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Abstract

Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli
(cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key
computational question is how incentive salience is generated during a cue re-encounter, which combines both learning
and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for
stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are
also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional
motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs
during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue
value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the
associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and
addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically
raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new
computational model that modulates incentive salience by integrating changing physiological states with prior learning. We
support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in
cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for
a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations
in cue-triggered ‘wanting’ only by incorporating modulation of previously learned values by natural appetite and addiction-
related states.
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Introduction

Incentive salience [1,2] is a mechanism to explain motivational

values of specific learned stimuli (Pavlovian conditioned stimuli)

and associated natural rewards (unconditioned stimuli) in humans

and animals [3–5]. The incentive salience framework postulates a

fundamental dissociation in brain mechanisms between reward

‘liking’ and reward ‘wanting’. ‘Liking’ is the hedonic impact or

pleasure associated with the receipt of an immediate reward while

‘wanting’ is incentive salience itself: a motivational magnet quality

that makes the conditioned or unconditioned stimulus a desirable

and attractive goal [6,7]. Psychological incentive salience is

actively attributed by brain systems to a sensory stimulus,

transforming it from a mere sensory representation into a ‘wanted’

and attractive incentive capable of grabbing attention and

motivating approach, seeking and consumption behaviors. Al-

though nonhedonic, unlike ‘liking’, which reflects the pleasure or

hedonic impact of the stimulus, incentive salience (‘wanting’) is still

motivational.

The incentive salience of a cue is established by learning

Pavlovian S-S associations between a cue (conditioned stimulus or

CS) and its reward (unconditioned stimulus or UCS). However,

the incentive salience framework also postulates a difference

between learning and ‘wanting’: especially evident as post-learning

dissociations between the previously learned values of a stimulus

and its motivational value at a later moment [1,2,7–9]. Incentive

salience can dynamically change, being generated afresh each time

the stimulus is re-encountered and incorporating into the

computation a second source of input besides previously-learned

cached values. This second source of input is physiological state,

which includes natural hunger or thirst appetite and satiety states,

drug-induced states such as intoxication priming, withdrawal and

permanent sensitization, and states of brain mesocorticolimbic

systems (often involving dopamine) translate these physiological

states into motivation. In this paper we focus on the dynamic

nature of this interaction between learned and physiological inputs

that combine to modulate motivation.

Importantly, physiological modulation of cue-triggered incen-

tive salience can occur immediately when a state changes, without

necessarily any need for additional learning. The most convincing

example occurs when a never-before experienced physiological

state, such as a specific appetite, modulates cue-triggered

motivation appropriately for a previously learned Pavlovian cue

[2,3,9–14]. Natural specific appetites, such as salt appetite,

dynamically and appropriately modulate incentive salience or

‘wanting’ triggered by their own reward cues. Conditioned stimuli

associated with salt, food, or drink rewards [3,5] are thus

modulated in incentive salience value (in parallel with the
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alliesthesia modulation of the hedonic value of their UCS rewards,

but perhaps even more strongly [15]).

The underlying physiological mechanism of incentive salience is

postulated to involve mesocorticolimbic brain systems that involve

dopamine activation [2]. The relationship to brain dopamine

states makes incentive salience vulnerable to enhancement by

psychostimulant drugs that activate dopamine systems. Enduring

neural sensitization of dopamine-related mesolimbic systems

induced by repeated exposures to drugs is the basis for the

incentive-sensitization theory of drug addiction [7]. Sensitization

of dopamine-related systems by binging on drugs such as heroin

and cocaine is thought to produce long-lasting hyper-excitability of

the brain’s mesocorticolimbic system and to result in compulsive

‘wanting’ to take drugs and in cue-triggered relapse. Sensitized

‘wanting’ may effectively trigger relapse even when addicts may

not derive much pleasure from the drugs, nor expect to derive

much pleasure, and even long after the addict is free of withdrawal

symptoms.

One implication of the dependence of incentive salience on both

previously-learned Pavlovian associations and the current physi-

ological state is that the motivation values of learned cues may

vary from what was previously learned. The incentive value of a

cue will equal the learned value if and only if the physiological state

during testing is similar to the state during learning. When

physiological states shift, the motivational value may be trans-

formed from the learned value, either up or down, even if the cue

and reward have not yet been experienced in the new state. The

new ‘wanting’ value is revealed when the cue is re-encountered

again. Thus, incentive salience maps onto decision utility triggered

by a reward cue. This decision utility can be changed by shifts of

physiological state without necessarily changing either the

remembered utility of the reward previously associated with that

cue, the predicted utility of expected future rewards, or the hedonic

experienced utility of those rewards when eventually consumed

[2,9,16].

The distinction between decision utility and remembered/

predicted utility places a firewall between motivation and learning

that protects the integrity of learned values. Cached values for

Pavlovian associations do not need to be rewritten in order to

explain changes in incentive salience. Further, cognitive predic-

tions of future value need not be distorted by fluctuating appetite

states.

At the same time, the firewall allows the incentive salience of the

same Pavlovian cues to be more labile, and to change more in

lockstep with relevant physiological shifts [17,18]. A consequence

is that an individual can have a change in ‘wanting’ without

necessarily changing expectations of future liking, as well as

without changing actual ‘liking’ of the reward when it occurs.

