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Abstract
This paper evaluates the effect of ignoring baseline when modeling transitions from intact cognition
to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening
cognitive states. Transitions among states are modeled by a discrete-time Markov chain having three
transient (intact cognition, MCI, and GI) and two competing absorbing states (death and dementia).
Transition probabilities depend on two covariates, age and the presence/absence of an apolipoprotein
E-ε4 allele, through a multinomial logistic model with shared random effects. Results are illustrated
with an application to the Nun Study, a cohort of 678 participants 75+ years of age at baseline and
followed longitudinally with up to ten cognitive assessments per nun.
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1. Introduction
In most longitudinal studies on progression of healthy individuals to chronic diseases, such as
cancer, AIDS and dementia, the outcome of interest is a series of correlated binary or
polytomous responses where these responses are observed at certain time points, sometimes
several years apart. Generalized linear mixed models (GLMM) are suggested to account for
the dependency among repeated follow-up waves within the same subjects, where unit-specific
effects are realizations of some random effects (Stiratelli et al., 1984; Gibbons and Hedeker,
1994; Crouchley, 1995; Skrondal and Rabe-Hesketh, 2004; Salazar et al.,2007).

Salazar (2004; 2007) introduced a multi-state Markov model for longitudinal data with
categorical responses. The model maintains the GLMM structure by accounting for conditional
effects of covariates given the values of a single shared random/latent effect. In addition, two
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particular features are presented in his model. First, the dependency among observations on
the same subject is addressed by assuming a first-order Markovian structure, which helps to
facilitate the expression of the joint distribution of the response vector. Second, the
parameterization of the transition probabilities using multinomial logistic regression provides
a closed-form expression in the likelihood construction. The model provides a suitable
approach to problems of identifying the risk factors associated with the progression of healthy
individuals to a chronic disease with death treated as a competing event.

However, Salazar’s model approximates the joint distribution of the response variable using a
conditional distribution given the baseline outcome of the response variable. Such an approach
could possibly produce a so-called ‘baseline confounding’ problem (Crouchley and Davies,
1999; Ten Have et al., 2002), which might result in biased or inconsistent estimation. The
model application in the Nun Study on progression of dementia indicates that among 678
subjects in the cohort, 77 are demented at baseline. These subjects (more than 10 percent) were
removed from the analysis since they would contribute nothing to the likelihood when ignoring
baseline. It is interesting to see how the model likelihood as well as maximum likelihood
estimates (MLEs) will differ once we incorporate baseline information into the model
construction.

This paper will focus on addressing this limitation by accommodating the baseline confounding
in the Markov model using shared random effects approaches. In the next two sections, the
model likelihood construction is discussed in detail. In sections 4 and 5, simulation studies and
an application to the Nun Study data discussed in this context by Tyas et al. (2007) are
presented. Comparisons are made between the two models with respect to maximum likelihood
estimation. Section 6 discusses how this model structure can be modified to accommodate
higher orders of the chain and the possibility of testing these chain orders using conventional
likelihood ratio tests.

2. Markov model with shared random effects
A generalized linear mixed model (GLMM) for a longitudinal analysis is defined as follows,
let i denote a particular subject under study and ni the number of repeated observations for
subject i. Suppose the link function for the response is η. The model can be written as

where k = 1,2,…,ni. Here β is a p dimensional vector of unknown parameters (fixed effects)
associated with the corresponding observed covariate vector Xik. γi. is a vector of unobserved
random effects associated with subject i. Considering that Wik is typically contained in the
elements of covariates Xik (Zeger and Karim, 1991; Skrondal and Rabe-Hesketh, 2004), we
assume the expectation of the response variable depends only on Xik and the random vector
γi.

In contrast with the general GLMM, the Markov model introduced by Salazar (2004; 2007)
demonstrates two favourable features in modeling longitudinal categorical responses as a
multi-state system where series of categorical outcomes are expressed in terms of states, and
the onset and progression of these outcomes as transitions between the states.

