
new algorithms workshop

Acta Cryst. (2009). D65, 625–632 doi:10.1107/S0907444909003163 625

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Unit-cell determination from randomly oriented
electron-diffraction patterns

Linhua Jiang,a*‡ Dilyana

Georgieva,a‡ Henny W.

Zandbergenb and Jan Pieter

Abrahamsa

aDepartment of Biophysical Structural

Chemistry, Leiden Institute of Chemistry, Leiden

University, Einsteinweg 55, 2333 CC Leiden,

The Netherlands, and bKavli Institute, TU Delft,

Lorentzweg 1, 2628 CJ Delft, The Netherlands

‡ These authors contributed equally to this

work.

Correspondence e-mail:

l.jiang@chem.leidenuniv.nl

# 2009 International Union of Crystallography

Printed in Singapore – all rights reserved

Unit-cell determination is the first step towards the structure

solution of an unknown crystal form. Standard procedures for

unit-cell determination cannot cope with data collections that

consist of single diffraction patterns of multiple crystals, each

with an unknown orientation. However, for beam-sensitive

nanocrystals these are often the only data that can be

obtained. An algorithm for unit-cell determination that uses

randomly oriented electron-diffraction patterns with unknown

angular relationships is presented here. The algorithm

determined the unit cells of mineral, pharmaceutical and

protein nanocrystals in orthorhombic high- and low-symmetry

space groups, allowing (well oriented) patterns to be indexed.
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1. Introduction

Elastic diffraction provides the information for atomic struc-

ture determination. However, the majority of electrons or

X-rays impinging on a sample scatter inelastically and these

inelastically scattered quanta induce radiation damage. Rela-

tive to the total elastic diffraction, high-energy (300 keV)

electrons deposit approximately 1000 times less energy in thin

biological samples than X-rays and hence induce less radiation

damage after normalizing for the elastically diffracted quanta.

In theory, electrons should therefore be more suited for

structure determination if radiation damage is the limiting

factor (Henderson, 1995). However, practical problems in

data collection and data processing prevent the use of

electrons for the three-dimensional crystallographic structure

determination of organic molecules such as proteins and

pharmaceuticals. Here, we address one of these practical

problems: the determination of an unknown unit cell from

random diffraction patterns.

In electron crystallography, the unit cell is determined

from electron diffraction tilt series. For this purpose, three-

dimensional diffraction data are collected by tilting a crystal

about a selected crystallographic axis and recording a set of

oriented diffraction patterns (a tilt series) at various (prefer-

ably main) crystallographic zones. Vainshtein (1964) proposed

a simple two-dimensional lattice-reconstruction method based

on tilt series, in which the d* values for the non-tilt axis were

plotted against the tilt angle.

Recently, a method of unit-cell parameter determination

based on a tomography tilt series of diffraction patterns has

been presented (Kolb et al., 2008).

A different algorithm is implemented in the program

TRICE (Zou et al., 2004), which determines the unit cell in two

steps. Firstly, the position and the intensities of each diffrac-



tion reflection in the individual electron diffraction patterns

from the tilt series are determined and refined. For this

purpose, any three reflections that do not lie in the same line

are selected and are assigned a two-dimensional index,

assuming a primitive cell. The positions of diffraction spots

and the angles between the diffraction patterns are then used

to identify the shortest three-dimensional vectors defining the

unit-cell parameters and the crystal orientation. The angle �
between two electron diffraction patterns of a single crystal,

oriented with a double-tilt holder at the angles (�1, �1) and

(�2, �2), is given by

� ¼ cos�1
ðcos �1 cos �1 cos �2 cos�2

þ cos �1 sin �1 cos�2 sin �2 þ sin �1 sin �2Þ:

The concept of the Niggli cell and the cell-reduction technique

are well established algorithms in electron crystallography. A

crystal lattice can be characterized by the choice of ‘reduced’

cell. There are 44 primitive reduced (Niggli) cells corre-

sponding to 14 Bravais lattices. The determination of the unit

cell is performed by first determining the reduced direct

primitive cell and then transforming it to a conventional cell.

The recognition and interpretation of the reduced form are

often difficult and are aggravated by errors in the cell para-

meters or rounding errors in calculations. Thus, procedures

aimed at reducing these errors need to be performed. An

approach suggested by Clegg (1981) to minimize the errors

implies the generation of a list of lattice vectors sorted on

length, together with angles between pairs of them. In addition

to the conventional algorithms, Grosse-Kunstleve et al. (2004)

implemented two numerically stable algorithms to generate

the reduced cell.