Thus, incentive salience may sometimes be magnified to the point

that produces ‘irrational wants’ where decision utility is strongly

elevated over the concomitant predicted utility. This mismatch can

have a dire outcome, such as when drug addicts who have

unwittingly caused mesolimbic sensitization in their own brains

may persist irrationally in cue-triggered pulses of ‘wanting’ to take

drugs, even when they recognize cognitively that the drug may not

be very pleasant, not worth the costs, and they wish to abstain [7–

9]. Such elevations in ‘wanting’ can occur without necessarily any

fluctuation in learned associations or in cognitive predictions of

reward value.

Incentive salience and dopamine prediction error models
of reward learning

Incentive salience is essentially a Pavlovian motivational

response: it takes Pavlovian associations as its learned input.

Potential differences between cached valence and motivation

values for Pavlovian cues have been previously noted by

computational modelers and learning theorists [14,18–22]. For

example, Dayan and Balleine noted that, ‘‘Pavlovian CRs are …

directly sensitive to the level of motivation of the subjects, such as

whether or not they are hungry. This motivational or affective

control argues against simple realizations of the critic in which

there is one set of weights or parameters (whatever their neural

realization) mapping from stimulus representations (i.e., units

whose activities are determined by the stimuli shown to the

subject) to the values’’ (p. 288, [14]).

Here we aim to account for such motivation variations by

identifying incentive salience computations that dynamically

determine Pavlovian motivation value. These computations must

integrate Pavlovian learned inputs with the status of the brain

mesolimbic mechanisms that reflect current physiological states

(hungers, drug intoxication, sensitization, etc.).

To see the difference between the vantage points of incentive

salience compared to reward learning, it may be helpful to review

how cached values are established in contemporary reinforcement

learning models. For example, the temporal-difference (TD)

method provides an explicit ‘‘model-free’’ formula for estimating

expected reward. It is model-free in the sense that it does not

involve an internal model or cognitive map of the world, but

depends only on cached experiences and the accumulated state for

estimating the value function. The estimate is based on summed

values from reward prediction errors – the discrepancy between

the reward expected from a stimulus (technically, a state) and the

reward actually received [20,23–29]. One influential neurobio-

logical view identifies the predictive error signal, which lies at the

core of temporal difference learning, with the firing of dopami-

nergic neurons projecting to the nucleus accumbens and

neostriatum [30,31] (though this notion is not without controversy

regarding the causal role of dopamine systems in generating

prediction errors and value estimates [2,32]). The actor-critic

architecture, along with the TD-based learning rule, carries great

computational power. It provides, at least theoretically, a

consistent and effective scheme to solve the so-called ‘‘dynamic

programming’’ problem [33] concerning optimization for sequen-

Author Summary

Reward cues are potent triggers of desires, ranging from
normal appetites to compulsive addictions. Food cues may
trigger a sudden desire to eat before lunch, and drug cues
may trigger even a ‘recovered addict’ to relapse again into
drug taking. But learned cues are not constant in their
motivating power. Food cues are more potent when you
are hungry, and drug cues may become overwhelmingly
potent to an addict who tries to take ‘just one’ drink or hit,
precipitating an escalating binge of further relapse. These
changes in cue-triggered desire produced by a change in
biological state present a challenge to many current
computational models of motivation. Such modulation can
even be unlearned (though the modulation interacts with
cues acquired through learning), in that the modulation
instantly follows a physiological or neurobiological change
(hunger, drug hit, etc.), altering the cue’s ability to trigger
desire for a relevant reward. Here we demonstrate
concrete examples of instant modulation and propose
how to build computational models of cue-triggered
‘wanting’ to better capture the dynamic interaction
between learning and physiology that controls the
incentive salience mechanism of motivation for rewards.

Computational Model of Incentive Salience
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tial decision-making under a stationary Markov environment,

without the need of an elaborate model of the world (i.e., how

states unfold successively and how one’s actions affect such state-

transition) [27,31,34–36].

The TD error model also has been applied to incentive salience

[26]. A first step was taken by McClure, Daw and Montague, who

used the concept of prediction error-driven learning, and equated

cue-triggered ‘wanting’ with the cached Pavlovian learned value

acquired by the TD method [26]. Their model postulated

incentive salience to function as a cached, cumulative reward

value, which, if a reward was suddenly revalued, could be changed

only by further relearning about a new prediction error by re-

encountering the UCS. They suggested that ‘‘the role of dopamine

in learning to attribute such expectations to situations that are

predictive of reward and in biasing action selection towards such

situations as the formal counterpart to the ideas of Berridge and

Robinson about the role of dopamine in attributing and using

incentive salience.’’ p. 425, [26]. While a useful contribution that

exploited the TD model’s strengths to capture trial-by-trial

‘reboosting’ of ‘wanting’, we believe it is only an initial step

towards modeling incentive salience.

Despite the computational success of actor-critic architecture,

several theorists have suggested, as noted above and consistent

with our view here, that additional mechanisms must be added to

explain emerging psychological and neurobiological data and to

account for motivation because the simple form of actor-critic

architecture produces a rigidly incremental cached value of

prediction [14,37,38]. One solution to account for immediate

state-based changes in behavior has been to posit that dopamine

also modulates the ‘‘vigor’’ of all responses in a general fashion

[37,38]. Additionally, uncertainty or generalization decrements

after a state change has been suggested to explain some reduction

in behavioral responses, at least for changes that devalue a reward

downwards [39]. Another alternative solution is to sidestep the

model-free cached limitations and add an entirely separate model-

based (e.g., cortically-embedded) mechanism for reward prediction

in the form of a model-based or tree-search system that explicitly

represents the world as a cognitive ‘‘state space’’. Such a cognitive

model includes goal values and act-outcome (A-O) relationships,

and which can adjust instrumental behavior more flexibly, at least

once a new goal value is known by experience [14,17,18,21,22,39–

41].

