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Abstract
We investigate the relationship between landscape heterogeneity and the spatial distribution of small
mammals in two areas of Western Sichuan, China. Given a large diversity of species trapped within
a large number of habitats, we first classified small mammal assemblages and then modelled the
habitat of each in the space of quantitative environmental descriptors. Our original two step “classify
then model” procedure is appropriate for the frequently encountered study scenario: trapping data
collected in remote areas with sampling guided by expert field knowledge.

In the classification step, we defined assemblages by grouping sites of similar species composition
and relative densities using an expert-class-merging procedure which reduced redundancy in the
habitat factor used within a multinomial logistic regression predicting species trapping probabilities.
Assemblages were thus defined as mixtures of small mammal frequency distributions in discrete
groups of sampled sites.

In the modelling step, assemblages’ habitats and environments of the two sampled areas were
discriminated in the space of remotely sensed environmental descriptors. First, we compared the
discrimination of assemblage/study areas by linear and non-linear forms of Discriminant Analysis
(Linear Discriminant Analysis versus Mixture Discriminant Analysis) and of Multiple Regression
(Generalized Linear Models versus Multiple Adaptive Regression Splines). The “best” predictive
modelling technique was then used to quantify the contribution of each environmental variable in
discriminations of assemblages and areas.

Mixtures of Gaussians provided a more efficient model of assemblage coverage in environmental
space than a single Gaussian cluster model. However, non-linearity in assemblage response to
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environmental gradients was consistently predicted with lower deviance and misclassification error
by Multiple Adaptive Regression Splines. The two study areas were mainly discriminated along
vegetation indices. However, although the Normalized Difference Vegetation Index (NDVI) could
discriminate forested from non-forested habitats, its power to discriminate assemblages in Maerkang,
where a greater diversity of forest habitat was observed, was seen to be limited, and in this case NDVI
was outperformed by the Enhanced Vegetation Index (EVI). Our analyses highlight previously
unobserved differences between the environments and small mammal communities of two fringe
areas of the Tibetan plateau and suggests that a biogeograph-ical approach is required to elucidate
ecological processes in small mammal communities and to reduce extrapolation uncertainty in
distribution mapping.

Keywords
Small mammal assemblages; Habitat distribution modelling; Mixture Discriminant Analysis;
Multiple Adaptive Regression Spline; Environmental gradients

1 Introduction
1.1 Modelling distributions of assemblages

Modelling spatial distributions of species is a developed and promising research field which
can both explain and predict the effects of environmental descriptors on species presence/
absence in space. This relies on defining species’ habitats (Guisan and Zimmerman, 2000)
following Hutchinson’s concept of ecological niche (1957). Recent reviews are found in
Pulliam (2000) and Hirzel et al. (2002).

In situations where a large number of species co-occur in a large number of sampled sites,
habitat definition for individual species can be complicated by species interactions. Defining
habitat for rare or “shy” species can be impossible when presence is difficult to detect. By
contrast, the full extent of habitats for dominant species can be elusive when the species is
found in a large proportion of sampled sites. In these situations community level modelling
constitutes a useful tool that provides a synthesis of such data sets by reducing their complexity
to a much smaller set of higher-level entities. One such higher level entity can be that of an
assemblage, i.e. a group of taxonomically related species which share the same habitat (Ferrier
and Guisan, 2006). The habitat of an assemblage can therefore be defined in reference to a
group of sites in which similar species composition and densities are observed.

Community-level spatial modelling involves three main steps (Ferrier and Guisan, 2006): i)
classification of species and/or sites into groups, ii) statistical formulation to assess
relationships between groups and environmental descriptors, and iii) predictive mapping of
groups. Classification (i) is often realized through ordination methods without incorporating
environmental information, e.g. the TWINSPAN algorithm (Hill, 1979; Legendre and
Legendre, 1998). Grouping species into discrete assemblages involves making assumptions
on species distributions (Olden, 2003): first, grouped species are treated in a similar way
regarding their responses to environmental descriptors; then, species are assumed to belong to
discrete mutually exclusive groups. In regards to Hutchinson’s concepts of ecological niche
and associated species’ niche specificity and marginality, such assumptions seem at odds with
species distributions in nature (Doledec et al., 2000; Hirzel et al., 2002). Moreover, clustering
procedure can be biased by the subjective choice of similarity criterion and decision threshold
(Anderson and Clements, 2000). In the modelling step (ii) groups are typically modelled against
environmental variables, individually via GLM or GAM, or simultaneously using
polychotomous regression or discriminant analysis (Lehmann et al., 2002; Gibson et al.,
2004; Ferrier and Guisan, 2006). Modelling techniques have been deeply investigated in a
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“model then classify” approach by which species responses are grouped into assemblages after
prediction of their occurrences (Lehmann et al., 2002; Gibson et al., 2004; Ferrier and Guisan,
2006). Joint modelling of multi-species responses has been recently developed to account for
species interactions. This can help elucidate those variables that have strong effects on the
whole community but might not be identified relevant in species level analyses (Leathwick et
al., 2006). This has been successfully achieved through non-linear models such as Multiple
Adaptive Regression Splines (MARS) (Friedman, 1991; Moisen and Frescino, 2002;
Leathwick et al., 2006) and Artificial Neural Networks (Olden, 2003; Olden et al., 2006).
However, these methods consider the model response to be presence of the individual species
in each sampled site, defined using a threshold probability (usually 0.5) on observation
frequencies, which can be viewed as a constraint for rarely observed species or sparse data
sets.