However, all these methods require the collection of at least

two diffraction patterns from one single crystal, each collected

at precisely known angles. This is not always possible. For

instance, in the case of three-dimensional organic crystals of

proteins and pharmaceuticals, the high beam-sensitivity of the

materials often does not allow the collection of a tilt series

from a single nanocrystal. So far, this has limited the appli-

cation of electron diffraction to the study of beam-sensitive

molecules.

Here, we present an algorithm for unit-cell determination

from randomly oriented electron diffraction patterns of

different but similar crystals. These diffraction patterns may

be noisy, their centre may be poorly defined and their low-

resolution reflections (which are of prime importance for unit-

cell determination) may be obscured by a beam stop or be

outshone by the central beam. To deal with these problems, we

first calculate the autocorrelation pattern of the diffracto-

grams. Because of the low curvature of the Ewald sphere, the

spots of the diffractogram overlap with all spots of the auto-

correlation pattern (but not vice versa; see also Fig. 1).

Furthermore, autocorrelation patterns have an inversion

centre, whereas the beam centre of a diffractogram may be

unknown. Identifying the peak positions in the autocorrela-

tion pattern is similar to the approach taken by the indexing

program REFIX (Kabsch, 1993), which calculates the low-

resolution spacings between observed spots.

The low-resolution peaks in the autocorrelation pattern

form a two-dimensional lattice (Fig. 1) which is defined by a

pair of independent vectors. From this vector pair we construct

a facet which is characterized by three numbers: the lengths of

the two basis vectors and the angle between them. A facet is a

rotation-invariant feature of a two-dimensional lattice. Each

planar intersection of a three-dimensional lattice along a

principal zone also generates a two-dimensional lattice and

hence defines a corresponding facet. Our algorithm is based

on matching the observed crystal facets to model facets

extracted from a simulated three-dimensional lattice. Briefly,

our procedure involves the following steps (see also Fig. 2).

(1) For each observed electron diffraction pattern, we

determine its crystal facet by
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Figure 1
(a) Electron diffraction pattern of lysozyme (electron energy 300 keV). (b) Diffraction pattern after removing the central beam and subtracting the
radial background. (c) Autocorrelation pattern of (b). The diffractogram in (a) shows a regular point-symmetrical pattern. The flatness of the Ewald
sphere (the wavelength of 300 keV electrons is approximately 0.019 Å) causes this regularity.



(i) removing the central beam and overall background of

the image;

(ii) calculating the autocorrelation pattern of each

corrected diffraction pattern;

(iii) identifying the principal facet of the autocorrelation

pattern and adding it to list 1.

(2) For each potential unit cell, we determine its fit to the

experimental data by

(i) calculating all unique low-resolution model facets that

can be extracted from the corresponding simulated three-

dimensional lattice and storing these in list 2;

(ii) for each crystal facet of list 1, selecting the best-

matching model facet from list 2 and calculating a residual and

accumulating the residuals.

(3) Finally, we select the potential unit cell with the lowest

accumulated residual.

The algorithm was tested with electron diffraction data from

random orientations of protein (lysozyme), organic (potas-

sium penicillin G and sodium oxacillin) and inorganic

(mayenite) nanocrystals.

2. Methods

2.1. Data collection

Potassium penicillin G and sodium oxacillin were available

as white crystalline powders. To obtain thin crystals suitable

for electron-microscopy studies, the powder was crushed in a

mortar. A small amount of the sample was placed on a 300

mesh holey carbon electron-microscopy grid. Crystals suitable

for electron diffraction studies (in terms of size, thickness and

crystallinity) were selected. Diffraction experiments were

performed under cryogenic conditions to increase the stability

of the sample in the beam. Diffraction patterns were collected

from randomly oriented crystals with a CM30T LaB6 micro-

scope operating at 300 keV in microdiffraction mode. A con-

denser aperture (C2) of 30 mm and spot size 8 were used (the

diameter of the beam on the crystal was approximately 1 mm).

The data were recorded at a camera length of 420 mm on

DITABIS image plates and digitalized at a resolution of

0.025 mm per pixel with the DITABIS Micron imaging-plate

read-out system.

2.2. Data preprocessing and determining the crystal facets

Firstly, the digitized diffraction patterns were processed.

The approximate centre of the diffraction patterns was found,

the central beam or backstop shadow was removed, the

resolution-dependent background was subtracted, the auto-

correlation patterns were determined and the beam centre was

refined. Peak positions were automatically extracted from the

autocorrelation patterns using the automated particle-picking

tool of the Cyclops software suite (Plaisier et al., 2007). At low

resolution, the peak positions of the diffractogram coincide

with those of the autocorrelation pattern (see Fig. 1). From

these peak positions, we calculated a low-resolution facet for

each diffraction pattern and stored these in list 1.