Still, cue-triggered ‘wanting’ differs from all the above, and we

believe may more accurately capture the chief motivation function

of brain mesocorticolimbic systems. The re-computations of the

incentive salience for a Pavlovian CS may in some cases be carried

out in a highly dynamic, stimulus-specific and stimulus-bound

fashion, as will be described below. This is possible because of

Bindra-Toates rules of Pavlovian motivation that underlie

incentive salience [3–5]. Those rules are distinct from both cached

TD values and model-based cognitive predictions.

Cached values and model-based predictions of reward both

often assume that a reward will be about as good in the future as it

was in the past [14,22,26,40]. Robust computational theories exist

for those cached model-free values and cognitive model-based

systems, but not yet for Bindra-Toates computations of incentive

salience. A similar sentiment was recently expressed by Dayan and

Niv, ‘‘Unfortunately, the sophisticated behavioral and neural

analyses of model-free and model-based instrumental values are

not paralleled, as of yet, by an equivalently worked-out theory for

the construction of Pavlovian values.’’ (p. 191) [22].

Our goal here is to take a small step towards a better

computational theory for Pavlovian-guided generation of incentive

salience. Specifically, we aim for a model able to compute cue-

triggered ‘wanting’ even for novel physiological modulations that

occur before there is an opportunity for relearning the altered

reward. We also aim for a model that can account for ‘irrational

wanting’ in addictions; that is, for excessively ‘wanting’ a reward

even when knowing its future value to not deserve intense

motivation.

Consistent with contemporary views, we believe that multiple

reward-related learning processes exist within a single brain,

mediated by separable brain systems [7,14,17,18,21,22,38–40,42–

45]. We presume these reward learning-motivation mechanisms

occur in parallel as three separable processes (S-S Pavlovian-

guided incentive salience, S-R cached habits, and model-based

cognitive expectations). Our model is meant to capture only

incentive salience transformations, which takes Pavlovian CS-UCS

associations involving rewards as the primary learned input for

Bindra-Toates modulations.

Incentive salience and dynamic shifts of value
Our view of incentive salience calls for the dynamic computa-

tion of ‘‘incentive value’’ of a conditioned or unconditioned

stimulus, where (a) the CS stimulus has previously been associated

with the relevant UCS; and (b) the value is gain-controlled

moment to moment by fluctuations in relevant physiological states

(including neurobiological states of brain mesocorticolimbic

systems).

Recall that in reinforcement learning, the expected total future

discounted reward (or simply average reward value) V associated

with a state s (i.e., the conditioned stimulus) is

V (st)~S
X
i~0

cirtziT~SrtTzcSrtz1Tzc2Srtz2Tz � � � , ð1Þ

where c[½0,1) is the discount factor, rt, rt+1, rt+2 …, representing the

sequence of primary rewards starting from the current state

(subscripted t), and the expectation Æ?æ is taken over possible

randomness in environmental state transition and reward delivery

(the bracket sign around primary reward values will be omitted

below for clarity). The estimated value of reward prediction V̂V
(denoted with a hat) is a value gradually acquired by the agent

through temporal difference learning over a series of experiences

in which the predictive CS and UCS reward are paired. The

acquisition of reward estimate V̂V is based on computing a

prediction error d correcting any experienced deviation from

consistent successive predictions:

dt~rtzcV̂V (stz1){V̂V (st) ð2Þ

and then updating V̂V according to dV̂V (st)!dt. The value function

V is essentially an incrementally-learned associative prediction of

each state. As mentioned, one previous computational proposal for

incentive salience equated this value function V, defined by Eqn

(1), with the motivational concept of CS incentive salience [26],

and gradually altered motivational value by increments in V in

each trial produced by prediction error at the moment when

reward UCS was received, via the temporal difference error

variable d, defined by Eqn (2). The TD error d was identified with

the ‘‘reboosting’’ process of a CS posited by the incentive salience

hypothesis to occur at the moment of UCS [1,46]. Reboosting was

a concept added a decade earlier by the original incentive salience

proposals to account for the gradual decrement effects on

rewarded behavior produced by administering neuroleptic drugs

that partially blocked dopamine receptors (anhedonia-like effects

or extinction mimicry) [47]. In such a conceptualization, the

Computational Model of Incentive Salience

PLoS Computational Biology | www.ploscompbiol.org 3 July 2009 | Volume 5 | Issue 7 | e1000437



incentive salience of a stimulus is essentially the accumulated

reinforcement value of such a conditioned stimulus acquired

through TD prediction-error learning.

Methods

Ethics statement
All animal work was conducted according to relevant University

of Michigan, NIH, national and international guidelines.

A computational model for incentive salience: k factor
for dynamic physiological shifts

We suggest additionally that a model of incentive salience

should also incorporate dynamic physiological modulation by

current states to capture more sudden changes in CS motivational

value, such as in specific appetites or drug enhancement of

‘wanting’, which do not proceed by gradual reboosting via UCS

prediction errors [1,2,48,49]. In these conditions, a CS’s

motivationally-transformed incentive salience value may dramat-

ically diverge from cache-generated predictions of reward [10,12–

14,40,44,50]. In at least some cases these physiological revisions of

value can occur without any need of relearning about the change

in UCS hedonic impact to revise CS-UCS predictions, yet still be

so powerful as to completely reverse the incentive value of a CS.