1.2 Modelling landscape disturbance effects on small mammal distributions
Effects of landscape disturbances on small mammal communities have been investigated by
defining assemblages using several classification methods on the basis of species trapping data.
For example, Butet et al. (2006) used ordination methods and species/sites proximity in co-
inertia axes while Giraudoux et al. (1998) defined assemblages by subjective criteria.
Clustering algorithms have also been used to classify habitats into groups according to species
composition dissimilarity (Krasnov et al., 1996).

On the basis of an a priori expert defined and qualitative habitat nomenclature, Raoul et al.
(2008) produced an objective and reproducible classification of assemblages. The set of
sampled habitat classes was reduced into a smaller set using information theory and assuming
a multinomial model for the small mammal trapping data. Each a posteriori habitat class plus
associated estimates of species trapping frequencies defined an assemblage. This approach
presents several advantages over currently popular classification methods in the “Classify then
model” approach: first, classification of assemblages was performed via a reclassification of
sampled habitat classes a priori identified in the field and thus incorporates information gained
from an expert oriented sampling strategy (Pearce et al., 2001); secondly, by considering each
assemblage as a localised picture of species composition and relative densities, classification
was performed at the habitat level instead of the species level, thus the crude assumptions of
species responses mentioned above were avoided; finally, in the reclassification step, models
were compared and selected using Akaike Information Criterion (AIC) which can be viewed
as an objective method (Burnham and Anderson, 1998). However, this classification method
limits the definition of assemblages’ habitats to qualitative and a priori habitat classes limited
to the sampling design. Consequently it suffers from predictive power limitations, i.e.
assemblage definitions cannot be spatially extrapolated beyond the sampled sites.

1.3 Context, hypothesis and objectives
In China, the spatial distribution of small mammal species has been shown to be modified by
landscape disturbances such as overgrazing and fencing practices on the Tibetan plateau (Wang
et al., 2004; Raoul et al., 2006), deforestation in Gansu (Giraudoux et al., 1998) and
afforestation in Ningxia (Raoul et al., 2008). We aimed to investigate the relationship between
landscape heterogeneity and the spatial distribution of small mammal assemblages in two
forested areas located in the fringes of the Tibetan plateau (Sichuan, China). There, forest
management leads to landscape heterogeneity and likely drives changes in the spatial
distributions of small mammals.

Our main methodological challenge was to develop a predictive model for trapping data sets
of diverse taxon, realized in remote areas and thus constrained by a limited sampling effort, a
large number of rare species trapped with low frequency and an expert oriented sampling
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design. There is currently a need to adapt habitat modelling methodologies in order to fit and
extract the maximum information possible from such data sets which is common in
conservation studies. Here, we developed an original two step “Classify then model” procedure
to address these issues.

In the classification step, we applied the Raoul et al. (2008) expert-class-merging procedure
to summarise our trapping data by defining assemblages. Then, our major technical
contribution was to incorporate such assemblage definitions into a predictive modelling
framework. In the modelling step, the predictive limitations of the initial expert-class-merging
assemblage definitions was overcame by extending the definition of the habitat associated with
each assemblage using a set of quantitative variables extracted from remote sensors. By doing
so, we addressed some currently debated methodological issues in the field of species
distribution modelling. The modelling step aimed to answer two questions:

i. which modelling technique and associated response-factor relationships predict
assemblage occurrence with lowest prediction error?

ii. what are the contributions of each environmental variable in assemblage
discrimination and prediction?

Among the theoretical hypothesis supporting current species modelling methodological
frameworks, the shape of response curves has often been neglected and there is a need to
consider it at the interface between statistical methods and ecological realism (Austin, 2002,
2007; Guisan et al., 2006). The richness of existing statistical models offers the opportunity to
compare different ecological theories underlying observed patterns of species distribution in
environmental space. While previous studies have shown non-linear models provide better fits
and predictions of multiple species responses than linear models (Doledec et al., 2000; Olden,
2003; Leathwick et al., 2006), we tested if this observed pattern could hold when species
responses are considered as a whole, i.e when assemblages and not species are used as the
response variable. Several methods exist to discriminate known groups by continuous
variables. We compared the discrimination ability of two widely used classifiers, multiple
logistic regression and discriminant analysis, and tested several forms of assemblage response
curves: linear versus non-linear and single Gaussian versus Gaussian mixture respectively.

The selection of a relevant set of predictors for building predictive models also remains an
active current issue which is complicated by the nature of environmental predictors (direct/
indirect) and their interactions (Austin, 2007). Here, instead of selecting a single “best” model,
we investigated the overall contribution of each environmental variable within a set of models.

Because trapping data were collected in two distinct areas, the same questions were answered
at the regional spatial extent to investigate discrimination of the two study areas in the
environmental space.

