For our M1 recording from both

animals, we found that predictions of joint kinematics were more

reliable than hand-centered kinematics. Thus, we initially

attempted to maximize the ability of the linear decoder to predict

manual control trajectories by first predicting joint kinematics.

However, as indicated by the experiments with the shuffled

decoder, a clear relationship between the decoder and MC was

ultimately not found to be essential for accurate BC.

Past studies have successfully used both position [14] and

velocity [5,6] control for BC. A likely difference between position

control and velocity control is that hold periods at different

locations in the workspace require different patterns of activity.

For example, whereas returning to a single state allows for holding

at any location for velocity control, position control requires

different states for varying locations in the workspace.

Brain–machine interface. We used the linear filter

described in the previous section to predict shoulder and elbow

joint angles from the recorded neural activity. The model was

trained on 10 min of activity and then used to predict position

from subsequent neural activity. Filter parameters were not

changed during the BC experiments. Neural activity was

streamed over a local intranet via the PLEXNET client-server

application (Plexon) and converted into 100-ms bins of spiking

activity. Each binned value was used to generate real-time

predictions of the shoulder and elbow joint angles that were

streamed to the Kinarm interface as control signals. These

predictions were converted into Cartesian coordinates (i.e., xy

position of the cursor) through a Jacobian matrix. The cursor

position was updated on the Kinarm projection screen at 10 Hz.

Data Analysis
Task performance analysis. The BC task was calibrated to

minimize false positives for ‘‘self-initiation’’ and ‘‘correct trials.’’

To start a trial, the cursor had to be held over the center target for

250–300 ms. The chance level of self-initiation was approximately

0.5 trials per minute. This value was determined through

experiments in which the task was performed by spontaneous

neural activity (i.e., the computer monitor was turned off while the

cursor was controlled by spontaneous activity). In contrast, while

engaged in the task, each subject self-initiated trials at a rate of 3–

10/min. The lower end of the range was seen during unskilled
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BMI performance (Figure 2C). A false-positive correct trial (self-

initiation followed by target acquisition) was rare (typically ,one

per 10 min).

Both trial attempts and correct trials were counted from the

instant BC was initiated each day. A correct trial was defined as

successful movement of the cursor to the target followed by the

hold period. As indicated above, we minimized the number of

false-positive self-initiations (i.e., the number of trial attempts). The

time-to-target measurement (Figure 2B) reflected the movement

time from the center to each peripheral target.

Predictive power of the decoder. The predictive power of

each decoder was determined by comparison (i.e., correlation) of

neural predictions of shoulder and elbow angular position with

that of measured values. Estimation of predictive power was

performed using 2 min of movements outside of the 10-min

training window. As in past studies [2,6], there was a positive

relationship between predictive power and the size of a randomly

selected neural ensemble. However, our conclusions did not vary

with respect to the size of a neural ensemble. Thus, the factors

enabling skill acquisition were identical for both the larger (n = 41)

and the smaller (n = 10–15) ensemble sizes.

Preferred direction. Directional tuning was estimated by

comparing the mean firing rate as a function of target angle during

execution of the movement [24,32]. In MC, the time to target was

fairly constant. In BC, however, this time period was variable and

often decreased with stabilization of prosthetic skill. We thus

calculated the mean time to target for the entire experimental set

(e.g., over the 19 d shown in Figure 2, mean time to target was

2.3 s). We subsequently used the time period of 2 s as the window

for calculating the mean firing rate versus target direction

relationship for subsequent experiments. The first 2 s of each

trial were used. A similar method was also used for shorter time

windows (e.g., 200 ms). Essentially identical results were obtained

with window sizes of 1 s and 1.5 s (e.g., see evolution of spiking

activity in raster plot in Figure 3A and 3B). The tuning curve was

estimated by fitting the firing rate with a sine and a cosine as:

f ~ B1B2B3½ �|
const

sin h

cos h

2
64

3
75 ð2Þ

where h corresponds to reach angle and f corresponds to the firing

rate across the different angles. Linear regression was used to

estimate the B coefficients. The PD was calculated using the

following: PD = tan21 (B2/B3), resolved to the correct quadrant.

The depth of modulation was measured by calculating the

difference between the maximum and the minimum of the fit

curve. B1 was taken to be mean firing rate for a session. The depth

of modulation was measured by calculating the difference between

the maximum and the minimum of the tuning curve (in hertz). B1

was taken to be mean firing rate for a session.

For the analysis of the directional modulation of the firing rate

with respect to the actual direction of cursor movements,

movement direction was measured every 100 ms. For each

neuron, the firing rate was calculated for the preceding 100-ms

interval. Directions were binned into 16 bins (i.e., a bin size of

22.5u for the range of 0u to 360u). The respective neural firing rate

was then determined for each bin. For the analysis shown in

Figure 3D and Figure S6, the first two steps (i.e., 200 ms total)

were used to estimate the tuning curves. The tuning curve was

estimated using linear regression as outlined earlier.

Changes in directional tuning of neuron. A bootstrap

resampling procedure was used to assess the statistical significance

of preferred direction changes [24]. The bootstrap statistics

involved the following steps: (1) for a given session and unit, a

distribution of PDs was generated by bootstrap sampling with

replacement of the observed unit’s spiking activity versus target

direction; (2) a cosine tuning model was generated for each

sampling; and (3) the circular mean was subtracted from each PD.

For comparison between two units, we sampled one PD from each

zero mean distribution to create a distribution of absolute angle

difference. By repeating this procedure 2,000 times, we created a

distribution corresponding to the null hypothesis (no change in

PD). This distribution was used to compute the probability that the

actually observed change in PD was statistically zero. Units whose

PD difference had a p-value 0.05 corrected for multiple

comparisons (i.e., false detection rate [FDR] with a Bonferroni-

type correction) were considered to have a significant change in

PD.