First, the model relies on a ‘transitional modeling’ (Agresti, 2002) strategy by introducing a
multi-state discrete-time Markov chain, which facilitates the expression of the joint distribution
function. The natural development of chronic diseases can often be expressed in terms of
distinct health stages and the Markov chain is a simple yet powerful tool in describing the
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progression of healthy individuals through these stages. Assume the Markov property that the
conditional distribution P(yik|yi0…yik−1) is identical to the conditional distribution of P(yik|
yik−1). The conditional joint distribution function for a particular subject i, given the baseline
observation yi0, can then be factorized as follows

Here each yik, k = 1,2,…, ni, refers to the state that the i th subject is in at the k th observation.
Each conditional probability f(yik|yik−1) therefore can be interpreted as a particular element
inside the one-step transition probability matrix. More specifically, suppose yik−1 = s and yik
= v. Then f(yik=v|yik−1 = s), denoted by Psv (X, γ), is simply the probability of transition for
subject i from state yik−1 = s at k −1 th visit to yik = v at k th visit, where s and v are elements
of finite transition states within a particular multi-state system.

Second, by applying multinomial logit parameterization, the model provides a closed form in
constructing the model likelihood function. For presentation purposes, we assume a finite
stochastic system consisting of five transition states with three transient and two competing
absorbing states. This corresponds to the five progression stages in the study of dementia (Tyas
et al., 2007) and these are (1) intact cognition, (2) mild cognitive impairment (MCI), (3) global
impairment (GI), (4) dementia and (5) death. The one-step transition probability matrix could
then be presented as below

Since  for each row of s = 1,2,…,5, a nominal polytomous logistic model for
Psv can be constructed as

where v = 2,3,4,5. Let Θ represents the set of all unknown parameters (α||β||ξ(s)), where α is
the vector of intercepts; β is the vector of unknown fixed effects for covariates of interest; and
ξ (s) is the set of unknown fixed effects for the prior state. The inclusion of ξ (s) serves two
purposes in the model. First it helps to define the row characteristics of the transition matrix;
the parameterization assumes that α||β does not depend on the prior state, so that α||β applies
for each row, and the inclusion of ξ (s) therefore differentiates among rows. Second, the
inclusion of the previous state somewhat absorbs the possible correlation among residual errors
so as to guarantee the independence and constant variance of model residuals conditional on
the fixed and random effects (Stiratelli et al., 1984).
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Following Salazar (2004; 2007) each transition probability can be postulated in the form of

The first equation applies for v = 1, and the second for v = 2,···5.

3. Likelihood functions
The estimates produced in Salazar’s multi-state Markov model are based on a likelihood that
conditions on the baseline response. The model further assumes that the distribution of the
random effects γ is independent of both baseline outcome and covariates. Such an approach
could possibly produce a so-called ‘baseline confounding’ problem (Crouchley and Davies,
1999; Ten Have et al., 2002), which might result in biased or inconsistent estimation. To see
this, the complete likelihood function for the model is

Here  refers to the product of individual transition probabilities of

. Under Salazar’s assumption, the following likelihood is used

Crouchley and Davies (1999) argue that if it is possible for the random effects to be independent
from the model covariates, the independence of random effects and baseline outcome is
difficult to justify. The latent variables which contribute to the random effects are likely to be
at least partially responsible for the observed baseline states. This is especially the case for a
cohort with heterogeneous baseline where the assumption about the independence between
random effect and baseline outcome can not be taken for granted.

Considerable literature has focused on constructing extended likelihood functions to
accommodate missing data that are non-ignorable, such as informative drop-out and death in
particular (Rubin, 1976; Ten Have et al., 1998; Pulkstenis et al., 1998; Ten Have et al., 2000,
Gao, 2004). Sharing of random effects has been a popular approach in this respect. The method
incorporates into the likelihood construct both the follow-up response and drop-out response
components by assuming that the two share the same random parameters and are conditionally
independent given these random effects (Ten Have et al., 1998). In essence, the model
likelihood is built up using a separability approach. Suppose γ is a vector of m dimensional
unobserved random effects contributing to both the probability of follow-up and drop-out
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responses, and let γ have some prior distribution function h. The marginal joint distribution for
the follow-up and drop-out can be expressed as

where f′ (yi|γ) and g(zi|γ) are the conditional distribution for follow-up and drop-out responses
given γ. A similar approach is possible for the purpose of improving our model likelihood by
accounting for the baseline information. We hypothesize that the shared random effects
approach that has been used to account for the informative drop-out can be analogously applied
in this situation where the drop-out function g(zi|γ) is replaced with f (yi0|γ), the baseline
response given γ, assuming the two share the same random effects).