In the following, we will first propose a model for incentive

salience that can incorporate dynamic modulation of cue-triggered

‘wanting’ by even novel physiological states. Next, we will show

how such a model maps onto empirical evidence for dynamic

modulation in examples of natural appetite, amphetamine

intoxication, and addiction-related sensitization.

To describe our model of incentive salience more precisely, here

we propose that, respecting the difference between motivation and

learning, incentive salience computations incorporate a physiological factor k
that modulates the value of a CS associated with a relevant UCS (which carries

a reward value of rt). The k factor reflects current physiological state

(hungers, satieties, drug states, etc.). The role of k is to allow

incentive salience of an associated CS to be dynamically

modulated by physiological factors relevant to future rewards

(e.g., hungers, satiety, drug intoxication, mesolimbic sensitization,

etc.).

Model
We suggest that the incentive salience or motivational value

~VV (st) of the current state in the presence of a reward CS is

~VV (st)~~rr(rt,k)zcV (stz1) ð3Þ

Equation (3) represents a generic model for incorporating the

motivation factor k which modulates the learned representation of

primary reward and hence the notion of incentive salience, where

k is a positive constant that varies with behavioral state. Here ~rr(:,:)
is a generic two variable function which, in the following

discussions, will be specialized to either of two forms (sub-types),

as described below.

~rr(rt,k)~krt ð3aÞ

~rr(rt,k)~rtzlog k ð3bÞ

Below, we refer to k as the ‘‘gating parameter’’ for incentive

computations involving physiological manipulations for a previ-

ously learned CS (e.g. hunger, thirst, salt appetite, etc.), with k,1

representing devaluation (such as satiation), and k.1 representing

enhancement (such as appetite or sensitization). When k = 1 our

model reduces to the conventional temporal difference model; that

is, when physiological state remains constant across training and

test.

When physiological state changes from training to test, one of the

two special versions of Equation 3 will apply, and which of the two is

most appropriate will depend on the situation (Figure 1). Equation

(3a) describes a specific subtype in the form of a multiplicative

mechanism, appropriate for most situations where motivation

changes from low to high or vice versa without changing valence —

reward is manipulated between 0 and a positive value, changing

incentive salience from neutral to ‘wanted’ (or from ‘wanted’ to

neutral). In these cases, k is a gain-control factor that scales up (i.e.,

magnifies, when k.1) or down (i.e., shrinks, when k,1) the

incentive salience of the reward.

Equation (3b) describes another subtype in the form of an

additive mechanism, appropriate for other situations where

incentive value not only changes but reverses valence between

positive and negative — this can additionally account for any

special cases in which a reward value changes polarity from

positive to negative or from negative to positive. In those cases, the

logk term moves the baseline of the incentive salience value, which

can be shifted either up (i.e., increases ‘wanting’, k.1) or down

(i.e., decrease ‘wanting’, k,1). This allows polarity reversal from a

negative value to a positive value (with k much larger than 1), or

vice versa (with k closer to 0).

The reason why we include both an additive and a

multiplicative version of modulation in Equation (3) is to more

sensibly achieve real-life reversals than can be accomplished in a

purely multiplicative model by simply changing the k valence

polarity to negative. This is because merely changing polarity in a

multiplicative Equation (3a) would invert the rank order when

multiple reward stimuli in the same family were involved (e.g. 3

concentrations of salt). That would revalue the respective order of

the series in ways that might be unrealistic. For example, reversing

valence in a multiplicative model would cause the reward that was

originally most highly liked and ‘wanted’ of all to become the most

highly disliked or repulsive after devaluation of all; an interme-

diately liked reward would become intermediately disliked, while a

nearly neutral reward stimulus would remain nearly neutral after

polarity reversal. Such re-ordering fails to describe what happens

in empirical cases of valence reversal, where the originally most

liked reward may often still remain the best of a bad lot, becoming

the least disliked as a physiological manipulation changes the

valence of the entire group.

By contrast, an additive model as expressed in Equation (3b),

allows the ‘best’ stimulus to remain best relative to the others, even

if their absolute values may switch valence (i.e., all shift across

zero). Specific candidates for polarity reversal include reversals in

reward values from nasty to nice, such as described below where

an intensely salty taste reward is re-encountered during a salt

appetite, or from nice to nasty such as after taste-aversion

devaluation [10,50–52] (Figure 1). Polarity reversal would

similarly encompass cases in which motivational salience changes

valence between desire and dread [53,54].

We remark in passing that we use logk instead of k for the

additive Eqn (3b) simply to have the same parametric represen-

tation in the additive case as the multiplicative case. Also note that

we only consider additive and multiplicative mechanisms which

together generate the group of (positive) affine transformations on

reward values (this is the class of transformation that keeps the

optimal policy invariant [55]).