Index of similarity between ensemble tuning maps. We

used pairwise correlation among the ensemble tuning maps (both

for MC and for BC) to assess similarity between two maps [6]. In

Figure 3A, 3B, 3C, and Figure S4A, the neural tuning curves were

normalized to the peak positive value for a given day, and constant

term was not included. This readily allowed for comparison of

changes in the preferred direction for the entire ensemble over

time (e.g., Figure 3C and Figure S4B). For the comparison of the

map similarity with respect to the learning curve for task

performance (e.g., Figure 3D), we calculated the mean

correlation between all the maps across days (with exclusion of

the self-comparison). Thus, each point on the curve shown in

Figure 3D (left panel) represents the average of 18 values.

Index of similarity between BC trajectories. We also used

pairwise correlation between the mean trajectories to each target

per day to assess whether a more stereotyped trajectory was

present with practice. For each daily session, the mean path to

each target was calculated by averaging all correct trials. A mean

correlation value (for a given comparison between two days) was

obtained by averaging the correlation between the sets of paths.

Supporting Information

Figure S1 Stability of spike waveforms over time. (A)

The panels on the left show samples of 100 randomly selected

waveforms from a single channel on days 1, 5, 10, and 15. The

width and height of each box are identical. The panel on the right

shows the mapping of the waveforms from every other day (from

days 1 to 15) onto a two-dimensional principal component (PC)

space (i.e., ‘‘waveform stability tube’’). The z-axis represents time

(in days). Each of the distributions are also shown in an

overlapping manner below the tube (PC1 vs. PC2 axis). (B)

Another example of waveforms from multiple days and the

corresponding ‘‘waveform stability tube.’’ The panels are as in (A).

Found at: doi:10.1371/journal.pbio.1000153.s001 (0.26 MB TIF)

Figure S2 Stability of directional tuning in manual
control. (A) The group of panels illustrates the properties of

nine units from the 41-unit ensemble shown in Figure 6 (Monkey

P). Each set of panels shows the waveform for a unit (day 4) and

eight overlapping mean tuning curves for that unit during manual

control (days 1 through 8). Each curve represents a cosine fit to the

directional modulation of the firing rate. There were no significant

changes in the PD (bootstrap, FDR corrected for multiple

comparisons). (B) Examples of the path taken from the center to

each of the eight targets during performance of manual control

trials. (C) Pairwise correlation of the MC ensemble tuning map

across 8 d. Arranged similarly to Figure 3C.

Found at: doi:10.1371/journal.pbio.1000153.s002 (0.75 MB TIF)
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Figure S3 Comparison of daily mean cursor trajecto-
ries. Representative cursor trajectories from an early (n = 1/

target) and late session (n = 5/target). The color map on the right

represents a pairwise correlation of mean trajectories to all targets

per day for Monkey R. Warm colors represent higher correlations

than cooler colors. Thus, the mean trajectories become increas-

ingly stereotyped after attaining a stable performance level (e.g.,

after day 3).

Found at: doi:10.1371/journal.pbio.1000153.s003 (0.12 MB TIF)

Figure S4 Variations in the ensemble tuning map using
a new daily decoder. (A) For the 3 d shown are representative

waveforms, performance characteristics, and the ensemble tuning

map from the BC session. The performance data represent BC

after a period of adaptation to the change in decoder properties.

With a new daily decoder, there was substantial variability in the

neuronal directional tuning for BC each day. This indicated that

the motor cortex had to form a new cortical map to successfully

translate neural activity into cursor movements. The color maps

represent data used to calculate the pairwise correlation map

shown in (B). (B) Color map of the pairwise correlations of the

ensemble tuning during BC with daily retraining of the decoder.

Each session represents BC performed under a newly trained

decoder. This figure is arranged similarly to Figure 3C.

Found at: doi:10.1371/journal.pbio.1000153.s004 (1.14 MB TIF)

Figure S5 Single-trial cursor trajectories for BC under
two decoders. Examples of the single-trial cursor paths during

experiments in which two decoders had been simultaneously

learned. These represent the neural data analyzed in Figure 8.

Each panel shows the cursor path from the center to a target

(n = 5). The green circles indicate the active target for a given

panel.

Found at: doi:10.1371/journal.pbio.1000153.s005 (0.23 MB TIF)

Figure S6 Changes in directional tuning measured with
respect to the path of cursor movements. Comparison of

the neural tuning functions during BC with two different decoders.

The three panels represent a separate analysis of the neural data

presented in Figure 8B. Although the tuning functions shown in

Figure 8 represent the directional modulation of the neural activity

relative to the intended target, the tuning functions shown here

represent direction modulation with respect to the actual path of

the cursor (first 200 ms). Thus, even after taking into account

changes in the path of the cursor, there were changes in the tuning

functions. The color scheme is identical to that used in Figure 8.

Found at: doi:10.1371/journal.pbio.1000153.s006 (0.13 MB TIF)

Figure S7 Generalization of prosthetic control beyond
the center-out task. Sample trials demonstrating generalization

of prosthetic control beyond the stereotyped center-out task. The

figure shows how Monkey P can control the cursor from an

arbitrary start target. The original task was altered such that the

‘‘Start’’ target (shown in red) randomly appeared within the

workspace in an unpredictable pseudorandom order. Although the

‘‘End’’ target (green) remained as prior, novel unrehearsed

trajectories were required to reach each of the eight targets. The

accuracy level for this new task was typically .85% and did not

appear to require extensive relearning.

Found at: doi:10.1371/journal.pbio.1000153.s007 (0.09 MB TIF)
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