In the absence of a beam stop, the centre of a diffraction

pattern was found by a search for the most intense connected
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Figure 2
For a given unit cell, a three-dimensional reflection lattice can be calculated. For each characteristic facet from the experimental diffraction pattern, the
corresponding facet in the three-dimensional reflection lattice which fits best is identified. The squared distance differences between calculated and
experimentally found facets are accumulated in a penalty function.



spot using an adaptation of a standard peak search. When a

beam stop occluded the direct beam, the centre was located by

cross-correlating the autocorrelation pattern of the diffracto-

gram with the diffractogram itself and by making use of the

point symmetry of the low-resolution reflections (the point

symmetry is caused by the low curvature of the Ewald sphere).

The crystal facet describing the lattice of the autocorrela-

tion pattern was determined by locating the two peaks close to

the centre, ensuring that the angle they defined together with

the centre was between �/2 and �/3. These two peaks can be

located interactively or automatically in our algorithm. Visual

inspection ensured that the facet indeed correlated to the two-

dimensional lattice of the autocorrelation pattern and that it

did not correspond to low-resolution noise peaks.

2.3. Simulating a three-dimensional reflection lattice and
extracting low-resolution model facets

Six cell parameters (axes a, b and c, and angles �, � and �)

define a primitive cell. Using these six parameters, a systematic

set of possible unit cells can be simulated in a grid search of

axes and angles. Good guesses for the dimensions of the
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Figure 3
(a) Examples of autocorrelation patterns from experimental electron diffractograms of mayenite. Crosses indicate the centroids of the peaks of the
autocorrelation image used for the calculation and circles indicate the peak positions of the simulated diffraction pattern. The extra peaks in the second
autocorrelation pattern were caused by low-intensity extra lattices in the original diffractogram (not shown). (b) Fine grid search of the unit cell (based
on eight images). The ‘Residual’ value on the vertical axis is defined as the square root of the average weighted residual in (4).



parameters and the step size can be made on the basis of the

observed spacings and angles in the experimentally deter-

mined crystal facets, but we also allow the user to select the

search range and step size.

From a set of cell parameters, a reciprocal cell matrix C can

be constructed. The crystal orientation can be defined by a

rotation matrix R and from these matrices R and C a matrix

M = CR is constructed. The position of any reflection point p

of the three-dimensional reflection lattice in Fourier space for

a given unit cell and crystal orientation can be calculated using

the equation

p ¼ hM: ð1Þ

Here h = (h, k, l) is an index vector containing the integral

indices of p. M is defined by the unit-cell parameters and the

crystal orientation. The indices that satisfy p for a chosen

resolution range can be found by imposing the boundary

conditions

1=dmin � jpj � 1=dmax; ð2Þ

where dmin is the lower boundary of the resolution range and

dmax is the upper boundary resolution. Given these equations

and boundary conditions, we implemented an algorithm to

quickly generate all possible positions of reflection spots in

three-dimensional Fourier space. From this collection of

simulated three-dimensional spot positions, we generated a list

of all unique model facets, i.e. model facets differing from all

others by less than a specified tolerance.

2.4. Calculating residuals

In the ideal case, all facets from the experimental data

exactly match the facets of one specific model unit cell. In

practice, however, the limited accuracy of determining the

centroids of autocorrelation peaks, small variations in unit-cell

parameters of different crystals and the uncertainty of the

crystal orientation prevent such ideal fits. Therefore, function

approximation needs to be performed, in which a function is

selected that matches a target function as closely as possible.

The ‘squared difference function’ is used to calculate the

least-squares error of fitting two facets. If we assume that p0

and p1 define the two-dimensional vector pair of the observed

facet and q0 and q1 define the simulated facet, then the square

error is defined as

r ¼ jp0 � q0Rj2 þ jp1 � q1Rj2; ð3Þ

where R is the rotation matrix that minimizes r. This function

can be solved analytically for R, thus speeding up its compu-

tation. In order to improve accuracy, but at the expense of

computational speed, multiple vectors of the autocorrelation

image can also be matched.