Computational Model of Incentive Salience
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From Eqns (3) and (1), and assuming a multiplicative

mechanism, the incentive value ~VV is related to the average reward

V (i.e., total reward including current and all future-discounted

rewards) via

~VV (st)~krtzc
X
i~0

cirtz1zi

 !
ð4Þ

In essence, Eqn. (4) is an expression of what is known as the

‘‘quasi-hyperbolic’’ discounting model encountered in economics

literature [56,57]. The proposal here exploits the two parameters

in the quasi-hyperbolic discount model format and is the basis of

our current postulate of a gain-control mechanism to implement

incentive salience computations, in a manner that can be sensitive

to inter-temporal comparisons of values when such comparisons

play important roles [58], cf. [59]. In simple terms, our model of

incentive salience ~VV (st) reduces to V (st) in the absence of

devaluation/sensitization manipulation (k = 1). The modulatory

factor k is assumed to be independently controlled by the

geometric temporal discounting under c, though it is possible that

such changes can be coupled. For example, sensitization or an

increased physiological appetitive state (k becomes greater than 1)

might lead to a decrease in the temporal horizon c [60], producing

sharper temporal discounting effects, such that motivational value

increases with degree of temporal proximity to reward UCS [61].

Note that the incentive value of a state st is the motivationally-

modulated value ~rr of the immediate reward rt plus the discounted

value of the expected reward in the next state st+1; both these are

loaded into the goal representation as st is presented.

Shielding learned values from physiological

modulation. One reason for our current model to treat k as

a multiplicative or additive parameter is that we wish to strongly

distinguish incentive salience as a motivation value which

integrates learning and physiological inputs from the stable,

purely-learned and cached value V per se (or for that matter even

Q value). Both V and Q require learning to establish, become

cached once learned, and as stable memory values both are

shielded from moment-to-moment modulation by an animal’s

motivational state. By contrast, incentive salience is modeled here

with the feature of being able to globally modulate the on-line

evaluation of previously-learned values of a primary reward

evoked by a CS.

Specific k’s determine what to ‘want’. It is important to

note we conceive k to be specific to a particular appetite state and

to its own relevant UCS reward and CSs. There can be different

values of k at any given time for different CSs that are associated

with different reward UCSs (food, salt, water, sex etc.). This

specificity includes specific natural appetites, such as salt, hunger,

thirst, etc; as well as mesolimbic sensitization involved in drug

addiction. Each appetitive system would specifically modulate the

Figure 1. Simulations of dynamic shifts in incentive salience. All are induced by changes in physiological state after learning a CS-UCS
association in an initial state (Eqn 3). The left column is for multiplicative mechanisms (Eqn 3a), while the right column is for additive mechanisms
(Eqn 3b). The top row is for shifts after learning a Pavlovian association with a reward UCS (e.g., sucrose taste), and the bottom row is for shifts after
learning with an aversive UCS (e.g., intense salt taste). Initial learning is assumed to proceed by a Rescorla-Wagner type of rule initially [20]
(t = 0,1,…,10) as described by the equation V(t) = A (12exp (2t/t)), with asymptote A = 1.3 for appetitive reward and A = 21.3 for aversive reward, and
the time constant t= 3. At time step t = 11, a new motivation manipulation is introduced, such as by a shift in a physiological state relevant to the
reward. The change in incentive salience occurs as indicated by the arrows, either multiplicatively (V*k) or additively (V+log k), where k (for illustrative
purpose) takes the values 5,4,2,1, 0.7, 0.2, 0.1. See Eqn (3a,3b) of the manuscript. Colored lines in the upper-left panel describes Experiment 2 (drug
sensitization and acute amphetamine administration), while the lower-right panel depicts Experiment 1 (salt appetite). Note that additive modulation
can reverse reward valence, while multiplicative modulation maintains the original reward valence and changes only magnitude.
doi:10.1371/journal.pcbi.1000437.g001
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values of its own UCS array (e.g., salt is the UCS reward for salt

appetite) and simultaneously modulate most powerfully specific

CSs associated with its UCSs. This specificity of k modulation

gives a basis for why drug addicts mostly ‘want’ drugs, binge eaters

mostly ‘want’ food, sodium deficient individuals mostly ‘want’ salt,

and so on. Still, under some conditions, incentive salience may spill

over from one appetite state to modulate CSs for another appetite

state. For example, some cocaine addicts may also show a degree

of hyper-sexuality, compulsive gamblers may show other

addictions, and drug sensitization may sometimes enhance the

motivational value of natural rewards (see below).

In sum, we propose that the computational substrate for

incentive salience must instantiate 1) k, an online gain or baseline

control (collectively called ‘‘gating’’) mechanism that can be

dynamically modulated by changes in physiological or neurobio-

logical states to target motivation towards a relevant CS along with

2) possible adjustment of the temporal horizon c for evaluating

stored prediction values. Both substrates are assumed to be

adjustable from moment to moment by physiological states,

without necessarily requiring new (re)learning.

Neural bases for incentive salience in mesocorticolimbic
circuits

The incentive salience hypothesis specifically proposes that

Pavlovian-guided attribution of incentive salience is mediated

principally via subcortically-weighted NAcc-related circuitry

involving dopamine neurotransmission, which pass signals through

the ventral pallidum. These circuits include input from mesolimbic

dopamine projections from ventral tegmentum and substantia

nigra to the nucleus accumbens, ventral pallidum, and amygdala;

and output projections from nucleus accumbens that converge

through ventral pallidum [62–64]. From ventral pallidum these

signals then pass to a thalamic relay for return to mesocortico-

limbic loops, or directly descend to other subcortical outputs

[62,65,66]. In addition to receiving mesolimbic outputs, dopamine

projections from VTA also ascend directly to ventral pallidum

[67,68]. Thus the incentive salience hypothesis views incentive

salience or ‘wanting’ to be influenced by dopamine-related

modulations of function within this circuit, the output of which

passes through ventral pallidum as a limbic ‘final common path’.