Ten Have et al. (2002) take this approach in modeling longitudinal binary functional limitation
responses. Their model considers both baseline confounding and informative drop-out, in
which case the model likelihood consists of three separate components: one for baseline, one
for follow-up outcomes and one for time of drop-out. These three pieces are conditionally
independent given random effects and their corresponding predictor variables. The key
difference between Ten Have’s model and ours is that, on the one hand, the drop-out is of little
concern in our case and by omitting the drop-out component it simplifies the model
construction. On the other hand, our case involves multinomial responses and the
parameterization using polytomous logit under a discrete-time Markov framework is more
complicated than the simple Bernoulli approach for binary outcomes.

The inclusion of baseline outcome variable completes the joint distribution function, and the
equation now becomes

Using the previous example of the five-state transition system, let πj = P(yi1 = j) represent the
probability that subject i is in some state j at the baseline. We propose to model the probability
of the baseline state similarly by using multinomial logistic regression, which gives

Again the first equation applies for j = 1, and the second for j = 2,···4. Here the vector ϕj ≡ (τj||
δj) represents another set of unknown parameters determining the baseline probabilities. The
likelihood function can now be written as
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yi0,yi1···yini. are known states, Θ is the parameter vector associated with the follow-up response
component and Φ is the parameter vector associated with the baseline response component.

For the purpose of presenting the marginal likelihood, we rewrite  in some
closed form considering that yik−1 and yik can be any arbitrary states from 1 to 5.

, where δyik−1,s and δyik,v are some indicator
functions valued at 1 if yik−1 = s and yik = v and 0 otherwise.

Since the last two rows of the transition probability matrix contribute nothing to the likelihood,
the range of s can be reduced to include only the transient states. The final likelihood function
for under this 5-state system becomes

As an extension, note here that the vector γ is not necessarily random effects per se. It could
also be some reparameterization of the random effects such that the model could allow different
variance covariance structures of random effects for fyik,1<=k=ni(yi1,yi2,…yini|γ, yi0) and f(yi0|
γ) respectively.

Furthermore, the Cholesky decomposition of a positive definite variance covariance matrix
can be used to account for the correlation among random effects. To be more specific, suppose
Σ is a positive definite variance covariance matrix for the random effect vector γ. Then Σ can
be rewritten in the form of Σ = U′U where U is some upper triangular matrix and the equation

 can be modified as . Notice that
now the random effect vector γ has been reparameterized as U′ρ where ρ has the variance
covariance matrix being an identity matrix I. For a random intercept-slope model, for example,
each row of matrix W is composed of two elements, 1 and a covariate value changing within
the subjects, age for instance. U is a 2 by 2 matrix in which two diagonal elements are σ1, and
σ2, the square root of the variance for intercept and slope random effects. The upper off diagonal
element is σ12, the covariance between the two, and the lower off diagonal element is 0.

After the random vectors are integrated out, the maximized likelihood estimates (MLEs) can
be calculated to make inferences about the parameters of interest. Except under some special
assumptions, for example, log-log link function with log-gamma random effects (Pulkstenis,
et al., 1998), these integrals have no analytical solutions. The marginal likelihood needs to be
resolved using numerical approximation which can be computationally intensive, especially
for models with multiple random effects. Several common techniques used to approximate this
type of integrations are Laplace method (Gao 2004; Skrondal and Rabe-Hesketh 2004),
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Binomial approximation (Ten Have and Kunselman 1998; Ten Have et al., 2000; Ten Have et
al., 2002), Numerical integration using Gauss-Hermite quadrature or adaptive quadrature
(Hedeker and Gibbons, 1994; Skrondal and Rabe-Hesketh, 2004) and Monte Carlo method of
importance sampling (Salazar, 2004) or Gibbs sampling (Zeger and Karim, 1991), etc.

4. Simulations
Using simulation studies, comparisons are made with respect to parameter estimation between
our extended shared random effects model and the model ignoring the baseline. The simulation
is set up to have 500 subjects in each iteration and each subject with up to 10 follow-up waves.
Depending on one continuous covariate: age and one binary covariate: the presence/absence
of an apolipoprotein E-ε4 allele (APOE-4), transition probabilities are estimated by
multinomial logistic regression. Considering the models under discussion are complex
parametric Markov model involving a large number of parameters, one shared random intercept
is considered at this time in order to achieve relative fast likelihood convergence. Three cases
are examined: the random intercept following a normal distribution with small variance (σ =
1) and normal distributions with comparatively larger variances (σ = 2 and σ = 3).