2 Material and methods
2.1 Small mammal species data sets

2.1.1 Study areas—Two study sites were investigated in western Sichuan province (central
China) in the vicinities of Rangtang and Maerkang cities, (approximatively 100 kilometres
apart) (figure 1), in June 2004 and July/September 2005 respectively. The sampling area in
Maerkang ranged from 2950 to 4100 meters altitude. The 2005 mean annual temperature and
yearly average rainfall were 8.9 °C and 811.5 mm respectively (data source: Maerkang Center
for Disease Control). Forested areas were either coniferous or birch and oak. Afforestation
measures were in place and a large number of young plantation forests were found.
Rhododendron forests and pastures were observed at higher elevations. Villages were often
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surrounded by ploughed fields and were situated close to rivers with abandoned terraced fields
at higher elevation. In Rangtang, elevation of sampled area ranged from 3350 to 3900 meters
and in 2005 yearly average temperature and yearly average rainfall were 5.4 °C and 854.3 mm
respectively. Landscape was mainly composed of grassland and shrub. Forest was less
abundant than in Maerkang and was more frequently coniferous than broad-leaf.

2.1.2 Sampling protocol—Sampling was undertaken in a priori defined habitats identified
in the field i.e. habitats classified on the basis of apparent dissimilarities in vegetation structure
and dominant genus composition. In Maerkang and Rangtang, 18 and 12 habitats were sampled
respectively (table 2). Four habitats were found to be similar in the two locations: “Forest
Rhododendron/coniferous”, “Forest coniferous willow bushes understory”, “Stream bushes”
and “Slope bushes” (table 2).

Extensive standard trapping (Giraudoux et al., 1998, Raoul et al, 2006) was undertaken in each
habitat. Each standardized trapline consisted of 25 traps spaced three meters apart. Two types
of traps were used: small break back traps (SBBT), for animals not heavier than 100g and big
break back traps (BBBT) for larger individuals. Each trap was set for three nights (unless non-
controlled factors dictated otherwise, e.g. trap theft), checked every morning and re-set/re-
baited as necessary. We use the term trap-night to refer to a single trap set for one night. A
total of 8095 trap-nights (4603 in Maerkang; 3492 in Rangtang) in 122 traplines (66 in
Maerkang; 56 in Rangtang) were set; differential trapping effort by habitat is reported in table
2.

Species were identified at the Centre de Biologie et Gestion des Populations (J.P. Quéré) using
the following references: Corbet (1978); Fen and Zheng (1985); Gromov and Polyakov
(1978); Gromov and Erbajeva (1995); Smith and Xie (2008). Apodemus penninsulae,
Apodemus draco and Apodemus latronum identifications were confirmed using cytochrome b
sequencing. Nomenclature followed Wilson and Reeder (2005).

2.2 Assemblage definition
2.2.1 Statistical model—The response variable, the category (i.e species or empty trap)
observed in a given trap-night, was assumed to follow a multinomial distribution (Raoul et al.,
2008). Relationships between habitat classes and species distribution were modelled using log
linear multinomial regression with a priori selected habitat classes as explanatory variables
(McCullag and Nelder, 1989). The three nights per trap and trap type were included as factors
in the regression. Within each study site, a preliminary model comparison via AIC indicated
no evidence for a night effect, so the factor was removed for further analyses.

2.2.2 Expert-class-merging procedure—Following Raoul et al. (2008), pairs of habitat
classes (Hi and Hj) were “merged” by imposing an equality constraint on their regression
coefficients (i.e. β Hi = βHj). Iterative application of this constraint to all habitat class pairs lead
to K new models which were compared via the difference in AICc (ΔAICci j) between each
new model and the original (unconstrained) one. The model/merge providing the largest
ΔAICci j identified the most redundant habitat class distinction and the two corresponding
classes were fused into a single super-class. The process was iterated until no further evidence
of class redundancy was observed i.e. once ΔAICci j < 2 (Burnham and Anderson, 1998).
Finally, we computed the Simpson diversity index of each resulting assemblage. All statistical
algorithms were implemented in R (R Development Core Team, 2008). Multinomial models
were fitted using the multinom function of the nnet package.
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2.3 Assemblage habitat modelling
2.3.1 Environmental descriptors—The environment at trapline locations was described
using remotely sensed data layers corresponding to: spectral responses of Landsat Enhanced
Thematic Mapper (ETM) bands; elevation; slope; and sun exposure. A (July 2005) multi-
spectral ETM image from Landsat 7 was obtained from the U.S. Geological Survey
( landsat.usgs.gov). ETM bands 3, 4 and 7, corresponding to red, near-infrared and middle
infrared respectively, each with a 30 meters resolution, were used for the analyses. Other ETM
bands were omitted from further analysis due to strong correlations with the selected bands.
Using the ETM image, the Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) were computed (Huette et al., 1999). NDVI quantifies the difference
between photosynthetic activity related absorption in the visible range and reflectance in the
near-infrared which is related to electro-magnetic emission by plants. NDVI is thus correlated
to vegetation biomass. However, the NDVI is known to suffer from saturation when vegetative
biomass is high and to be sensitive to canopy background in open forested areas (Huette et al.,
2002). Therefore, we computed EVI, defined as

where L is the canopy background and snow correction, C1 and C2 are coefficients of aerosol
“resistance” terms and G the gain factor with L = 1, C1 = 6, C2 = 7.7 and G = 2.5.

A digital elevation model (DEM) was obtained from the SRTM program
( http://srtm.usgs.gov/). Slope, aspect and elevation were derived from the DEM in
GRASS GIS ( http://grass.itc.it/). The sun index (SI), which provides a proxy for net
incident solar radiation, was estimated as (Gibson et al., 2004):

In general traplines were not confined within the bounds of single pixels. In order to construct
the data matrix the mean of each variable was estimated from 10 points regularly spaced along
each trapline. This was performed using spgrass6, the R/GRASS interface available at
http://r-spatial.sourceforge.net/xtra/xtra.RHnw.html.