However, it is not sufficient to accumulate the residual

defined in (3) for all observed facets. We need to take into

account that by choosing an arbitrarily large unit cell

(resulting in a very dense modelled reciprocal lattice) this

residual can be decreased at will. We tested several weighting

schemes and found that the one which most consistently

produces good unit cells was

r ¼ jp0 � q0Rj2 � jhq0j
2
þ jp1 � q1Rj2 � jh2

q1j; ð4Þ

where the weighting factors hq0 and hq1 are the integral indices

of the vectors (h, k, l) of q0 and q1 of the simulated facet. For

instance, the indices q0 and q1 of a facet might be {[0, 1, 1],

[1, 0, 0]}, in which case |hq0|2 would be 2 and |hq1|2 would be 1.

If a simulated dense lattice oversamples the observed lattice N

times, the r value in (3) is statistically 1/N2 smaller, whereas the

length of the indices vector of the fitted facet is N times larger,

so the weighting factor of the square of indices length in (4)

corrects the overfitting problem of oversampling.

3. Results

3.1. Unit-cell determination of mayenite from electron
diffraction data

The algorithm was tested on randomly oriented electron

diffraction data from mayenite (Ca12Al14O33), a cubic in-

organic mineral (Fig. 3). Our algorithm suggested a unit-cell

parameter of 11.9 Å, which is in line with a reported value

from the literature of 11.98 Å (Boysen et al., 2007). We could

index the diffraction patterns of certain zones satisfactory

(Fig. 3), with r.m.s.d.s between observed and predicted spot

positions of about 0.5%. We considered data from eight

diffractograms in this analysis. In order to test the accuracy of

our method and the potential for false minima, we performed

a fine-grid search (Fig. 3b). Here, we found a broader second

minimum around 17 Å. This is, within a few percent, a factor

of 21/2 times larger than the known unit cell of about 12 Å and

hence represents an oversampling of exactly the same lattice.

3.2. Unit-cell determination of potassium penicillin G and
sodium oxacillin from electron diffraction data

Electron diffraction data of potassium penicillin G

(C16H17KN2O4S) and sodium oxacillin (C19H18N3NaO5S.H2O)

were analysed using our new algorithm. The unit-cell para-

meters that our algorithm suggested are given in Table 1,

together with X-ray diffraction data taken from the literature

(Dexter & van der Veen, 1978; Gibon et al., 1988). On the basis

of these unit cells, we could index two main zones

(001) and (011) in the case of potassium penicillin G using

the program PhIDO (Calidris, Solentuna, Sweden;

http://www.calidris-em.com; see Fig. 4). We considered data

from 13 diffractograms for potassium penicillin G and 11 for

sodium oxacillin in the analysis.

3.3. Unit-cell determination of orthogonal lysozyme

In the case of orthogonal nanocrystals of hen egg-white

lysozyme, our algorithm did not produce a unit cell that was

known from the literature (Saijo et al., 2005; Biswal et al., 2000;

see Fig. 1 for an example of a diffractogram and corresponding

autocorrelation pattern and Table 2 for reported unit cells and

the unit cell determined by our algorithm). For this calculation

we used 19 different crystals. The crystals adopt preferred

orientations on the EM grid and hence we also collected

diffractograms at various random tilt angles to obtain more
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Figure 4
(a) Crystals of potassium penicillin G (scale bar: 2 mm). (b–e) Electron diffraction patterns and corresponding autocorrelation patterns of potassium
penicillin G from two main crystallographic zones. Crosses indicate the centroids of peaks in the autocorrelation image; circles indicate the predicted
peak positions. The root-mean-square deviation (r.m.s.d.) of the experimental and simulated patterns for the different zones (diffraction patterns) is
between 0.6% and 1.7%.



samplings of spacings that preferred to point in the direction

normal to the EM grid. Overweighting crystals with such rare

orientations made the cell determination more robust, but in

general very similar results were obtained if we did not include

this weighting. We do not exclude the possibility that the

nanocrystals of lysozyme correspond to a new polymorph, but

it may also be that the algorithm for some reason produces a

large error of up to around 4% for large unit cells. Table 2

gives an overview of the unit cells of some known polymorphs

of lysozyme, together with the unit cell

produced by our new algorithm.

4. Discussion and conclusions

Our new algorithm for unit-cell deter-

mination is independent of knowledge

about the angular relationship between

experimentally determined diffraction

patterns. It does assume that all diffraction patterns share a

similar three-dimensional lattice. Because it can deal with a

limited number of outliers, it is fairly robust. Because our

algorithm uses autocorrelation patterns rather than the

original data, precise knowledge of the position of the beam

centre is not required, as autocorrelation patterns are always

centred by definition. Using autocorrelation patterns for unit-

cell determination would fail at higher diffraction angles, but

since the wavelength of the electrons used (approximately

0.013 Å) was two to three orders of magnitude smaller than

the highest resolutions we used for our analyses (between 1

and 4 Å), this did not impose any serious problems in practice.