To demonstrate the impact of the baseline confounding among cohorts with different baseline
outcome structure, three separate simulation studies are implemented. The first simulation
assumes a single cohort where all the subjects recruited share the same baseline state of intact
cognition, regardless of the covariates of interest (P(yi0 = 1|XB, γ) ≡ 1). It is expected that under
this circumstance the independence between random effect and baseline state can be reasonably
argued and as a result, both models with and without extra likelihood structure should be able
to produce similar parameter estimates for the follow-up likelihood component. In the second
simulation, we look at the circumstance for a heterogeneous cohort where the probabilities of
baseline state follow a multinomial logistic regression, depending on the covariates of interest
(P(yi0 = j|XB, γ) = πj). Different from the homogeneous case, we anticipate that the model
ignoring the baseline likelihood component is likely to produce more biased parameter
estimates associated with the transition probabilities. In the third simulation, we further
evaluate the performance of the two models as the number of subjects demented at baseline
varies. By assigning different parameters associated with the APOE-4 risk factor to the baseline
demented subjects, we generate two cohorts, each with different number of subjects demented
at baseline. In addition to the larger bias of the parameter estimates, we expect that such bias
tends to intensify as more subjects are demented at baseline, hence excluded from the model
without the baseline.

The integral is approximated using the Laplace method. We used the dual quasi-Newton
algorithm to optimize the log-likelihood functions, and the method is implemented using
SAS® NLMIXED procedure. The NLMIXED procedure provides a variety of optimization
method which ranges from (1) second derivative methods like Newton Raphson where both
gradients and Hessians need to be computed for the optimization, (2) first-derivative methods
such as quasi-Newton where gradients are required in finding the optimum, and (3) The no-
derivative method such as Nelder-Mead simplex, which only the function value is used in
optimizing the underlying likelihood function. The quasi-Newton algorithm is the default
optimization algorithm because “it provides an appropriate balance between the speed and
stability required for most nonlinear mixed model applications” (SAS online doc). The
asymptotic relative bias of the parameter estimates are presented in Table 1, Table 2 and Table
3.

The results for the cohort with homogeneous baseline show that the simulated estimates are
almost identical between two models for the parameters associated with age and APOE-4. At
σ = 1 for example, the averaged relative biases for the covariate age are both 3.5% and the

Yu et al. Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biases for APOE-4 positive are 3.0% and 3.2% respectively. The biases for the prior states
show a little more fluctuation, but are still quite close.

In contrast, for the heterogeneous cohort where the baseline states depend on the model
covariates, the maximum likelihood estimates produced by the two models are quite different.
In the case of random intercept variance being 1, the relative biases for the covariate age range
from −0.7% to 0.5% under our proposed model, while the model ignoring the baseline gives
the relative biases ranging from −8.4% to −4.6%. This result indicates that the parameter
estimates associated with age are underestimated in the model without baseline structure. This
is true across different random intercept variance. A similar conclusion can be made with
respect to the covariate APOE-4, in which case the averaged relative biases from the two models
are 2.3% and − 4.2% respectively at σ = 1, 3.4% and −18.4% at σ = 2, and 5.9% and −35.8%
at σ = 3. Hence, ignoring the baseline is likely to create a serious downward bias which is likely
to increase with σ while accounting for the baseline produces a smaller bias.

There are some variations of bias in the maximum likelihood estimation under both models as
number of subjects demented at baseline changes. As shown in Table 3, the averaged relative
bias under the model with and without the baseline tend to increase as the percentage of subjects
demented at baseline gets larger. However such increase is much more conspicuous among
those under the model without the baseline. For example, in the case where the cohort has 14%
of subjects demented at baseline, the averaged related bias associated with APOE-4 is −5.1%
under the model without baseline versus 0.9% under the model with baseline, while as the
percentage of baseline demented subjects increases to 34%, the bias changes to −14.1% versus
−4.3% between the models.

5. Application: Nun Study
The Nun Study data, a longitudinal study of aging and Alzheimer’s disease funded by the
National Institute on Aging will be used to illustrate our proposed model. The dataset consists
of a cohort of 678 members of the school sisters of Notre Dame religious congregation
(Snowdon et al., 1997). Each participant agrees to allow investigators complete access to their
convent archives, participate in near-annual assessments of cognitive and physical function
and donate their brain at death. 177 participants are excluded from the analysis because of
missing covariates or consent withdrawal. One conspicuous feature of the dataset is that over
10 percent (77) of the subjects are diagnosed with dementia at the baseline visit. Instead of
removing those subjects from data analysis, the proposed multi-state Markov model helps to
accommodate this baseline information into the likelihood by assuming shared random effects.