2.3.2 Discriminant models—We explored if the set of environmental descriptors could:
explain small mammal assemblage distributions locally, i.e. within each study area; and
discriminate between the two study areas using data from trapline locations, a regional level
analysis. Essentially this entailed discrimination of previously identified assemblages/traplines
in the environmental space and thus presents a supervised classification problem. Model
performances of two currently popular methods were compared: Discriminant Analysis (DA)
and Logistic Multiple Regression (LMR). Both techniques were tested: in linear form, Linear
Discriminant Analysis (LDA) (Fisher, 1936) and multinomial Generalized Linear Model
(GLM); and in non-linear form, Mixture Discriminant Analysis (MDA) and Multiple Adaptive
Regression Splines (MARS).

MARS: Multiple Adaptive Regression Splines (Friedman, 1991) enable modelling multiple
categorical responses with weak assumptions on the shape of the response. A set of pairwise
basis functions provide a set of nonlinear transformations on covariates enabling regression
modelling in an enlarged space defined by the set of basis functions and their products and thus
enabling identification of complex non-linear responses (Hastie et al., 2001, 1994). In the
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context of species distribution modelling, MARS incorporated within GLMs has been shown
to outperform other non-parametric and non-linear modelling techniques on real (Leathwick
et al., 2006) and simulated (Moisen and Frescino, 2002) data sets. Here we test performance
of MARS incorporated into a multinomial GLM.

MDA: Non-linear decision boundaries in classification problems can also be modelled
indirectly, i.e. without specifying and parameterising the form of the non-linear decision
boundary. Mixture Discriminant Analysis is such an approach, generalising the linear decision
boundaries of LDA by incorporating mixtures of multivariate Gaussians to discriminate a
single class (Hastie and Tibshirani, 1993). MDA divides a given class into multiple subclasses
each following a multivariate normal distribution with unique mean vector and a common
covariance matrix. As far as we know, this method has been rarely tested in the context of niche
spatial modelling except by Ter Braak et al. (2003). Here, maximum likelihood based parameter
estimation was achieved using the expectation maximisation (EM) algorithm (cf. Appendix
1). Starting values for the EM algorithm were obtained by the Learning Vector Quantisation
clustering algorithm (Hastie and Tibshirani, 1993).

All computations were performed in R (R Development Core Team, 2008). LDA was computed
using the lda function of the “MASS” package. MARS and MDA were computed using the
mars and mda functions of the mda package.

2.3.3 Evaluation and comparison of modelling techniques’ performances—In
order to compare modelling techniques on the basis of their statistical properties, we only
compared models of similar structure in their explanatory components, i.e. including all
available explanatory variables (Segurado and Araujo, 2004; Potts and Elith, 2006).

Evaluation criteria: Following Pearce and Ferrier (2000), models were evaluated on their
ability to i) provide reliable predictions (as soft classifiers) and ii) discriminate between
occupied and unoccupied sites (as hard classifiers). Prediction reliability was quantified using
residual deviance (RD) (Pearce and Ferrier, 2000; Leathwick et al., 2006) equivalent to minus
twice the log likelihood of the fitted probabilities. i.e. for N observations

Discriminative performance (ii) is composed of omission (true positive fraction) and
commission (false positive fraction) error (Pearce and Ferrier, 2000; Anderson et al., 2003).
Here, predicted assemblages were mutually exclusive, i.e the commission error of one
assemblage corresponded to the omission error of another. Consequently, discriminative
performance was assessed by omission error only using the true presence misclassification
error rate (Segurado and Araujo, 2004).

Model validation: Predictive ability was assessed using the above mentioned criteria on
independently re-sampled testing data sets using the bootstrap 632+ (Efron and Tibshirani,
1995) which provides the least biased and variant model re-sampling evaluation method (Hastie
et al., 2001). Bootstrap 632+ was developed to reduce optimistic error estimation that arises
with the original bootstrap due to commonality between the observations of training and testing
data sets. Originally used to estimate error rates of per-subject prediction rule (e.g.
misclassification error rate) it has recently and successfully been applied to evaluate predictive
models of species or disease distribution (Steyerberg et al., 2001; Leathwick et al., 2006; Potts
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and Elith, 2006). We computed the bootstrap 632+ in R (R Development Core Team, 2008),
using the bootpred function of the boostrap package and the errorest function of the
ipred package. For each criteria the mean and standard deviation across 1000 bootstrap
samples was calculated.

2.3.4 Effects of environmental descriptors on assemblage distributions—To
simplify the assessment of effect size we selected the classification methods that provided the
lowest bootstraped misclassification error rate and residual deviance.

Effect Size: Multicollinearity between factors is known to inflate the variance of regression
coefficients, alter model predictive performance and complicates identification of real effects
of factors on data variability (Legendre and Legendre, 1998). Hierarchical partitioning
(MacNally, 2000, 2002), widely used in explanatory modelling (Gibson et al., 2004; Greaves
et al., 2006; Olivier et al., 2000), permits to partition the variance explained by a model in order
to isolate the independent versus joint contributions of each variable. We used this method to
estimate the independent effects of each variable on the log-likelihood. Significance of these
independent effects was assessed using a permutation test. The independent effect was re-
estimated using 100 random permutations of the covariates, the mean and standard deviation
of the resulting distribution permitting a z-test of the original independent effect.