For the small-molecule crystals, which belonged to ortho-

rhombic or cubic space groups and hence had three or less

degrees of freedom in their unit-cell parameters, the algorithm

performed well, reproducing literature values within a few

percent. We do not expect a higher level of accuracy, as the

method is based on the low-resolution spacings. In a subse-

quent indexing and unit-cell refinement step, which will use

the original diffraction pattern, we assume that these small

errors can be reduced.
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Figure 5
(a) Diffraction pattern from a lysozyme nanocrystal. (b) Lattice indexing performed with ELD, using the unit-cell parameters for lysozyme obtained
using the algorithm described here. The directions of the shortest reciprocal spacings, given in blue and red [corresponding to the (100) and (011) axes,
respectively] are indicated.

Table 2
Representative unit-cell parameters of orthorhombic hen egg-white
lysozyme determined by single X-ray diffraction (first three entries) and
electron diffraction of single nanocrystals from a powder sample using the
new algorithm.

Method a (Å) b (Å) c (Å) � = � = � (�)

X-ray diffraction 1 (PDB code 1wtm) 30.43 56.44 73.73 90
X-ray diffraction 2 (PDB code 1jj1) 30.56 58.99 68.26 90
X-ray diffraction 3 (PDB code 1f10) 30.58 55.86 68.58 90
Electron diffraction 31.5 52.5 89 90

Table 1
Unit-cell parameters of potassium penicillin G determined by single-crystal X-ray diffraction and
electron diffraction of single nanocrystals from a powder sample using our algorithm.

Sample Method a (Å) b (Å) c (Å) � = � = � (�)

Potassium penicillin G X-ray diffraction (literature) 6.342 9.303 30.015 90
Potassium penicillin G Electron diffraction 6.4 9.3 31 90
Sodium oxacillin X-ray diffraction (literature) 7.342 10.303 26.7 90
Sodium oxacillin Electron diffraction 7.3 10.1 27 90



Somewhat surprising was the unit cell we found for

orthorhombic lysozyme, which had a significantly shorter b

axis and a significantly longer c axis than the unit cells

reported in the literature. The unit-cell volume of the largest

known orthorhombic polymorph of hen egg-white lysozyme

was about 13% smaller than that of our nanocrystals (Table 2).

Unfortunately, our nanocrystals could not be grown to a larger

size. Hence, we could not corroborate the new unit cell by

X-ray analysis and in the absence of independent proof we

cannot exclude the possibility that our algorithm failed to

identify the correct unit cell of nanocrystalline lysozyme. It

may be that the combination of randomly oriented diffraction

patterns, a relatively large unit cell and a potentially aniso-

tropic rocking curve frustrates our algorithm and we are

further investigating potential improvements. However, using

the large unit cell, we were able to index well aligned

diffraction patterns using the program ELD (Zou et al., 1993),

yet we failed to index these patterns if we used the unit cells of

known orthorhombic polymorphs of hen egg-white lysozyme

(Fig. 5). Furthermore, all the known unit cells of lysozyme

gave considerably worse residuals as defined by (4) and

therefore were not supported by our experimental data. In this

light, we propose that the nanocrystals are a new polymorph

of lysozyme that was induced by the heterogeneous nucleation

on human hair as described in Georgieva et al. (2007).

How many diffractograms are needed to estimate the unit

cell? There is not a straightforward answer to this question,

but in general it is better to include as many data in the

analysis as possible. If the crystals have a favoured orientation

on the grid (as the lysozyme crystals did), then it is important

to collect tilted data, as otherwise the possibility exists that

one of the spacings is not observed. However, there are also

other issues that influence the robustness of our algorithm, for

instance the symmetry of the unit cell (higher symmetry gives

better results) or peculiarities of a specific combination of

unit-cell parameters: if, for instance, in an orthorhombic unit

cell the (100) and (021) directions have similar lengths,

indexing may become confused.

With our new algorithm we have made progress in enabling

structure determination by electron diffraction of beam-

sensitive three-dimensional nanocrystals. Subsequent steps

involve testing our algorithm on lower symmetry space groups

(monoclinic and triclinic), refining the unit-cell parameters,

indexing the electron diffraction patterns, integrating the

diffraction intensities, merging the data and phasing. How-

ever, these subsequent steps crucially depend on knowledge of

the unit cell and in many cases we can use algorithms and

programs developed for X-ray crystallography.
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