Use of Rambach Propylene Glycol Containing Agar for Identification of *Salmonella* spp.

RUBEN GRUENEWALD,* RUTH W. HENDERSON, AND SHELIA YAPPOW

Enteric Bacteriology Laboratory, Bureau of Laboratories, New York City Department of Health, New York, New York 10016

Received 1 April 1991/Accepted 11 July 1991

When grown on Rambach Propylene Glycol Containing Agar (Rambach agar), 216 of 230 (93.9%) Salmonella organisms isolated from patients and 54 of 62 (87.1%) Salmonella stock cultures produced a crimson-colored growth. Of the 14 clinical Salmonella isolates which displayed colors other than crimson, 8 were Salmonella typhi, 2 were Salmonella paratyphi A, and 4 belonged to other commonly isolated serotypes. All eight Salmonella stock cultures which failed to produce a crimson color belonged to rarely isolated serotypes. In contrast, of 83 non-Salmonella stock cultures distributed among 29 bacterial species, none produced a crimson color. These results suggest that while Rambach agar cannot preidentify S. typhi and S. paratyphi A, the medium can be used for the presumptive identification and can assist in the definitive identification of the overwhelming majority of Salmonella isolates.

The separation of Salmonella spp. from other species of the family Enterobacteriaceae requires the determination of many biochemical properties, because no one biochemical property alone is sufficient to identify such organisms (2). Thus, Salmonella spp. usually do not ferment lactose and most often produce hydrogen sulfide, which is detected by precipitation with ferric compounds, but these two properties are also shared by many Proteus and Citrobacter freundii isolates. Salmonella spp. usually ferment dulcitol, but dulcitol fermentation is also a characteristic of many isolates of Escherichia coli, Citrobacter freundii, and Serratia fonticola (2).

Rambach (5) has described a medium which uses the formation of acid from propylene glycol to differentiate a number of non-typhi Salmonella from some of the other species of the family Enterobacteriaceae. On this medium the non-typhi Salmonella colonies were described as bright red, whereas other organisms were colorless (Proteus mirabilis, Morganella morganii, Salmonella typhi), violet (Citrobacter freundii), or blue (Escherichia coli). The purpose of the present study was to compare the colors produced by a large number of Salmonella isolates grown on Rambach Propylene Glycol Containing Agar (Rambach agar) with the colors produced by other bacterial species to determine whether this medium can be used for the identification of Salmonella spp.

Rambach agar, which was obtained from the manufacturer (Technogram, Paris, France) and which was prepared as described by the manufacturer, was boiled for 1 min, cooled to 50°C, resuspended by gentle shaking, and poured into plastic petri dishes (15 by 100 mm; Fisher Scientific Co., Springfield, N.J.). Each plate was inoculated with eight bacterial isolates, each of which was streaked over an area of approximately 25 by 2.5 mm. The plates were incubated for 18 to 24 h at 35° C, and the reactions were recorded.

The somatic and flagellar antigens of *Salmonella* spp., which were isolated from 230 patients, were determined by the methods of Gruenewald et al. (3). When grown on

Rambach agar, 216 of 230 Salmonella isolates produced a crimson growth. Only eight isolates of S. typhi, two each of S. paratyphi A and S. enteritidis, and one each of S. hadar

TABLE 1.	Colors displayed by 292 Salmonella isolates				
growing on Rambach agar					

Isolate and serotype	No. of isolates	Color(s) (no. of isolates)			
Clinical isolates					
(n = 230)					
Aberdeen	1	Crimson			
Abortus-bovis	1	Crimson			
Agona	6	Crimson			
Berta	5	Crimson			
Brandenburg	5	Crimson			
Enteritidis	83	Crimson (81), colorless (1),			
		pink (1)			
Haardt	5	Crimson			
Hadar	15	Crimson (14), colorless (1)			
Heidelberg	28	Crimson			
Ibadan	1	Crimson			
Indiana	4	Crimson			
Infantis	7	Crimson			
Istanbul	2	Crimson			
Johannesburg	1	Colorless			
Mbandaka	1	Crimson			
Montevideo	1	Crimson			
Newport	1	Crimson			
Oranienburg	1	Crimson			
Paratyphi A	2	Colorless (1), pink (1)			
Pomona	1	Crimson			
Poona	1	Crimson			
Saint-paul	10	Crimson			
Senftenberg	2	Crimson			
Stanley	1	Crimson			
Stanleyville	1	Crimson			
Tennessee	1	Crimson			
Thompson	6	Crimson			
Typhi	8	Colorless (6), pink (2)			
Typhimurium	27	Crimson			
Virchow	1	Crimson			
Worthington	1	Crimson			

Continued on following page

^{*} Corresponding author.