The effect size of each environmental descriptor on the probability of observing each
assemblage were assessed. All possible additive combinations of variables were fitted. For
each combination we calculated the mean predicted probability of each assemblage at sites
where that assemblage was observed. The difference in predicted probabilities

were computed, where μj1 and μj0 represent the mean predicted probabilities across models
which included and excluded the jth variable respectively. Means and 95% quantile intervals
were estimated over 200 cross-validation iterations. Predictive effects were considered for
further analysis if the lower 95% quantile was greater than zero.

Response shape along environmental gradients: The shape of assemblage responses were
visualised by plotting predicted probabilities with respect to each relevant environmental
variable (Elith et al., 2005). Predictions of assemblage occurrence probabilities were made
across the range of the variable of interest whilst all other variables were fixed to their mean
value among sites corresponding to the assemblage in question.

All computations were made in R (R Development Core Team, 2008). Independent effects
were estimated using the combos and partition functions of the hier.part package. The
z.test was adapted from the rand.hp function of the same package.

3 Results
3.1 Trapping success: small mammal data

A total of 173 small mammals were trapped in Rangtang (90) and Maerkang (83) including 10
rodent, 1 lagomorph and 4 insectivore species (table 1). Four species were trapped in both
areas: Ochotona cansus, Eozapus setchuanus, Apodemus peninsulae, and Microtus irene.
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3.2 Assemblage definition
Maerkang—Four assemblages were identified (M1 to M4) (table 2, Appendix 3. a).
Assemblage M1, which included seven habitats subjected to human influences, was dominated
by the rat Niviventer confucianus. M2, the Culture habitat, was not merged with other classes
and was dominated by Micromys minutus which was specific to that habitat. M3 included forest
and bush was the richest (n = 11) and most diversified (7.86) assemblage. Trapping
probabilities were an order of magnitude lower in M3 than in other assemblages and nothing
was trapped in Forest Oak and Stream bushes. M4 grouped white and red birch forests and had
the lowest diversity. Trapping frequencies of Apodemus draco in M4 were greater than for any
other species in any other assemblage.

Rangtang—Four assemblages were identified (R1 to R4) (table 2, Appendix 3. b). R1, which
included habitats in close vicinity to culture, was dominated by Apodemus peninsulae and
provided the lowest diversity among all assemblages. In R2, which included valley bottom
bushes, Forest coniferous/willow bushes and Village garden, Apodemus peninsulae was
dominant but trapped with lower probability than in R1. R3 corresponded to the Fenced
grassland class which was not merged with other classes. Only two species were found:
Microtus limnophilus which was trapped at highest probability in R3, and Apodemus
peninsulae. R4 grouped Forest rhododendron/coniferous with Slope and Stream bushes.
Diversity was highest in this assemblage and Ochotona cansus was specific to it.

Details of AICc and Δ AICc evolution according to the number of the expert-class-merging
procedure iterations, for Maerkang and Rangtang study areas, are available in the Appendix
2.

3.3 Assemblage habitat modelling
Modelling techniques were applied to discriminate all assemblages previously defined except
assemblage R3 since it included only 2 traplines (table 2).

3.3.1 Modelling techniques performances (table 3)
Discriminant Analysis: For discriminant analysis of Maerkang assemblages and study sites,
bootstrapped RD and error rate of MDA were approximately twice the RD and error estimated
on training data. MDA was a more discriminant and reliable predictor than LDA in terms of
lower bootstrapped error rates (Δ Error(Maerkang)LDA−MDA = 0.012; Δ Error
(Region)LDA−MDA = 0.038) and RD (Δ RD(Maerkang)LDA−MDA = 5.831; Δ RD
(Region)LDA−MDA = 9.672). In Rangtang, training data based estimates indicated MDA gave
a more deviant fit than LDA although again bootstrapped RD (Δ RD(Rangtang)LDA−MDA =
1.99) and error (Δ Error(Rangtang)LDA−MDA = 0.043) were lower than for LDA.

Mixture Discriminant Analysis was also a more discriminatory and reliable model than the
multinomial GLM in the Maerkang (Δ Error(Maerkang)MN−MDA = 0.055; Δ RD
(Maerkang)MN−MDA = 2.089) and regional level (Δ Error(Region)MN−MDA = 0.028; Δ RD
(Region)MN−MDA = 10.781) analysis. However, in Rangtang, MN outperformed MDA (Δ Error
(Rangtang)MDA−MN = 0.012; Δ RD(Rangtang)MDA−MN = 20.704).

Finally, in each of the three analysis, MARS perfectly fitted the training data (RDMARS,train =
0.00; ErrorMARS,train = 0.00). Despite this overfitting, MARS was the most reliable and
discriminatory model in the prediction test, providing bootstrap predictor errors 0.037, 0.021
and 0.044 lower than the next most discriminant predictor of Maerkang assemblages, Rangtang
assemblages and study sites respectively.
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3.3.2 Effects of environmental descriptors on assemblage distributions
Maerkang: Significant independent contributions to model goodness-of-fit were observed for
elevation and ETM band 7 (table 4). Among all variables, elevation provided the largest
independent contribution (I%= 39.7). It increased predicted probabilities for all assemblages
bar M2 on training and bootstrapped data sets (table 5). A threshold was observed at about
3600 meters altitude above which M1 was seldom observed, the probability of M2 and M4
dropped rapidly and M3 became predominant (figure 2). Enhanced Thematic Mapper band 7
consistently discriminated all assemblages. The probability of M2 (cultures) reached a distinct
peak at intermediate values (40) where the probability of M4 approached zero.