The first 10 waves of exam results since 1991 are used in this analysis. The transitions are
summarized in Table 4. The covariates of interest are: (1) age in years centered at the median
of 88 years, and (2) presence of apolipoprotein E-ε4 allele, a well-known risk factor for
dementia.

The presence of a shared random effect assures the vector of serial observations on a given
subject is correlated. When this is restricted to the transitional likelihood (the likelihood without
a baseline), only the second through the last observation in this vector are dependent since the
transitional likelihood is conditioned on the first observation. On the other hand the model with
the baseline correlates all observations in the vector. The simulation studies in Table 2 show
that excluding the baseline likelihood from this shared random effect produces estimates of
the beta coefficients that are negatively biased and such bias increases as the variance of the
shared random effect increases. Table 5 shows how the corresponding parameter estimates for
the transition probabilities are consistently underestimated using real data from the Nun Study.
In this application we compared three models: the naïve model where we ignore the random
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effects, an initial random intercept model without the baseline likelihood, and the shared
random intercept model with the baseline likelihood.

The results from Table 5 indicate that estimates under models with and without the baseline
likelihood component are different. For example, consider the fixed effect of apolipoprotein
E-ε4 allele (APOE4=1). It has been well documented that the presence of APOE4 increases
the chance of cognitive impairment. Under the naïve model, the MLEs for APOE4=1 are
(0.548, 0.863, 1.199, 0.651), which means that keeping other covariates constant, the odds ratio
of having APOE4 present for transitions from intact cognition to MCI is 1.73, intact to global
impairment is 2.37, intact to dementia is 3.32 and intact to death is 1.92. In comparison, the
odds ratios are 3.14, 4.58, 5.18 and 3.71 under the model without the baseline likelihood
component and 5.22, 7.65, 8.58, 6.20 under the model with the baseline component. We can
see that although the effect of APOE4 is significant in all three models, the magnitude of odds
ratios under the new model is larger.

6. Higher order Markov chains
The model introduced in this paper can be applied to higher order chains. Without loss of
generality, in a second order case, the transition probability matrix Prsv has a hierarchical
structure Prsv = (Pr=1,sv Pr=2,sv Pr=3,sv)t where each Pr=i,sv, i = 1,2,3 is a transition sub-matrix
corresponding to the second immediate prior state r. The parameterization of transition
probabilities is similar to the first order case. The individual transition probability Prsv still
maintains the polytomous logistic structure while the three first order sub-matrices are only
different in parameters associated with r. In the first order Markov chain structure, the
parameters ξh (s) indicate the immediate prior states s, while in the second order case, it needs
additional components, say ζh (r), to indicate second immediate prior states r. Because of this
hierarchical structure, ζh (r) differentiates among sub-matrices, and ξh (s) differentiates among
rows within each sub-matrix.

The likelihood for the second order Markov model further breaks down the joint distribution
into three likelihood components with shared random effects. The joint distribution can be
factorized as the following

and the likelihood for a particular subject is

The variance covariance structure of the random effect distribution does not have to be the
same across the likelihood components. It is also possible for these components to partially
share the random effects. Take the random intercept and random slope model for instance: the
baseline component shares only the random intercept with the two follow-up components,
which share an extra random slope.
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In theory this model applies to an arbitrarily higher order Markov chain, while in practice the
number of parameters that need to be estimated can add up quickly which, in combination with
the numerical integration of random effects, might produce the computational burdens in the
likelihood optimization (refer to Table 6 for example).

The advantage of this approach is that; first, it helps to reduce the possible confounding bias
that could occur otherwise. This is especially the case when higher order chains are assumed.
Referring to the Nun Study data, the flow diagram indicates that there are 77 nuns demented
at baseline and after the first follow-up wave, 39 more are demented. In a second order chain
scenario, a total of 116 subjects would have to be removed from the analysis, accounting for
over 20 percent of the total available data.

Second, the likelihood based approaches facilitate the inferential procedures like common
likelihood ratio tests. These can be used to test model fitness, in particular, the hypothesis about
the orders of a particular chain. We fit a second and third order Markov models using the Nun
Study data. As shown in Table 6, all the fit statistics suggest that the third order model is no
better than the second order model, and the likelihood ratio tests as well as the Akaike’s
information criterion (AIC) indicate that the second order model might be better than the first
order model, while the Bayesian information criterion (BIC) supports the first order model.
This mixed result points out that the approximation of the joint distribution f(yi0, yi1|γ) using
the product of f(yi1|yi0, γ) and f(yi0|γ) may be oversimplified in practice and we are looking for
a single joint density for yi0 and yi1. Meanwhile the first order assumption in the Nun Study
data may also deserve further examination.