The computational approach suggested here can therefore be

tested empirically by measuring neural signals carrying incentive

salience in the final common path through ventral pallidum, in

experiments which manipulate NAcc-related circuitry via changes

in natural appetite states (hungers, satieties) or via addictive drugs

(drug administration; long-term drug sensitization).

Results

Empirical tests: natural appetites and addictive drugs
To illustrate our proposal about the computation of incentive

salience, we now draw on two types of experiments designed to

expose dynamic physiological modulation of cue-triggered ‘want-

ing’, as posited in equation (3). The first experiment uses the

natural motivation state of salt appetite to change the incentive

salience of a salt CS. The second experiment uses a dopamine-

stimulating drug amphetamine and/or enduring drug-induced

sensitization to activate mesolimbic NAcc-related systems and

change the incentive salience of a sucrose CS.

Test 1: natural appetite states dynamically elevate CS

‘wanting’. The natural homeostatic state of salt appetite is

especially useful for probing dynamic shifts in incentive value

because this natural appetite can be introduced as a novel

experimental state. Novelty is enabled because sodium deficiency

is almost never experienced by laboratory animals or modern

humans who eat diets that contain plenty of sodium chloride. Salt

appetite emerges only in physiological states when sodium is

depleted from the body (e.g., caused by drugs or by subsistence on

a very low-sodium diet). Salt appetite causes intense elevation in

both salt ‘wanting’ and salt ‘liking’ [51,69]. At the same time, a CS

(a sound, sight or a sour or bitter taste) previously associated with

the salty taste also is dynamically revised from negative to positive

in both incentive salience value and hedonic value [10–12,50,70].

We set a strict criterion for what must occur if those signals

constitute a dynamic enhancement of incentive salience: neural

signals for CS value in ventral pallidum signals must dynamically

and selectively rise to a salt CS on its first ever presentation in a

sodium appetite state, even prior to re-tasting salt itself in the new

state. A neurobiological experiment in our lab was designed to test

the incentive salience hypothesis as modeled by Eqn (3) [12]. In it,

rats in a normal state were trained to associate a particular

auditory tone CS with unpleasantly-intense salt solution as UCS

(triple the saltiness of sea-water), and a different CS with a pleasant

sucrose solution as UCS; a third control CS meant nothing [12].

Neuronal firing was recorded in the rat’s ventral pallidum during

training. Only the CS for sucrose elicited high levels of firing.

Then a physiological state of sodium depletion was induced

overnight by injections of hormone-stimulating drugs (DOCA and

furosemide) to induce a relatively sudden salt appetite. The rats

had never experienced salt appetite before so the physiological

state was new to them, and they were not allowed to taste any salt

again until after the CS tests. In the new state, the CS tones were

each presented a number of times by themselves, while

mesocorticolimbic neural activations in their ventral pallidum

were recorded. The CSs were presented by themselves (in

extinction) so that no new experiences of the UCS tastes could

influence the computation of CS incentive values.

The crucial observation in the electrophysiological results was

that in the new salt appetite state, the salt CS now elicited a high

level of firing that was equal to or even higher than the sucrose CS

in the salt appetite state [12]. The dynamic elevation in firing

pattern to a salt CS (Figure 2) indicates that the change in

physiological state produced a dynamic elevation of incentive

salience value of the relevant previously-trained CS. This boost in

CS incentive coding was quite specific: it did not apply to a control

CS that predicted nothing, nor did it further boost firing to the CS

for sucrose.

Our additive model (Eqn 3b) can best capture these results,

presuming that the motivation valence of incentive salience

‘wanting’ reverses from negative to positive (similarly to how

hedonic ‘liking’ for intense salt reverses from ‘disliking’ during the

appetite state). The additive model of reward modulation (Eqn 3b)

explains this phenomenon as follows. Unpleasantly-intense salt

originally takes on a negative reward value, and its incentive

salience is ,0. However, under sodium depletion, incentive

salience causes k to take on a value far greater than 1, i.e., log k
can be a large positive value for a salt CS. This should shift the

reward value for salt associations sufficiently upward, so that salt

becomes positive-valued as opposed to negatively valued.

Alternatively, we note that neuronal firing can only change from

low to high or high to low, since a neuron’s firing rate can never go

below zero. Taken at face value, ‘wanting’, if represented linearly

in VP firing, might merely change from zero to high during a

particular state, without reversing valence. ‘Liking’, in contrast,

demonstrably reverses in valence from ‘disliked’ to ‘liked’,

requiring a separate neuronal coding mechanism. If VP firing to

a cue linearly reflected univalent changes in ‘wanting’ primarily,

then our multiplicative model of (Eqn 3a) would suffice to account
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for the dynamic modulation of incentive salience for salt appetite,

as well as for the drug-related cases described below. However, it

seems possible in principle that a univalent neural change might

still encode a bivalent psychological shift in ‘wanting’. Resolving

this translation of univalent neural firing into bivalent psycholog-

ical values is beyond our current scope, though we have discussed

it at greater length in other papers [50,51,71].

We also note that hedonic ‘liking’ as well as incentive salience

‘wanting’ for salt UCS and CS would be enhanced during the

sodium appetite [51,71]. Still, the point of this experiment was to

show that the CS revaluation could occur as predicted by our

model without experiencing the new UCS ‘liking’ or ‘wanting’

values, because rats were not allowed to taste the salt UCS in the

new state until after the crucial test with the CSs.