Despite the non-significance of their independent contributions, vegetation indices influenced
mean predicted probabilities (table 4, table 5). On average, inclusion of NDVI increased
predicted probabilities of M1 by 0.087. A change was observed at NDVI = 0.45 with M1 being
more probable than M2 or M4 below and less probably than other assemblages above this point
respectively (figure 2). Inclusion of EVI significantly increased the probability to predict M2
and M4 whose bootstrapped means increased by 0.104 and 0.093 respectively. The range of
EVI corresponding to M2 occurrence being lower than that of M4 (birch forests). Finally, slope
and SI had no predictive power.

Rangtang: Independent effects of NDVI, elevation, ETM band 7 and slope were all significant
(table 4). NDVI provided the highest independent contribution (I%=29.058) and significantly
improved mean predicted probabilities for all assemblages, this improvement being greatest
for R4 (Forest rhododendron/coniferous and Slope bushes) (0.30) which was not observed
when NDVI < 0.25 (table 5, figure 3). By contrast, above this threshold, the probability of R2,
and to a lesser extent R1, dropped considerably.

Elevation increased predicted probabilities for all assemblages, the size of the effect being
greatest for R1 (fields and bushes) which was predominant at lower altitudes and did not occur
above 3650 meters. Above this level, the probability of R4 reached a plateau and the probability
of R2 also increased. Inclusion of ETM band 7 significantly increased prediction accuracy for
R1 and R4. Band 7 values greater than 70 corresponded to predominant and subordinant
predicted probabilities of R2 and R4 respectively, the latter being optimally distributed in the
range 50–65. Inclusion of slope significantly increased predictive probabilities at R2, R1 and
R4 sites (ordered by decreasing effect size). R2 was the predominant assemblage in flat areas
and R1 became predominant when slopes became steeper than 10 °. Finally, SI and EVI had
no predictive effects.

Between study sites: All variables had significant and independent contributions in model
goodness-of-fit except SI which had a negative contribution in the model likelihood (table 4).
Rangtang was associated with ETM band 7 > 50, steep slopes, EVI > 0, NDVI < 0.4 and
elevations in the range 3600–3900 meters. Maerkang was associated with ETM band 7 < 50,
NDVI > 0.4 and elevations below and above 3500m and 3900m respectively (figure 4).

4 Discussion
4.1 Assemblages as mixtures of species distributions

The ability of the expert-class-merging procedure to cluster observations from a large number
of habitats into a small number of super-classes highlights that apparently different habitats in
fact provide approximately equivalent habitat quality for many small mammals species.
However, the influence of a species in the assemblage definition is directly related to trapping
frequency, the definition being dominated by those species trapped in largest number (e.g.
Apodemus peninsulae), whilst rare or shy species trapped in low numbers (e.g. Eozapus
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setchuanus) play a relatively small role in the assemblage definition. It is well known that
spatial distributions of small mammals can be driven by population dynamics (Giraudoux et
al., 1997, 2007). The assemblages defined in the present study constituted a spatio-temporal
snapshot of a process of complex interactions between multi-species metapopulations (Guisan
and Thuiller, 2005). The current data set, with its lack of a temporal component, thus limits
analyses to the description of “potential habitats” for the identified small mammal assemblages
(Guisan and Thuiller, 2005; Araujo and Guisan, 2006; Guisan et al., 2006).

4.2 Assemblage habitat distribution in environmental space
Linear or non-linear Discriminant Analysis for small sample size problems?—
Linear Discriminant Analysis is said to perform well when sample size is small because of the
simple boundaries it provides between classes (Hastie et al., 1997). However, our analyses
showed prediction reliability and class discrimination were consistently lower for MDA than
for LDA. MDA’s discrimination of assemblages in several sub-classes, permitting
identification of non-linear boundaries, clearly helped capture important extra within class
variability. This result re-enforces the need to use non-linear models in community modelling
even when sample size is small (Munoz and Felicisimo, 2004).

MDA allows multi-modal representation of an assemblage in environmental space. By contrast,
MN assumes assemblage responses can be represented as simple linear combinations of
variables rescaled to the 0–1 range via a link function. Despite a larger number of parameters,
MDA was more discriminant and less deviant than MN for discrimination of Maerkang
assemblages and site environments. This result highlights the importance of modelling sub-
class clusters in those case studies. By contrast, Rangtang assemblages were better
discriminated by MN than by MDA suggesting a more homogeneous distribution of those
assemblages in environmental space. MN was also a more performant predictor of Rangtang
data than LDA despite the two models sharing the same logit regression form (Hastie et al.,
2001). Regardless of linearity/non-linearity assumptions, discriminant analysis was not the
most appropriate method for modelling the distribution of Rangtang assemblages for which
sample sizes were smallest.

