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Abstract

Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of
fully regenerating amputated limbs. During the early stages of regeneration these amphibians form
a “blastema”, a group of mesenchymal progenitor cells that specifically directs the regrowth of the
limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb
buds, at the appropriate time and place to play a role during blastema formation. To test whether
Whnt/B-catenin signaling is required for limb regeneration, we created transgenic Xenopus laevis
tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/B-catenin signaling, under the
control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early
blastema formation, blocked limb regeneration but did not affect the development of contralateral,
unamputated limb buds. When the transgenic tadpoles were heat-shocked following the formation
of a blastema, however, they retained the ability to regenerate partial hindlimb structures.
Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We
conclude that Wnt/B-catenin signaling has an essential role during the early stages of limb
regeneration, but is not absolutely required after blastema formation.
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Introduction

All tetrapod limbs are thought to have evolved from paired fins of fish, to employ conserved
mechanisms of development that originated with fins, and generally to have a common skeletal
pattern (Tamuraetal., 2001). Intriguingly, the regenerative responses of limbs after amputation
are quite different between species. Animals such as mammals, birds, and lizards cannot restore
lost limbs but instead merely undergo a wound healing response. In contrast, urodele
amphibians such as newts and salamanders can regenerate their amputated limbs, while anuran
amphibians are intermediate between urodele amphibians and other vertebrates in terms of
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their regenerative capacity. Xenopus laevis can completely regenerate developing hindlimb
buds prior to the onset of metamorphosis, but the regenerative capacity declines gradually as
metamorphosis proceeds (Dent, 1962; Muneoka et al., 1986).

In both urodele and anuran amphibians, limb regeneration progresses through a characteristic
series of steps, beginning with wound healing, followed by formation of the blastema, and
finally a redevelopment phase (Bryant et al., 2002; Gardiner et al., 2002; Han et al., 2005).
Although the redevelopment stage of limb regeneration is thought to be equivalent to limb
development, the early steps that result in the genesis of the blastema are critical in determining
whether an amputated limb can successfully regenerate or whether it will undergo wound
healing without regeneration. Considering the highly conserved mechanisms of limb
development and conserved limb skeletal pattern among tetrapods, it is possible that
elucidation of critical factor(s) important for blastema formation in regenerating amphibian
limbs will contribute to development and improvement of tissue and organ replacement
therapies (Stocum, 1997; Brockes and Kumar, 2005).

Based on the known roles for Wnt/B-catenin signaling during limb development (reviewed by
Yang, 2003), we hypothesized that this signaling pathway might play an essential role in limb
regeneration. Specifically, Wnt/B-catenin signaling is involved in the initiation of chick limb
development and zebrafish pectoral fin formation, by inducing fgf-10 expression in the
presumptive limb and fin region, respectively (Kawakami et al., 2001; Ng et al., 2002). In chick
and mouse embryos, Wnt/ B-catenin signaling also has an essential role in the formation of a
specialized ectodermal structure, an apical ectodermal ridge (AER) in the limb buds, through
induction of fgf-8 expression (Kengaku et al., 1998; Barrow et al., 2003; Soshnikova et al.,
2003). The feedback loop between FGF-10 and FGF-8 is well-known to be crucial for the
outgrowth of the developing limb buds of chick (Ohuchi etal., 1997; Xuetal., 1998). Similarly,
several recent studies indicate that both fgf-10 and fgf-8 are expressed in Xenopus and axolotl
limb blastemas suggesting a crucial role in limb regeneration as well (Christen and Slack,
1997; Christensen et al., 2001, 2002; Endo et al., 2000; Han et al., 2001; Suzuki et al., 2005;
Yokoyama et al., 2000, 2001).

Considering the essential roles of both pathways in the earliest regenerative steps, it is
reasonable to hypothesize that Wnt/B-catenin signaling may serve to control in the initiation
of limb regeneration by regulating downstream fgf-10 and/or fgf-8 expression. Furthermore,
the Wnt/B-catenin pathway is implicated in the proliferation and maintenance of stem or
progenitor cells of various adult tissues of mammals (reviewed by Beachy et al., 2004).
Therefore, it is possible that Wnt/B-catenin signaling could be involved in either the initiation
step of morphogenesis and/or the proliferation of stem or progenitor cells in regenerating limbs.