Is the elevated incentive salience actually translated into

motivated action? Dynamic elevation of appetitive and consum-

matory behaviors may additionally be observed if a CS is provided

that supports a particular action, such as consumption behavior

(Figure 2). For example if a gustatory CS is used in an experiment

similar to above (such as a bitter or sour liquid as CS label, learned

by being mixed with saltiness as UCS), then later the CS for salt

(e.g., pure bitter solution or pure sour solution) by itself is becomes

ingested during a salt appetite state, even if no salt is then available

[10,50,70]. Previous studies in our lab and earlier ones by Fudim,

and by Rescorla and Freberg, showed that rats sought out and

selectively consumed a sour, bitter or other pure CS label that

once was associated with a salt UCS, even if the CS taste solution

was presented by itself without actual salt in the novel appetite test,

and even if the rat had never yet tasted salt during the sodium

depletion state (Figure 2). Such cases illustrate how natural

appetite states can dynamically modulate incentive salience for a

previously learned CS, guiding actions to ‘wanted’ targets, even

before relearning any new information about its UCS.

Effects of addictive drugs and mesolimbic sensitization
on incentive salience

A special case of incentive salience modulation is incentive-

sensitization: this occurs when drugs in the brain sensitize

mesolimbic dopamine-related systems, and similar but temporary

elevation of ‘wanting’ can be produced by directly injecting

amphetamine before a test [8,13,72–74]. We capitalized on these

drug-induced elevations in incentive salience to test the addiction-

related predictions of (Eqn 3a) for enhancing cue-triggered

wanting’ [8].

Test 2: addictive drugs activate and sensitize dopamine-

related ‘wanting’. In studies to tease apart ‘wanting’ from

‘liking’ and from learned predictions of reward, we used a simple,

serial paradigm containing two CSs that predicted a sucrose UCS

[13,75]. This serial CS paradigm helps separate the moment of

maximal learned prediction (triggered by the first CS1) from the

moment of maximal ‘wanting’ (triggered by the second CS2 that is

temporally closer to a terminal sugary reward UCS), from the

moment of maximum ‘liking’ (triggered by the sucrose UCS itself):

thus, the full series was CS1RCS2RUCS (Figure 3).

After training in that serial association, some rats were sensitized

by repeated binge-type doses of amphetamine [13]. Then, after a

Figure 2. Natural salt appetite dynamically enhances incentive salience of a salt CS. Neural coding of CS ‘wanting’ illustrated by firing in
ventral pallidum neurons (A). Ordinarily neurons in ventral pallidum that code CS for rewards fire to onset of an auditory tone CS that previously
predicted infusion of sucrose solution into the rat’s mouth (right column) but not to a CS for intense salt solution (A). A novel salt appetite state
causes the neurons to fire as vigorously to the CS for salt as to the CS for sucrose while responses to sucrose cues persist unchanged (A). From [12].
Translation of enhanced CS incentive salience into action during salt appetite (B). When measured behaviorally, a novel salt appetite state causes rats
to avidly consume a specific solution containing a gustatory CS (bitter or sour) that previously was paired with intense salt. Ordinarily the rats would
not prefer to consume either CS solution [10,50]. In all cases, the rats had not yet retasted actual salt UCS when they showed new ‘wanting’ of the CS.
doi:10.1371/journal.pcbi.1000437.g002
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1-month incubation period that allowed sensitization changes in

brain mesolimbic systems to grow, we recorded neuronal firing in

ventral pallidum to presentations of the CS1, CS2, and UCS

reward stimuli. Those tests were conducted both in the absence

and in the presence of an acute dose of amphetamine, on different

days (see Figure 3 for the experimental design and timeline).

Note that the first CS (i.e., CS1) predicts all following stimuli,

and because of temporal discounting, their magnitude will be in

descending order: V1,V2,r, since UCS (when treated as a point

reward) would be highest right when it is delivered. A pure TD

value-coding model therefore predicts that neuronal coding should

follow the same ordering, with activation to UCS being the largest.

However, according to a pure TD model, the sensitization or

administration of amphetamine should not immediately enhance

cached CS values until after further training (relearning) with

prediction errors from a potentially greater UCS after sensitiza-

tion. Only with relearning (i.e., post-sensitization learning about

surprising UCS) could the temporal difference prediction error

signal d ‘‘reboost’’ incentive salience attributions to the memory

representation of the prior conditioned stimuli. Such reboosting

based purely on associative learning requires re-experiencing the

UCS under the sensitized (or otherwise revalued) condition.

Figure 3. Selective amplification of CS incentive salience (not CS prediction or UCS hedonic impact) by transient amphetamine
intoxication and more permanent drug sensitization. Experimental design of the serial CS1/CS2/UCS procedure, and effects of sensitization
and amphetamine on neuronal firing profiles in ventral pallidum (A). The relative rank-ordering of neuronal responses to CS1/CS2/UCS is defined as
the ‘‘profile’’ of a neuron; it can be represented mathematically as the angle of a vector in a two dimensional space, where the two axes represent two
orthogonal contrasts formed from the three responses (B). The computation is such that this angular value indexing a response profile exists in a
continuum which 1) exhausts all possible firing patterns (i.e., relative orders in firing rates to these three types of stimuli); and 2) guarantees that
nearby values represents similar firing patterns. Temporal difference error-coding implies maximal response to CS1 which has the greatest prediction,
whereas value-coding implies maximal firing to UCS which has the highest hedonic value. By contrast, incentive-coding implies maximal firing to CS2
that has the greatest motivational impact as it immediately precedes the actual reward. The data panel shows firing in control condition contrasted
to the combination of amphetamine plus sensitization (C). The summary arrow panel shows the averaged neuronal response for each group of rats,
illustrating the additive increments produced by sensitization, amphetamine and combination of both (D). Data from [13].
doi:10.1371/journal.pcbi.1000437.g003
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By contrast, our gain-control k model of incentive salience (Eqn