Parametric or non-parametric non-linear modelling of assemblage
distributions?—Multiple Adaptive Regression Splines advantageously extends the logistic
response of multinomial GLMs to include multi-modal variation of the linear predictor with
respect to a given variable. MARS has previously been shown to be a more appropriate mapping
technique for Fagus species than Logistic Multiple Regression (Munoz and Felicisimo,
2004) although more generally there has been difficulty to demonstrate better performance of
MARS over linear models on real data sets (Moisen and Frescino, 2002). Here, MARS
consistently provided more discriminatory and reliable predictions than LDA, MDA and GLM
in all three of our cases studies. The Non-linear structures in class distributions were more
accurately captured by a model which didn’t rely on parametric assumptions regarding
assemblage distribution in environmental space. These promising prediction results of MARS
were obtained despite strong evidence of overfitting (i.e. selection of an excessive number of
basis functions) the training data. This observation is encouraging since the superior predictive
performance of MARS could clearly be improved via the increased parsimony obtainable with
model selection procedures such as step-wise pruning (Friedman, 1991).

Assuming each a priori habitat was representable as a single cluster in environmental space,
a mixture representation of an assemblage (i.e. super-class), including the diversity of species
responses, and thus the requirement of non-linear decision boundaries for assemblage
discrimination, becomes natural. This complexity arises in part from the fact that most of the
variables in question were, at best, indirectly related to small mammal dynamic processes.
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Guisan and Zimmerman (2000) suggested that the use of direct environmental variables
provides a physiologically mechanistic character to a model that is not apparent when indirectly
related variables are used. We further suggest that the use of indirect variables in fact
complicates response curves. Multi-modal responses in the space of indirect variables might
correspond to relatively homogeneous responses among variables directly related to processes.

4.3 Explanatory and predictive power of environmental descriptors
Within versus between study area discrimination—The observed between site
differences in small mammal fauna, environmental conditions and pertinence of environmental
variables provided strong evidence that two distinct biogeographical zones had been identified.
The degree of abruptness/smoothness in the transition between these zones was not identifiable
given the scale of the sampling design and clearly further work is required before the process
of small mammal communities on the fringes of the Tibetan plateau are fully elucidated.

The discrimination between Maerkang and Rangtang at high and low NDVI values respectively
suggests greater productivity in terms of vegetative biomass in Maerkang. This corresponds
with our a priori land cover classification since forested habitats were more widespread and
diversified in Maerkang than in Rangtang. By contrast, within study sites, NDVI and EVI were
useful discriminators of different assemblages. In Maerkang, NDVI significantly improved
predictions of M1 (bushes, grassland an oak forests near villages), while EVI helped
discriminate birch forests (M4) and culture (M2). In Rangtang, NDVI discriminated forest
(R4), valley-bottom vegetation (R2) and non-forested bush (R1), whereas EVI displayed no
discriminative ability. The fact that NDVI was less useful in Maerkang, where nine in eighteen
habitats were forested, than in Rangtang, where only two in twelve habitats were forested
habitats, probably reflects the saturation problem, i.e. NDVI’s limited ability to discriminate
among forest types (Huette et al., 1999).

Variables such as elevation, ETM band 7 and slope had descriptive and predictive power but
their indirect relation to small mammal resources renders interpretation of their effects difficult
(regardless of the mixture problem outlined above). Moreover, these variables are subjected
to the law of relative site constancy (Guisan and Zimmerman, 2000; Randin et al., 2006) which
complicates the comparison of assemblage distributions between the two study areas along
these gradients.

The discriminatory power of environmental variables differed according to the study area
(Maerkang versus Rangtang) and to the spatial extent of the training area (local versus regional
analysis). For predictive mapping purposes, one should be aware of such variation in order to
select a set of environmental variables appropriate for the required extent, resolution and
location of the map (Guisan and Thuiller, 2005).

Improving habitat definition—Numerous improvements to the current habitat descriptions
can be envisaged. Firstly, numerous species have been shown to respond to landscape level
effects whereby densities respond to composition or structure of landscape in a surrounding
neighbourhood. Examples include Tetrao urogallus (Graf et al., 2005), Echinococcus
multilocularis (Giraudoux et al., 2003), Arvicola terrestris (Fichet-Calvet et al., 2000;
Giraudoux et al., 2007; Morilhat et al., 2007) and Microtus arvalis (Delattre et al., 1999,
2006; Duhamel et al., 2000), the latter two being small mammal species of the sub-family
Arvicolinae. Here effects of composition and structure in buffers surrounding traplines were
not considered, largely due to identifiability issues associated with the required increased level
of data mining and the small sample size.

Secondly, trapline locations were often observed to lie within mixed pixels where numerous
habitat types contribute to the observed spectral response. Improved predictive performance
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might therefore be achievable by addressing the mixed pixel problem for which fuzzy set
approaches (Foody, 2000) and super-resolution techniques (Tatem et al., 2002) exist.

Thirdly, descriptors of structure and composition of the first vegetative strata, being more
directly related to small mammal resources would be pertinent (Catling and Coops, 1999;
Pearce et al., 2001; Gibson et al., 2004). This move to direct variables would be of particular
relevance in a predictive modelling setting since indirect variables limit model transferability
across large areas (Guisan and Thuiller, 2005; Randin et al., 2006). Understory modelling with
very high resolution satellite remotely sensed data has recently been applied in sparse forests
(Jianxi et al., 2007). Further, helicopter-borne laser scanner data has been used to provide high
resolution DEMs from which understory structural and textural characteristics are easily
extracted (Hirata et al., 2003). Further research is needed before remotely sensed indices of
understory structure can be incorporated into small mammal species distribution models.