TABLE 1—Continued

Isolate and	No. of	Color(s)	
serotype	isolates	(no. of isolates)	
tock cultures		* <u>**. ,</u>	
(n = 62)			
Aberdeen	1	Crimson	
Adelaide	1	Crimson	
Agona	1	Crimson	
Alachua	1	Crimson	
Anatum	1	Crimson	
Arkansas	1	Crimson	
Artis	1	Crimson	
Bareilly	1	Crimson	
Basel	1	Crimson	
Betiocky	1	Crimson	
Blockley	1	Crimson	
Boecker	1	Crimson	
Bovis-morbificans	1	Crimson	
Brandenburg	1	Crimson	
Bristol	1	Crimson	
Bunnik	1	Colorless	
Carrau	1	Crimson	
Cerro	1	Crimson	
Champaign Dakar	1 1	Crimson	
Dakar Derby	1	Colorless	
Deversoir	1	Crimson	
Dublin	1	Crimson Crimson	
Dugbe	1	Colorless	
Havana	1	Crimson	
Houten	1	Colorless	
Inverness	1	Crimson	
Java	1	Crimson	
Javiana	1	Crimson	
Litchfield	1	Crimson	
Liverpool	1	Crimson	
Livingstone	1	Crimson	
Locarno	1	Crimson	
London	1	Crimson	
Luton	1	Crimson	
Mbandaka	1	Crimson	
Miami	1	Crimson	
Mississippi	1	Crimson	
Montevideo	1	Crimson	
Moscow	1	Pink	
Muenchen	1	Crimson	
Newington	1	Crimson	
Newport	1	Crimson	
Ohio	1	Crimson	
Oranienburg	1	Crimson	
Panama	1	Crimson	
Quimbamba	1	Crimson	
Reading	1	Crimson	
Rostock	1	Colorless	
Saint-paul	1	Crimson	
San-diego	1	Crimson	
Schwarzengrund	1	Crimson	
Senftenberg	1	Crimson	
Sinstorf	1	Crimson	
Tokai Transroa	1 1	Blue Crimson	
Tranoroa Treforest	1		
Uccle	1	Crimson Crimson	
Virginia	1	Crimson	
Wassennaar	1	Colorless	
Waycross	1	Crimson	
	-		

 TABLE 2. Colors displayed by 83 non-Salmonella stock cultures growing on Rambach agar

Organism	No. of isolates	Color(s) (no. of isolates)
Acinetobacter calcoaceticus subsp. anitratus	4	Scarlet (2), colorless (2)
Acinetobacter calcoaceticus subsp. lwoffi	1	Colorless
Alcaligenes faecalis	1	Colorless
Alcaligenes odorans	1	Pink
Citrobacter diversus	3	Blue
Citrobacter freundii	5	Blue
Enterobacter aerogenes	2	Blue
Enterobacter cloacae	4	Blue
Escherichia coli	11	Blue (9), Blue-green (1), Colorless (1)
Hafnia alvei	2	Blue
Klebsiella oxytoca	2	Blue
Klebsiella ozaenae	1	Blue
Klebsiella pneumoniae	6	Blue
Morganella morganii	2	Colorless
Plesiomonas shigelloides	1	Blue-green
Proteus mirabilis	4	Colorless
Proteus penneri	1	Colorless
Providencia stuartii	1	Colorless
Pseudomonas aeruginosa	5	Scarlet
Pseudomonas stutzeri	1	Pink
Serratia marcescens	3	Blue
Serratia odorifera	1	Blue
Shigella boydii type 5, 6, 13 and 14	4	Colorless
Shigella dysenteriae type 1, 2 and 3	3	Colorless
Shigella flexneri type 1, 2, 4 and 6	4	Colorless
Shigella sonnei	6	Blue
Vibrio cholerae	ĩ	Colorless
Vibrio parahaemolyticus	1	Colorless
Yersinia enterocolitica	1	Blue
Yersinia frederiksenii	1	Blue

