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Abstract
The PTEN tumor suppressor gene modulates cell growth and survival known to be regulated by the
activation of the transcription factor NF-κB, suggesting PTEN might affect the NF-κB activation
pathway. We found that PTEN inhibited NF-κB activation induced by TNF. The suppression of NF-
κB activation correlated with sequential inhibition of the tumor necrosis factor-induced expression
of NF-κB-regulated anti-apoptotic (IAP1, IAP2, Bcl-2, Bcl-xL, cFLIP, Bfl-1/A1, and survivin) gene
products. Downregulation of the antiapoptotic genes by PTEN increased TNF-induced apoptosis, as
indicated by caspase activation, TUNEL, annexin staining, and estrase assay. We conclude that the
ectopic expression of PTEN enhances TNF-induced apoptosis and downregulates the proliferation
of glioma cells through the suppression of various molecules including NFκB, and various mediators
of cellular survival and proliferation and that this targets might be essential for its central role in the
growth and survival of glioma cancer cells.
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Introduction
Gliomas remain one of the human tumors most refractory to treatment, despite continuing
advances in radiotherapy, chemotherapy, and surgical techniques. The most malignant subtype,
glioblastoma multiforme, is particularly aggressive, with a median survival of less than 1 year
seen in most series of patients, even for patients treated with aggressive surgery, radiotherapy,
and chemotherapy regimens (1–3). Consequently, various alternate approaches to the treatment
of gliomas, including molecular therapies are attracting much interest. Resistance of tumor
cells to the induction of apoptosis is an important reason for the failure of anticancer treatments
in patients with gliomas, and several factors working in concert have been implicated as sources
of this treatment resistance. One factor that has frequently been implicated in the development
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of tumor cell resistance to apoptosis is nuclear factor kappa B (NFκB). NFκB regulates the
expression of many genes that are essential for cell growth and differentiation, such as
cytokines, growth factors and their receptors, and adhesion molecules (4–8). It also up regulates
the expression of genes that actively participate in controlling cell survival (Bcl-2, Bcl-xL,
survivin, and the inhibitor-of-apoptosis [IAP] family) (9–11), angiogenesis (interleukin (IL)-8,
basic fibroblast growth factor, and vascular endothelial growth factor) (12,13); and metastasis
(matrix metalloproteases [MMPs] 2, 7, and 9) (14). Consistent with its regulatory role, the
constitutive activation of NFκB is frequently observed in different types of cancers (15) and
has been correlated with cancer cell resistance to radiation- and chemotherapeutic agent-
induced apoptosis (5). Conversely, the antagonism of NFκB is an important step in initiating
the transcription of specific genes that facilitate apoptosis.

Natural resistance to tumor necrosis factor (TNF)-α̣ is another cause of treatment failure in
patients with gliomas. TNF-α̣was first observed in the serum of endotoxin-treated mice,in
which it was found to induce tumor necrosis in vivo and to selectively kill transformed and
neoplastic cell lines in vitro (16). TNF-α signaling is transduced through its receptors to
simultaneously elicit two opposing effects: the induction of apoptosis and the transcription of
antiapoptotic genes, such as the genes that encode NFκB and activator protein 1 (AP-1) (17,
18). Although in certain cell types and under certain conditions, TNF-α ̣can induce apoptosis,
its clinical use has been limited because of the natural resistance of numerous tumor cells to
TNF-induced apoptosis noted above (19–21).

PTEN is a tumor suppressor gene inactivated in many common malignancies, including
glioblastoma, melanoma, and endometrial, lung, and prostate cancer (22–26). PTEN is believed
to regulate cell survival signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway. In particular, PTEN dephosphorylates the D3 position of the key lipid second
messenger phosphatidylinositol 3,4,5-triphosphate (PIP3) (27–28). PIP3, produced by PI3K
once activated by receptor tyrosine kinases, activates Ras, or G proteins, and stimulates several
downstream targets, including the serine/threonine protein kinase Akt (also known as protein
kinase B) (22–26). Activated Akt protects cells from apoptotic death by phosphorylating
substrates such as BAD, procaspase-9, and forkhead transcription family members (29–31).
Finally, multiple laboratories have shown that the PI3K/Akt pathway provides cell survival
signals, in part, through the activation of the NFκB transcription factor (32–35).

To better understand the role of PTEN in the resistance of glioma cells to apoptotic agents and
to formulate potential therapies that alter PTEN expression, it is important to obtain greater
insight into the effect of PTEN expression on cellular processes. The role of TNF-α ̣in activating
NFκB has been well established. In this study, we tested our hypothesis that PTEN mediates
its effects by modulating NFκB and enhanced TNF-mediated apoptosis in glioma cells, which
confirmed our hypothesis.