Functional analysis of genes and signaling pathways that might participate in regeneration has
been hindered by the difficulty of manipulating gene function in postembryonic amphibians.
However, the recent development of a transgenic system in Xenopus enables us to manipulate
regeneration in anuran amphibians. To test the functional importance of Wnt signaling in

regeneration we engineered Xenopus laevis that were transgenic for heat-shock inducible

Dickkopf-1 (Dkk1), a secreted inhibitor of Wnt/B-catenin signaling (Glinka et al., 1998; Mao
et al., 2001). By inducing this transgene at different time points during limb regeneration, we
provide initial data establishing that Wnt/p-catenin signaling is required for limb regeneration.

Materials and Methods

Animal husbandry

Xenopus laevis were obtained from Nasco (Fort Atkinson, WI, USA). Tadpoles were kept in
dechlorinated tap water containing 59g Instant Ocean Sea Salt (Aquarium System, INC.,
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Mentor, OH, USA) / liter at 21-23°C, staged according to Nieuwkoop and Faber (1994), and
fed with spirulina (Salt Creek, Inc.). At stage 58, the feeding was stopped until metamorphosis
was completed.

DNA constructs and in situ hybridization

mmGFP5 (Siemering et al., 1996) was fused to the C-terminus of zebrafish Dkk-1 (Genbank
accession no. AB023488). The Dkk1GFP5 fusion was then cloned downstream of the CMV
promoter of the vector pCS2+ (CMV-Dkk1GFP5; Fig 1A). For the negative control, a plasmid
in which only mmGFP5 is expressed under control of the CMV promoter was prepared (CMV-
GFP5; Fig. 1A). For preparation of transgenic tadpoles, the Dkk1GFP5 was cloned downstream
of the Xenopus hsp70 promoter (Wheeler et al., 2000; Hsp70-Dkk1GFP5; Fig. 2B).

Preparation of Dig-labeled wnt-3a (Wolda et al., 1993), fgf-8 (Yokoyama et al., 1998),
fgf-10 (Yokoyama et al., 2000), Lmx-1 (Matsuda et al., 2001), Hoxa-13 (Endo et al., 2000) and
msx-2 (unpublished) probes and in situ hybridization were performed as described previously
(Endo et al., 1997). For making serial cryosections, specimens were fixed in MEMFA,
dehydrated with 30% sucrose / PBS, embedded in OCT compound (Sakura), and serially
sectioned at a 12pm thickness. Transcripts were detected by in situ hybridization on frozen
sections using procedures described by Yoshida et al. (1996) with slight modifications.

Luciferase Assays

A total of 25 pg Super(8x)TOPFlash DNA (Veeman et al., 2003) together with 4 pg pRIu-N1
(h) DNA (Renilla reniform as the luciferase internal control; BioSignal Packard) was injected
into two dorsal cells of four cell stage embryos. Three replicate samples each of four embryos
were frozen for each group at late gastrula (st. 12.5) and luciferase assays were performed using
the Promega luciferase assay system according to Tao el al. (2005) with slight modifications.

Transgenesis in Xenopus laevis

Transgenic Xenopus laevis embryos were generated by the REMI technique as previously
described (Offield et al., 2000). To minimize potential leakiness of the transgene under the
hsp70 promoter, embryos were reared at 16°C in 0.1X MMR (Wheeler et al., 2000) until
tadpoles started swimming and feeding, then reared in 21-23°C.

For heat-shocking, tadpoles were placed in water warmed to 34°C for 30 min as described by
Beck et al. (2003). Three to four hours after heat-shocking, tadpoles were examined under a
fluorescent dissecting microscope and classified as GFP positive (hsDkk1GFP) or GFP
negative (wild-type). Tadpoles with mosaic expression patterns of GFP, or that did not show
GFP fluorescence 3 to 4 hours after heat-shocking but showed weak GFP the next day were
excluded from the experiment.