and S. johannesburg failed to display a crimson color (Table 1). If the eight S. typhi and two S. paratyphi A isolates are excluded, then 98.2% (216 of 220) of the Salmonella isolates produced a crimson color. Use of this medium for the presumptive identification of Salmonella spp. should not be compromised by the fact that 8 of the 62 (12.9%) Salmonella stock cultures failed to display a crimson color since all 8 organisms belonged to infrequently isolated serotypes. In fact, between 1979 and 1989, only 20 isolates of S. houten, 14 isolates of S. wassennaar, 5 isolates of S. rostock, 2 isolates of S. dugbe, and 1 isolate of S. moscow were reported to the Centers for Disease Control (Atlanta, Ga.) as having been isolated from human sources in the United States; no isolates of the remaining three serotypes (bunnik, dakar, and tokai) were reported during the same period (1). On the other hand, of 83 non-Salmonella stock cultures distributed among 21 species of the family Enterobacteriaceae and 8 species in other bacterial families, none produced a crimson color (Table 2). Of these 83 stock cultures, 7 (5 Pseudomonas aeruginosa and 2 Acinetobacter calcoaceticus subsp. anitratus) produced a scarlet-colored growth. Since scarlet is red tinged with yellow and crimson is red tinged with blue, the scarlet-colored organisms were easily distinguished from the crimson-colored Salmonella isolates. However, in order to avoid any possible confusion between the scarlet- and crimson-colored organisms, we recommend that workers who are using Rambach agar for the first time include a crimson color-producing Salmonella isolate as well as a scarlet color-producing Pseudomonas aeruginosa or Acinetobacter calcoaceticus subsp. anitratus isolate to serve as controls.

As has been shown in this study and previously (5), Rambach agar cannot be used for the presumptive identification of S. typhi, and this also seems to be true of S. paratyphi A (4). However, with the exception of these two serotypes as well as eight members of rarely isolated serotypes and four members of commonly isolated serotypes, all of the Salmonella spp. produced a crimson-colored growth. The fact that a very high proportion of Salmonella isolates produced a crimson color while 83 non-Salmonella stock cultures did not strongly suggests that Rambach agar would be an excellent medium for the presumptive identification of Salmonella isolates. This property seems to constitute a powerful tool for the identification of these organisms, because it appears to be much more specific for Salmonella spp. than their fermentation of dulcitol, the formation of hydrogen sulfide from ferric compounds, or an inability to ferment lactose (2). Indeed, the use of Rambach agar may allow workers to greatly reduce the number of biochemical reagents required for the identification of *Salmonella* isolates.

REFERENCES

- 1. Centers for Disease Control. 1989. Salmonella surveillance annual summary, 1989. Centers for Disease Control, Atlanta.
- Farmer, J. J., B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, G. P. Huntley-Carter, M. A. Asbury, C. Riddle, H. G. Wathen-Grady, C. Elias, G. R. Fanning, A. G. Steigerwalt, C. M. O'Hara, G. K. Morris, P. B. Smith, and D. J. Brenner. 1985. Biochemical identification of new species and biogroups of *Enterobacteriaceae* isolated from clinical specimens. J. Clin. Microbiol. 21:46-76.
- Gruenewald, R., D. P. Dixon, M. Brun, S. Yappow, R. Henderson, J. E. Douglas, and M. H. Backer. 1990. Identification of *Salmonella* somatic and flagellar antigens by modified serological methods. Appl. Environ. Microbiol. 56:24–30.
- 4. Rambach, A. Personal communication.
- Rambach, A. 1990. New plate medium for facilitated differentiation of *Salmonella* spp. from *Proteus* spp. and other enteric bacteria. Appl. Environ. Microbiol. 56:301-303.