Materials and Methods
Materials

Tissue culture reagents and Lipofectamine were purchased from Invitrogen Life Technologies
Inc. (Carlsbad, CA). Anti-PTEN, anti-p50, anti-p65, anti-poly (ADP-ribose) polymerase
(PARP), anti-inhibitor of apoptosis protein 1 (IAP1), anti-IAP2, anti-Bcl-2, anti-Bcl-xL, and
anti-Bfl-1/A1 antibodies were obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).
Anti-β-actin antibody was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO).
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Cell Culture and Retroviral Gene Construction and Stable Transfections
U251 and U87 human glioblastoma cells (American Type Culture Collection, Manassas, VA),
which have been shown previously to have a mutated PTEN gene (36), were maintained in
culture medium (Dulbecco’s modified Eagle medium/F12, 5% fetal bovine serum) in a
humidified atmosphere containing 5% CO2 at 37° C. The PTEN gene was stably expressed in
U251 and U87 glioma cells as previously described (37).

Electrophoretic Mobility Shift Assay
U251 and U87 cells either expressing PTEN or vector alone were treated with 1 nM TNF for
the indicated times (37) and incubated for 15 min at room temperature with radiolabeled
NFκB-binding probe. For the supershift assays anti-p-50 and anti-p-65 antibodies were added
to the incubation mixtures for 5 min before the radiolabeled probe was added. The protein-
DNA complexes were then resolved on 5% nondenaturing polyacrylamide gels and visualized
by autoradiography.

Immunoblotting
Cells were washed with ice-cold phosphate-buffered saline and lysed in ice-cold lysis buffer
containing 1% Triton X-100, 50mM HEPES, pH 7.4, 150mM MgCl2, 1mM EGTA, 100mM
NaF, 10mM Na-pyrophosphate, 1mM Na3VO4, 10% glycerol, 1mM phenylmethyl sulfonyl
fluoride, and 10 ug/ml aprotinin. Proteins were resolved by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted to poly vinylidene difluoride
membranes (Millipore, Billerica, MA), and then probed with various primary antibodies. After
incubation with horseradish peroxidase–conjugated secondary antibodies, specific proteins
were detected by chemiluminescence (Amersham Pharmacia Biotech, Piscataway, NJ).

Live/Dead assay
To measure the effect of PTEN on TNF-induced apoptosis, we performed the Live/Dead assay
(Molecular Probes), which determines intracellular esterase activity and plasma membrane
integrity. This assay employs calcein, a polyanionic dye, which is retained within live cells
and produces green fluorescence. It also employs the ethidium bromide homodimer dye (red
fluorescence), which can enter the cells through damaged membranes and bind to nucleic acids
but is excluded by the intact plasma membrane of live cells. Briefly, 1 x 105 cells were treated
with 1 nM TNF for 16 h at 37 °C. Cells were stained with the Live/Dead reagent (5 μM ethidium
bromide homodimer, 5 μM calcein-AM) and then incubated at 37° C for 30 min. Cells were
analyzed under a fluorescence microscope (Labophot-2).

Annexin V Assay
An early indicator of apoptosis is the rapid translocation and accumulation of the membrane
phospholipid phosphatidylserine from the cytoplasmic interface to the extracellular surface.
This loss of membrane asymmetry can be detected by exploiting the binding properties of
annexin V. In our quantification of cell apoptosis, we employed the annexin V antibody
conjugated with FITC fluorescence dye. Briefly, 1 x 105 cells were treated with 1 nM TNF͂α
for 16 h at 37 °C and then subjected to annexin V staining. Cells were washed in phosphate-
buffered saline, resuspended in 100 μl of binding buffer containing FITC-conjugated anti-
annexin V antibody (Santa Cruz Biotechnology), and then analyzed by flow cytometry
(FACSCaliber; BD Bio-sciences, San Diego, CA).

TUNEL Assay
We also assayed cytotoxicity using the terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate nick end-labeling (TUNEL) method, which examines DNA strand
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breaks during apoptosis, in which we used the Roche in situ cell death detection reagent (Roche
Applied Science, Indianapolis, IN). Briefly, 1 x 105 cells were treated with 1nM TNF for 16
h at 37 °C. Thereafter, cells were washed with phosphate-buffered saline, air-dried, fixed with
4% paraformaldehyde, and then permeabilized with 0.1% Triton-X 100 in 0.1% sodium citrate.
After being washed, cells were incubated with reaction mixture for 60 min at 37°C. Stained
cells were mounted with mounting medium purchased from Sigma Chemical and analyzed
under a fluorescence microscope (Labophot-2; Nikon, Tokyo, Japan). Pictures were captured
using a Photometrics Coolsnap CF color camera (Nikon, Lewisville, TX) and MetaMorph
version 4.6.5 software (Universal Imaging, Downingtown, PA).