Tadpole surgery

Tadpoles were anesthetized in 1:5000 ethyl-3-aminobenzoate (Sigma-Aldrich) dissolved in
Holtfreter's solution. Left hindlimb buds were amputated at the presumptive knee level
[according to the outside view and a fate map by Tschumi (1957)] with an ophthalmologic
scalpel. After metamorphosis was completed, the cartilage pattern of amputated limbs was
examined under a dissecting microscope to evaluate limb regeneration. If necessary, the limbs
were stained with Alcian blue as described previously (Yokoyama et al., 2000). For in situ
hybridization on sections of transgenic FO tadpoles, both left and right hindlimb buds were
amputated at the presumptive knee level.
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Results and Discussion

Heat-shock inducible inhibition of Wnt/B-catenin signaling in Xenopus laevis

Our primary goal was to test the hypothesis that Wnt signaling is required for limb regeneration.
To address this question we created transgenic Xenopus tadpoles that allowed us to inducibly
inhibit endogenous Wnt/B-catenin signaling by overexpression of Dickkopf-1. Since a heat-
shock inducible transgenic line for GFP-tagged Dickkopf-1 (hsDkk1GFP) can efficiently
inhibit Wnt/p-catenin signaling in zebrafish (Stoick-Cooper et al., 2007), we used the same
DKkk1GFP clone in Xenopus. After confirming that this fusion protein inhibits Wnt/p-catenin
signaling in Xenopus embryos (Fig. 1), we cloned it downstream of the Xenopus hsp70
promoter (Fig. 2B). This Hsp70-Dkk1GFP (hsDkk1GFP) construct was then used to generate
transgenic FO animals.

As reported by Wheeler et al. (2000), no transgene expression under control by the hsp70
promoter was detected in transgenic animals during embryonic stages when embryos were kept
at 16°C (data not shown), and under these conditions the embryos developed normally. Once
embryos reached tadpole stages, leakiness of the transgene was not observed even at higher
temperatures (21-23°C). Suggesting that basal expression of the transgene was very low prior
to heat-shock, we observed no fluorescence of Dkk1GFP in these transgenic tadpoles at rearing
temperatures (21-23°C; Fig. 2B inset). Establishing that the transgene was indeed induced by
heat-shock, ubiquitous expression of Dkk1GFP was induced in FO tadpoles 3 to 4 hours
following a 30 min heat-shock at 34°C (Fig. 2B; 24% of total FO tadpoles). Because of the
random insertion of transgenes into Xenopus genomes by the REMI transgenic procedure
(Kroll and Amaya, 1996), some FO tadpoles did not express the transgene hence they were
used as matched sibling negative controls (wild-type). The fluorescence of Dkk1GFP reaches
a peak upon the next day of heat-shock and persists for several days in transgenic FO tadpoles
(data not shown). Ambiguous tadpoles that did not show GFP fluorescence 3 to 4 hours after
heat-shock but showed weak GFP the following day were excluded from the experiment.

Wnt/B-catenin is required for early stages of limb regeneration

We used stage 52 hindlimb buds as they consistently regenerate complete hindlimbs after
amputation at the presumptive knee level (Dent, 1962; Yokoyama et al., 2000). We heat-
shocked FO tadpoles at stage 52 and then amputated their left hindlimb buds 3 to 4 hours after
heat-shock (Fig. 2A,; yellow line). While 69% of wild-type FO tadpoles regenerated hindlimbs
completely (Fig. 2C a, e and Fig. 3A), none of the hsDkk1GFP FO tadpoles showed complete
regeneration and only 18% showed partial regeneration (Fig. 2C b, f and Fig. 3B, see Fig. 3
for N values). Interestingly, un-amputated right limb buds of the hsDkk1GFP tadpoles
developed normally after heat-shock (see black arrows in Fig. 2C). Therefore, Wnt/B-catenin
signaling is required for limb regeneration but not for limb development at this stage.
Furthermore, the normal development of the matched right limb bud controls excludes the
possibility that the Dkk1GFP transgene has nonspecific inhibitory effects on limb outgrowth.