Moreover, by modeling the transition among states with a Markov structure, the one-step
transition probability matrices constructed based on the parameter estimates provide additional
information with respect to the mean time to absorption as well as the odds of absorption in
competing absorbing states. This is particularly useful in the study of chronic diseases like
Alzheimer’s disease where researchers are interested in the probability of disease onset before
dying given a set of risk factors such as age, education, and genetic status.

7. Conclusion and Future Work
Subjects in the Nun Study do not share the same baseline state. Among 501 subjects used for
analysis, 128 of them had intact cognition at baseline, 249 had MCI, 47 had global impairment
and 77 were demented. Although a model without a baseline likelihood component could be
considered for a cohort with some homogeneous baseline states1, the diversified states at
baseline for subjects in the Nun Study make it important to incorporate the baseline outcomes
into the likelihood construction. The proposed multi-state Markov model helps to
accommodate this baseline information into the likelihood by assuming shared random effects.
Since all the risk factors considered in the application to the Nun Study are the most established
risk factors, the comparison of the maximum likelihood estimates shows difference only in
magnitude rather than significance, it is feasible however that other risk factors with important
but weaker association with cognitive status transitions might be missed without accounting
for the baseline information. Moreover, from an epidemiological perspective, without
including all baseline information, the prevalence (baseline) cases tend to be different from the
incidence (follow-up) cases, which is likely to produce selection bias into the analysis.

1To show that model 1 might be used for longitudinal data with homogeneous baseline outcomes, in addition to the simulation result as
presented in Table 1, we analyzed the Nun Study data by including only subjects with the same baseline state (MCI). Almost identical
MLEs are produced under model 1 and model 2.
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The analysis of panel data with categorical outcomes is not a straightforward task. One of the
strengths of the approach suggested in this manuscript for constructing a likelihood function
for such data is that it assumes a Markov model for transitions among states. This makes it
easy to incorporate the baseline status of the individual into the likelihood computation
provided we introduce a shared random effect to assure the elements in the entire vector of
observations on an individual are correlated. The arithmetic is no more complicated than when
the baseline is ignored since we continue to rely on standard statistical software (Procedure
NLMIXED in SAS) to fit the expanded likelihood to the data as evidenced by the Nun study
data. However, there are some limitations to this approach since this software relies on
numerical quadrature techniques. One limitation concerns k, the number of states in the process,
or r, the number of risk factors investigated. As either k or r increase the number of unknown
parameters increases making it difficult to achieve convergence of the likelihood to its
maximum. One reason for this is that as k increases the possibility of encountering sparse cells
in the one step transition matrix increases. The one step transition matrix links the covariate to
the transition using a polytomous logistic model and convergence problems arise since that
model is sensitive to sparse cells. Similarly as r increases the one step matrix gets partitioned
according to different combinations of the risk factors again promoting the possibility of
encountering sparse cells.

The likelihood construction in this model is based on the first-order Markov assumption,
namely that the conditional distribution of the current outcome for a particular subject depends
on the previous outcomes only through the most recent one. Whether the data maintains this
Markov property directly affects the validity of maximum likelihood estimation. The
verification of this assumption is non-ignorable. As in the general GLMM model, conditioning
on both measured and unobserved latent variables makes the subject-specific coefficient
difficult to interpret, especially when the involved covariates do not vary within individuals.
According to Heagerty (1999), these coefficients measure the contrast in covariates when the
random effects are held equal, but the random effects are not directly observed. The latent
variable assumptions determine what values of random effect are equivalent; the magnitude
and interpretation of the fixed effects therefore depend entirely on these assumptions. As a
result the model tends to produce biases in regression estimates when the distribution of random
effects has been misspecified (Litiere et al., 2007). This raises a new set of issues involving
methods of model diagnostics under GLMMs, in particular the analysis of random effects
misspecifications, which have not yet been thoroughly explored in the literature.
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Figure 1.
Flow diagram of Nun Study Data (First four follow-up waves)
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Table 6

Fit statistics for models assuming higher order chains, the Nun Study data

Fit Statistics

1st order 2nd order 3rd order

−2 Log Likelihood 5936.7 5812.3 5747.4

AIC (smaller is better) 5996.7 5918.3 5925.4

AICC (smaller is better) 5997.5 5920.4 5931.5

BIC (smaller is better) 6123.2 6141.8 6300.7

# of parameters 30 53 89
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