Results
PTEN Inhibits the Induction of NFκB Activation by TNF

To determine the effect of PTEN on TNF-induced NF-B activation,we examined if TNF-α
would activate NFκB in an electrophoretic mobility shift assay. Treatment of cells with 0.1nM
TNF-α led to NFκB activation in a time-dependent manner in both cell lines (Fig. 1A and 1B).
Further, the protein-DNA complex was supershifted by p50 and p65 antibody during NFκB
activation (Fig. 1C). PTEN expression in U251 and U87 glioma cell lines significantly inhibited
TNF’s ability to activate NFκB, revealing PTEN as a putative primary player in the regulation
of the DNA-binding activity of NFκB.

PTEN Potentiates TNF-induced Apoptosis
Activation of NFκB by TNF and other chemotherapeutic agents leads to resistance to apoptosis
(39–41) so we first determined the potential of PTEN to enhance apoptosis induced by TNF
using the live and dead assay, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide.
The Live and Dead assay (which measures intracellular esterase activity and plasma membrane
integrity) showed that PTEN up-regulated TNF-α induced cytotoxicity, in that there was an
increase in the proportion of cells showing cytotoxicity from 1% to 9% for U251 cells and
from 1% to 11% for U87 cells. When PTEN and TNF-α were used together, the proportion of
U251 cells showing cytotoxicity increased from 2% to 26% and the proportion of U87 cells
showing cytotoxicity increased from 1% to 34% (Fig. 2A). Whether this increased cytotoxicity
was due to apoptosis was investigated by Annexin V staining technique. Annexin V staining
indicated that PTEN up-regulated TNF-induced early apoptosis ((Fig. 2B ). TNF-α induced
apoptosis is affected when PTEN suppresses NFκB. That is, stimulation with TNF-α alone did
not induce a greater proportion of annexin V–positive U251 and U87 cells, but PTEN
expression dramatically enhanced the proportion of apoptotic U251 cells, from 3.1% to 28.6%,
and of U87 cells, from 4.8% to 30.4% (Fig. 2B). PTEN by itself also had little effect on the
induction of annexin V–positive cells.

TUNEL staining confirmed that TNF-induced apoptosis was enhanced by PTEN expression
(Fig. 2C). This assay showed that PTEN upregulated TNF-α induced apoptosis such that the
proportion of apoptotic U251 cells increased from 2% to 20% and the proportion of apoptotic
U87 cells increased from 1% to 34% When PTEN and TNF-α were used together, the
proportions of apoptotic U25l and U87 cells increased from 3% to 42% and from 4% to 49%,
respectively (Fig. 2C).

Effect on apoptotic proteins
Immunoblot analysis of the extracts from cells treated with TNF clearly showed activation of
the downstream caspases leading to cleavage of the 118 kDa PARP protein into an 87 kDa
fragment in PTEN expressing cells, another hallmark of cells undergoing apoptosis (Figure
2D). Where as control cells did not show any PARP cleavage in response to TNF treatment.
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The combined results from this study therefore showed that PTEN enhances TNF-α induced
apoptotic effects.

PTEN Down-modulated TNF-induced NF-κB-dependent Antiapoptotic Gene Expression
Because NF-κB regulates the expression of the anti-apoptotic proteins such as IAP1/2 (42,
43), Bcl-2 (44), Bcl-xL (45), cFLIP (46), Bfl-1/A1 (47), and survivin (48), we examined
whether PTEN can modulate the expression of these anti-apoptotic gene products induced by
TNF in U251 and U87 cells. The results of western blot analysis showed that TNF induced the
expression of most of the anti-apoptotic genes studied in glioma cells and the expression of
PTEN in these cells suppressed the expression of these anti-apoptotic proteins (Fig. 3A and
3B).

Discussion
The present study showed that PTEN targets the antiapoptotic gene NFκB induced by TNF-
α by suppressing several TNF-induced antiapoptotic gene products, thereby confirming our
hypothesis that PTEN mediates its effects by modulating NFκB and identifying a function of
PTEN in its role as a tumor suppressor. Because NFκB is a transcriptional activator and its
antiapoptotic function is mediated by the induction of several genes (49), PTEN’s suppression
of NFκB in order to induce apoptosis by TNF-α is a unique finding that suggests a broader
regulatory role for PTEN than has previously been anticipated.

In human glioma cell lines, NFκB is constitutively activated and confers resistance to TNF-
induced apoptosis. (50–51). Conversely, inhibition of NFκB activation prevents cell cycle
progression and inhibits the growth of U251 glioma cells treated with TNF in a PI3K/Akt
pathway–dependent manner (52–54). PTEN is a crucial phosphatase involved in the regulation
of Akt phosphorylation, in that the presence of an active PTEN protein blocks Akt
phosphorylation by the dephosphorylation of the PI3K product PIP3 (25). In an effort to make
glioma cells sensitive to TNF-induced apoptosis and block NFκB activation as well as to inhibit
proliferation, we therefore used PTEN as a negative regulator of the PI3K/Akt/NFκB pathway.
In this way, we showed that PTEN could regulate the DNA-binding activity of NFκB, as
evidenced by TNF’s failure to activate NFκB in PTEN-expressing U251 and U87 glioma cell
lines.