To test for the requirement of Wnt/B-catenin signaling during subsequent phases of
regeneration, left hindlimb buds of stage 52 FO tadpoles were amputated at the presumptive
knee level and heat-shocked following amputation, once at 3 dpa (days post amputation; Fig
2A; green line) or once at 5 dpa (Fig. 2A,; blue line). At 3 dpa, the blastema is small, the
reorganizing mesenchymal cells are in the process of accumulating and the overlying apical
epithelium already appears thickened (see sections, Fig. 4C, F). When the FO tadpoles were
heat-shocked at 3 dpa, some regeneration response occurred in only 17% of the hsDkk1GFP
tadpoles, compared with 84% in wild-type controls (Fig. 2C c, g and Fig. 3A, B). Heat shock
induction of Dkk1GFP during apical epithelial thickening and early blastema formation reveals
the requirement for Wnt signaling for regeneration at this stage.
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By 5 dpa, a cone-shaped blastema is formed. When heat-shocked at 5 dpa, 64% of the
hsDkk1GFP tadpoles regenerated at least partially, compared with 89% in wild-type controls
(The hsDkk1GFP tadpoles regenerated two digits at best; Fig 2C d, h and Fig. 3A, B). This
result indicates that Wnt/B-catenin signaling is important, but not absolutely required for limb
regeneration at this time-point. It is important to note that heat-shock itself at 5 dpa may have
aslightly negative effect on regeneration. While about 70% of wild-type tadpoles heat-shocked
before amputation or at 3 dpa regenerated completely (with 4 to 5 digits), only 40% of wild-
type tadpoles heat-shocked at 5 dpa regenerated fully (Fig. 3A).

Wnt-3a is a candidate for regulating Wnt/B-catenin signaling in limb regeneration

Considering the inhibitory mechanism by which Dkk1 acts on Wnt/B-catenin signaling (Mao
et al., 2001, 2002), a Wnt ligand that activates the p-catenin pathway should be expressed in
regenerating limb buds during the period when heat-shock induced Dkk1GFP blocks
regeneration. Among several Wnt ligands shown to activate —catenin signaling (wnt-2b,
wnt-3a, wnt-8, wnt-8b and wnt-10a), RT-PCR analysis showed that only wnt-3a was expressed
in both regenerating limb buds during Dkk1GFP-sensitive regenerating window as well as in
developing limb buds (data not shown). In chick embryo, wnt-3a is expressed in epithelial cell
layers during the formation of the apical ectodermal ridge (AER), a specialized epithelial
structure essential for the outgrowth and patterning of amniote limbs, and induces fgf-8
expression in p—catenin dependent manner (Kengaku et al., 1998). We examined the expression
of wnt-3a and fgf-8 by in situ hybridization and found that both are expressed in the distal
region of uncut stage 52 limb buds (Fig. 4A, D). Importantly, both genes were also expressed
in the blastema of regenerating limbs (Fig. 4B, E). In situ hybridization on sectioned
Xenopus regenerating limb buds further shows that wnt-3a and fgf-8 are specifically expressed
in the apical epithelium of the blastema at 3 dpa (Fig. 4C, F).

These data suggest that wnt-3a is a candidate for mediating the function(s) of Wnt/f-catenin
signaling during limb regeneration. In the initial process of amphibian limb regeneration, the
amputated plane is rapidly covered with migrating epithelial cell layer that forms a specialized
epithelial structure referred to as wound epithelium (Stocum, 1995; Han et al., 2005). As the
regeneration process progresses, this epithelial cell layer thickens and forms an apical epithelial
cap (AEC), a structure that is morphologically and functionally similar to the AER in amniote
limb buds (Muneoka and Sassoon, 1992). The localization of transcript to the apical epithelium
suggests that Wnt-3a and subsequent activation of Wnt/B-catenin signaling may function in
the formation of the so-called “AEC” during limb regeneration.

To obtain more mechanistic insights into the roles of Wnt/B-catenin signaling in limb
regeneration, we examined the expression of fgf-8 and fgf-10 following the induction of
DKk1GFP expression. FO wild-type and hsDkk1GFP tadpoles were heat-shocked at 3 dpa or
5 dpa, and were fixed shortly (8 hours) after heat-shock to address the effect of Dkk1GFP on
fgf-8 and fgf-10 expression (Fig. 5A). When tadpoles were heat-shocked at 5 dpa, fgf-8
expression was suppressed in the blastemas of hsDkk1GFP tadpoles (Fig. 5B b; n=5/6), while
in all wild-type tadpoles the expression of fgf-8 remained unchanged, localized to the inner
layer of the apical epithelium of the blastemas (Fig. 5B a; n=6/6). Similarly, fgf-8 expression
was also suppressed in the hsDkk1GFP tadpoles heat-shocked at 3 dpa while all wild type
tadpoles expressed fgf-8 (n=4/6; data not shown).