Toward building a process based models—As outlined above, statistical models can
help resolve some theoretical hypotheses on species/environment relationships (e.g. shape of
the response curves, selection of influent environmental factors) and thus provide basis for the
development of process based models. Inversely, process based models can serve statistical
modelling and an iterative procedure incorporating both approaches had been advocated
(Austin, 2007). Here, prediction precision might be increased once a deeper understanding of
the ecological processes driving small mammal distributions on the fringes of the Tibetan
plateau is achieved. It would be helpful to investigate landscape composition effects on small
mammal communities in time and space. For this purpose, there is need to develop process
based landscape metrics of direct relevance to small mammal resources. Ultimately, such
relationships could be incorporated into a Structural Equation Modelling framework (Guisan
et al., 2006; Austin, 2007).

4.4 Conclusion and perspectives
Our results showed mixtures of Gaussians provided better descriptions of the environmental
space occupied be small mammal assemblages than single cluster model. However, the
Gaussian mixture model was in turn outperformed by MARS with its flexible ability to detect
non-linearity. ETM band 7, vegetation indices, elevation and slope all helped discriminate
assemblages. Their predictive effects varied according to the location and spatial scale of the
training area. However, predictive performance might be improved given further investigation
of methodological issues and a deeper understanding of underlying ecological processes. i.e.
given: a deeper knowledge of the responses of multiple-species to environmental variation; a
closer match between spectrally derived variables and small-mammal resources; or, an
improved data set characteristics (sampling protocol). In our study, MARS was prone to over-
fitting, thus its transferability and superior performance over other techniques should be
assessed cautiously prior to extrapolation beyond the sampling area (Randin et al., 2006).
Moreover, because it is a classifier (i.e assumes the pre-defined groups exist), used here to
model assemblage responses jointly, prediction of new (i.e. untrained) assemblages in space
and time was not possible. Two distinct biogeographical areas regarding small mammal
assemblages and environmental conditions were identified here, but the current sampling
design does not permit elucidation of the transition between the two areas. Mapping small
mammal assemblages in the area between Rangtang and Maerkang would require a sampling
design spanning the ranges of each species within both the geographical and environmental
space separating the two areas (Murphy, 2007).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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4.5.1 Appendix 1: MDA algorithm
The algorithm computes the mixture density for each class j divided in Rj subclasses each
defined by their own mean μ(j,r) and a common covariance matrix Σ, such as:

where D(x,y) is the Mahalanobis distance between x and the y and the mixing probability πjr
are unknown model parameters. Then, the conditional log-likelihood for the data lmix is
computed and maximised by the EM (Expectation Maximisation) algorithm with:

Expectation Maximisation (EM) algorithm is an iterative two-step procedure: first, it estimates
the mixing probabilities for each subclass and class and then, it conditionally optimises the
mean and covariance for each subclasses.

4.5.2 Appendix 2: Expert-class-merging procedure

Appendix 2.
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Redundancy reduction of the expert-class-merging procedure for (a) Maerkang and (b)
Rangtang data sets illustrated by decreasing AICc and increasing Δ AICc w.r.t. to the number
of iterations of the procedure.

4.5.3 Appendix 3: Species predicted probability distributions in Maerkang
and Rangtang assemblages

Appendix 3.a.
Species trapping joint probabilities predicted by the multinomial model for each assemblage
(M1 to M4), in Maerkang. Dashes and full lines correspond to small and big traps respectively.
Correspondence between species names and their abbreviations is available in table 2.
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Appendix 3.b.
Species trapping joint probabilities predicted by the multinomial model for each assemblage
(R1 to R4), Rangtang. Dashes and full lines correspond to small and big traps respectively.
Correspondence between species names and their abbreviations is available in table 2.
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Figure 1.
a) Location of Maerkang and Rangtang study areas in Sichuan province, China. Lines delineate
province and county boundaries. (b) and (c) represent locations of traplines (lines) around
Rangtang and Maerkang cities respectively. Locations are plotted on a false colour composite
satellite image in which red, green and blue correspond to Landsat ETM bands 4, 5 and 3.
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Figure 2.
Responses (predicted probabilities) of Maerkang assemblages along those continuous
gradients for which predictive power for at least one assemblage was identified (table 5).
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Figure 3.
Responses (predicted probabilities) of Rangtang assemblages along those continuous gradients
for which predictive power for at least one assemblage was identified (table 5).
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Figure 4.
Responses (predicted probabilities) of the two study areas along those continuous gradients
for which predictive power for at least one assemblage was identified.
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Table 1

Sampling success for each species (number of trapped individuals) obtained in each study area. The order of each
species is indicated: Rodent (R), Insectivore (I) or Lagomorph (L).

Location

Order Maerkang Rangtang

Empty traps 4516 3396

Apodemus draco (Apda) R 17 0

Apodemus latronum (Apla) R 14 0

Apodemus peninsulae (Appe) R 3 68

Eospalax fontanirerf (Eofo) R 1 0

Eozapus setchuanus (Eose) R 1 1

Microtus irene (Miir) R 1 1

Microtus limnophilus (Mili) R 0 13

Micromys minutus (Mimi) R 6 0

Niviventer confucianus (Nico) R 19 0

Sicista concolor (Sico) R 1 0

Chodsigoa hypsibia (Chhy) I 10 0

Sorex cylindricauda (Socy) I 1 0

Sorex thibetanus (Soth) I 2 0

Uropsilus soricipes (Urso) I 2 0

Ochotona cansus (Occa) L 5 7

Ecol Modell. Author manuscript; available in PMC 2010 May 17.
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