Numerous studies have shown that the activation of NFκB causes cell death pathways to be
blocked (55). Further, NFκB must be activated to protect cells from the apoptotic cascade
induced by TNF̃α and other stimuli (56–60). In particular, TNF̃α binding to the TNF receptor
(TNFR) can initiate apoptosis and activate the NFκB transcription factor, which in turn
suppresses apoptosis by an unknown mechanism. One clue to this was the finding that NFκB
activation blocks the activation of caspase-8, a cell death executing protein. In addition, the
stimulation of cells with TNF̃α, a potent inflammatory cytokine, generates two types of signals:
one that initiates programmed cell death (61) and one that leads to activation of the NFκB
transcription factor (62), which subsequently activates the inflammatory response. How
specific cell types fare in the face of this differential activity depends upon the balance between
the two signals. For example, the direct inhibition of NFκB or one of the upstream signaling
moieties during TNF̃α activation results in apoptosis in various cell types that are naturally
resistant to TNF-induced apoptosis. Similarly, fibroblasts and macrophages from NFκB
subunit p65–deficient mice are more sensitive to TNF-induced apoptosis. Logically it follows
from this that activating NFκB induces the expression of genes that counteract apoptotic signals
and prevent cell death. Other antiapoptotic genes have been shown to be activated by NFκB,
including the Bcl-2 homologues A1/Bfl-1, Bcl-xL, IEX-1, and XIAP.
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In this study we used PTEN to counteract the NFκB activation by TNF-α via the PI3K/Akt
pathway, as reported earlier by our group (63), to subsequently inhibit the expression of several
antiapoptotic gene products. The expression of PTEN inhibited the expression of these
antiapoptotic genes and sensitized the glioma cells to TNF-induced apoptosis. Therefore, the
antagonism of NFκB by PTEN in TNF-resistant cells sensitized cells to TNF-induced
apoptosis, which is important to increasing the efficacy of the chemotherapy against malignant
gliomas. In summary, we have provided evidence that PTEN expression targets the
transcription factors NFκ-B and that this target might be essential for its central role in the
growth and survival of glioma cancer cells. In view of the relative inability of standard therapies
to successfully eradicate malignant gliomas, the hope for cure ultimately rests totally or
partially on identifying such targets for therapy.
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Fig. 1. Effect of PTEN on TNF-induced NFκB activity
A, U251/U251-PTEN and B, U87/U87-PTEN cells were treated with TNF for various times
before harvesting. Nuclear extracts were prepared and assayed for NFκB activation by an
electrophoretic mobility shift assay, as described in Materials and Methods. C, for the supershift
assays, antibodies was added to the incubation mixtures before the probe. These data are
representative of three independent experiments.
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Fig. 2. PTEN sensitizes cells to TNF-induced apoptosis
A, U251/U251-PTEN and U87/U87-PTEN cells (1 x 105 cells/ml) were treated with 1 nM TNF
for 16 h. Cells were stained with the Live/Dead reagent for 30 min. Cells were analyzed under
a fluorescence microscope. B, U251/U251-PTEN and U87/U87-PTEN cells were treated with
1 nM TNF for 16 h and then underwent annexin V staining. Cells were washed, incubated with
FITC-conjugated anti-annexin V antibody, and then analyzed by flow cytometry. C, U251/
U251-PTEN and, U87/U87-PTEN cells (1 x 105 cells/well) were treated with 1 nM TNF for
16 h. Cells were washed with phosphate-buffered saline, air-dried, fixed, permeabilized, and
then stained with TUNEL assay reagent, after which they were analyzed under a fluorescence
microscope. D, U251/U251-PTEN and, U87/U87-PTEN cells (5 x 105 cells/well) were treated
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with 1 nM TNF for the times indicated, and whole-cell lysates were subjected to SDS-PAGE.
Western blot analysis was performed using anti-PARP antibody. β-actin was blotted as a
loading control.
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Fig. 3. PTEN inhibits the TNF-induced expression of NF-κB -dependent genes
U251/U251 –PTEN (A) and U87/U87-PTEN) (B) cells were treated with 1 nM TNF for the
times indicated. Whole-cell extracts were prepared and analyzed in Western blots using
antibodies against IAP1/2, cFLIP, Bfl-1/A1 and survivin. As shown, PTEN inhibited the
NFκB-dependent gene expression induced by TNF in U251 and U87 cells.
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