As the interval between the heat-shock and fixation was short (8 hours), no significant
morphological difference was observed among wild-type and hsDkk1GFP tadpoles. Our data
show, then, that fgf-8 expression is dependent upon Wnt/B-catenin signaling during limb
regeneration. In contrast to fgf-10 being thought to be regulated by Wnt/B-catenin signaling in
limb bud and fin formation (Kawakami et al., 2001; Ng et al., 2002; Agarwal et al., 2003), we
observed that expression of fgf-10 was not directly affected by the Dkk1GFP (Fig. 5B c,
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d,;n=6/6). However, it is still possible that Dkk1GFP may indirectly inhibit fgf10 expression
through the suppression of fgf-8 in blastemas later than 8 hours after heat-shock since FGF-10
and FGF-8 constitute a positive feedback loop essential for limb outgrowth in amniote embryo
(Ohuchi et al., 1997; Xu et al., 1998). One possible explanation for the difference of
regeneration response among hsDkk1 tadpoles heat-shocked at 3 dpa and heat-shocked at 5
dpa is that the feedback loop between FGF-10 and FGF8 may be easily truncated by the
Dkk1GFP through the suppression of fgf-8 during the blastema formation as expression levels
of fgf-10 and fgf-8 are still low. However, once a cone-shape blastema is formed and once the
strong expression of fgf-10 and fgf-8 is established, the feedback loop may be maintained with
overcoming the temporal suppression of fgf-8 by the Dkk1GFP and result in partial limb
regeneration.

Several reports strongly suggest that Wnt/B-catenin signaling controls the expression of fgf-8
in the developing limb buds of chick and mouse (Kengaku et al., 1998; Barrow et al., 2003;
Soshnikova et al., 2003). Furthermore, in transgenic mice carrying a Wnt/B-catenin responsive
reporter, the mice show reporter activity in the AER, in the fgf-8 expressing domain of limb
buds. Moreover, defects in Wnt/f -catenin signaling caused the reduction of reporter activity
as well as the absence of fgf-8 expression in the apical epithelium (Maretto et al., 2003). Based
on these results, fgf-8 expression in the apical epithelium can be taken as an index of Wnt/p-
catenin activity in limbs during morphogenesis. To exclude the possibility that the Dkk1GFP
transgene suppressed not only Wnt/B-catenin signaling but non-specifically repressed other
genes, in the present study we examined expression of Hoxa-13 (Fig. 5B g, h; n=6) and
msx-2 (Fig. 5B i, j; n=6) and found that neither was altered by Dkk1GFP in blastemas. Based
on these resuls, we concluded that the Dkk1GFP specifically blocked canonical Wnt/f -catenin
signaling in blasetema of tadpoles and resulted in the suppression of fgf-8 gene expression in
the hsDkk1GFP tadpoles.

Although we still cannot exclude the possibility that there may be other Wnt ligands expressed
that mediate Wnt/B-catenin signaling during limb regeneration, the wnt-3a expression domain
clearly overlaps with that of fgf-8 in the blastema and furthermore, wnt-3a is known to induce
fgf-8 expression during the AER formation process of limb bud in chick embryo (Kengaku et
al., 1998). Therefore, it is likely that wnt-3a plays a role in the initiation of limb regeneration
by inducing fgf-8 expression in a B-catenin dependent manner.

Conclusions

Based on the critical roles of Wnt/B-catenin signaling in limb bud initiation during limb
development and in stem cell renewal in amniotes, we hypothesized that Wnt/p-catenin
signaling plays an essential role in initiation of limb regeneration. To test this hypothesis, we
created transgenic Xenopus laevis tadpoles that express a Wnt/B-catenin antagonist, Dkk1,
under the control of a heat-shock promoter and we used heat shock at various time-points during
limb regeneration to express Dkk1 and thus to inhibit endogenous Wnt/B-catenin signaling. A
single heat-shock, just prior to limb amputation or during early blastema formation, blocked
limb regeneration with high efficiency. However, induction of Dkk1 by heat-shock after
blastema formation allowed tadpoles to escape complete block of regeneration resulting in the
production of incomplete limbs. Dkk1 inhibition of Wnt/B-catenin signaling during
regeneration repressed fgf-8 but not fgf-10 in the regenerating blastema. These findings help
to position Wnt signaling in the hierarchy of signaling events important to early stages of limb
regeneration. In conclusion, we demonstrate that Wnt/B-catenin signaling plays an essential
role during the early phases of limb regeneration and is important, but not absolutely required,
during the subsequent phases of limb regeneration in Xenopus.
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Fig. 1.

Dkk1GFP5 suppresses the activity of the B-catenin responsive reporter SuperTOPFlash in frog
embryos. (A) Schematic representation of the injected constructs. Designs of constructs are
described in Materials and Methods. (B) SuperTOPFlash reporter activation after injection of
250 pg CMV-GFP5 was compared to the activation occurring after injection of 250 pg CMV-
Dkk1GFP5 with or without co-injection of 250 pg Xenopus CMV-Wnt3a DNA. Dkk1GFP5
suppressed both the endogenous activity of SuperTOPFlash (left two lanes) and the Wnt-3a-
induced activation of SuperTOPFlash (right two lanes) in embryos. Firefly luciferase activity
of the SuperTOPFlash reporter was normalized to renilla luciferase control activity. Error bars
indicate the standard deviation from the mean (n=3).
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Fig. 2.

Whnt/B-catenin signaling is required for Xenopus limb regeneration. (A) Experimental scheme.
Hindlimb buds of FO tadpoles were amputated at the presumptive knee level (amp: represented
as blue square). One heat-shock (hs: represented as red circle) was applied to tadpoles at 3 to
4 hours prior to amputation (yellow line), 3 dpa (days post amputation; green line) or 5 dpa
(blue line). (B) Map of the heat-shock inducible Dkk1GFP transgene. Details are described in
Materials and Methods. Expression of Dkk1GFP was induced in a transgenic tadpole carrying
this transgene within 3 to 4 hours after heat-shock (left panel, bright field; right panel, GFP).
No GFP expression was detected in the same tadpole before heat-shock (inset). (C) Live limb
buds were photographed when tadpoles were heat-shocked (st. 52-53; a-d). The same
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amputated limb buds were photographed again when regenerated limbs became obvious in
controls (st. 57; e-h). A wild-type tadpole heat-shocked prior to amputation regenerated the
amputated limb bud completely (a and e). While the hsDkk1GFP tadpoles heat-shocked prior
to amputation (b and f) or at 3 dpa (c and g) failed to regenerate, hsDkk1GFP tadpoles heat-
shocked at 5 dpa regenerated incomplete hindlimbs (d and h). Note that un-amputated right
limb buds developed normally (black arrows). Arrowheads show the presumptive knee level
(amputation level). Scale bars, 500 pum.
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Fig. 3.

Percentage of wild-type and hsDkk1GFP tadpoles displaying varying degrees of regenerative
responses after heat-shock as described in Fig. 1. (A) wild-type tadpoles. (B) hsDkk1GFP
tadpoles. Regenerative capacity was evaluated by the number of regenerated digits.
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st. 52 limb bud 3 dpa

Fig. 4.

Expression of wnt-3a and fgf-8 in regenerating limb buds. (A and D) Stage 52 limb buds. (B,
C, E and F) Regenerating blastemas at 3dpa. Right panels (C and F) show in situ hybridization
on sectioned samples. Wnt-3a and fgf-8 are expressed in the inner layer of thickened apical
epithelium of the blastema at 3 dpa. No specific hybridization signal was detected with an
wnt-3a sense probe (C, inset). Arrowheads show amputation level (knee level). a, anterior; p,
posterior; d, dorsal; v, ventral. Scale bars, 100 pum.
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Hoxa-13

Fig. 5.

The Dkk1GFP represses fgf-8 expression in the regenerating blastemas, but not fgf-10 and other
marker expressions. (A) Experimental scheme. One heat-shock was applied to tadpoles at 5
dpa (blue line). Wild-type and hsDkk1GFP tadpoles were fixed 8 hours after the heat-shock.
(B) insitu hybridization on sectioned samples of blastemas. Sectioned samples were hybridized
with fgf-8 (a and b), fgf-10 (c and d), Lmx-1 (e and f), Hoxa-13 (g and h) or msx-2 (i and j). To
guarantee the correct comparisons of the gene expression level, wild-type (a, c, e, g and i) and
hsDkk1GFP (b, d, f, h and j) tadpole sections were subjected to the completely same procedure
of in situ hybridization together, respectively. Arrowheads show amputation level (knee level).
D, dorsal; V, ventral. Scale bar, 100 um.
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