3) posits that any mesolimbic activation by psychostimulant

sensitization or by acute amphetamine administration will

immediately modulate the neuronal coding of a signal that carries

high incentive salience for a previously learned CS. In particular,

with respect to ordering of magnitudes, our model anticipates that

CS2 should receive greater motivational impact than CS1,

because it is closer in time to UCS and therefore most ‘wanted’

among CSs. Higher incentive salience of the CS2 was confirmed

in the experiment by videoanalyses that showed motivated

approach behaviors (nosepokes into the dish that delivered

sucrose) were much higher during the CS2 than the CS1. Our

prediction arises because in the serial Pavlovian conditioning

paradigm, r1 = 0 and r2 = r, and Eqn (3a) indicates that ~VV1~c r,
~VV2~k r. The temporal discount factor c,1 and sensitization

manipulation produces k.1, thus ~VV1v
~VV2.

In other words, because CS2 is the target of greatest incentive

salience, its neural signal should be most potently enhanced by

neural sensitization or by acute amphetamine administration that

activates brain mesolimbic dopamine systems.

Profile analysis supports incentive salience hypotheses
for limbic firing

To compare these neuronal coding formulations against our

model for incentive salience, we developed an analytic technique

called Profile Analysis to assess neuronal responses to CS1, CS2

and UCS [13,76].

Profile Analysis creates a quantitative index comparing the

ordering of the magnitudes of a neuron’s firing rates to the three

stimuli, CS1, CS2, and UCS (Figure 3). The profile for each unit is

defined as a vector in a two dimensional ‘‘profile space’’. The

direction of this vector reflects the rank-ordering of each neuron’s

firing rate responses to CS1, CS2 and UCS, while the magnitude of

the vector reflects the degree to which the intensity of response to one

stimulus dominates the responses to others). Inhibition of neuronal

firing to a particular stimulus pulls coding vectors in opposite

direction from excitations. All possible firing profiles are represented

on a continuum of circular scale (360u), with nearby directions

(angles) representing similar neuronal firing profiles. The profile

analysis is performed on each individual neuron, and subsequently

aggregated to obtain the entire neuronal population response.

More formally, let us denote each neuron’s firing rate to CS1,

CS2, and UCS (after normalizing to baseline) as x, y, z respectively

[77]. The relative rank-ordering of these three numbers according

to their magnitude represents the ‘‘profile’’ of a neuron’s responses

to the stimuli, and it can be represented mathematically as a vector

in a two dimensional space. For each neuron we construct a two-

dimensional unit vector (u,n)from the three numbers x, y, z, such

that they (i.e., the profile-representing unit vectors) are ‘‘equally

spaced’’ in the projected two-dimensional subspace orthogonal to

the direction [1,1,1]:

u,v½ �~ x,y,z½ �
cos(az1200) sin(az1200)

cos(a) sin(a)

cos(a{1200) sin(a{1200)

2
64

3
75 ð6Þ

where the ‘‘anchoring’’ parameter a can be chosen arbitrarily. For

simplicity, we chose a = 0; in this case,

u~(2y{x{z)=2

v~
ffiffiffi
3
p

(x{z)=2
ð7Þ

The components of the profile vector [u,v] thus computed,

according to Eqn. (6) in general and Eqn. (7) in particular,

capture the two orthogonal contrasts formed among the three

dependent variables x, y, z, such that any other contrast is a

rotation in the two-dimensional space. This vector’s magnitude

R~ u2zv2
� �1=2

~((x{y)2z(y{z)2z(z{x)2)1=2=
ffiffiffi
2
p

ð8Þ

represents the extent to which the neuron’s firing rates, x, y, z, are

differentially modulated by the three types of stimuli (CS1, CS2,

and UCS), or in other words, it represents the variance of

responses across the stimuli. The vector’s direction

h~tan{1(v=u) ð9Þ

reflects the type of rank-ordering of the magnitudes of these firing

rates. This procedure is both exhaustive (i.e., all neurons can be

characterized) and faithful (i.e., the distance between the angles is

monotonically associated with the magnitude of difference in two

profiles).

Of particular interest to this study are the regions corresponding

to response dominance by a particular stimulus (Figure 3). The

region spanning 60u to 180u is where CS1 dominates the response

profile and represents neurons that are responsive to the CS1 cue

which carries the most predictive information about subsequent

stimuli. This is designated as the prediction or ‘‘TD error-coding’’

area. The region spanning 260u to 60u represents dominant

neural firing to CS2, which occurs at moment of highest

motivation excitement, and we denote it as the motivational or

‘‘incentive-coding’’ area. Finally, the region spanning 180u to 300u
represents dominance by the reward itself (UCS) and it is

designated the hedonic or ‘‘value-coding’’ area. Strictly speaking,

our incentive salience theory predicts CS2.CS1.UCS for

incentive-coding neurons, whereas if neurons obey a TD learning

model, one predicts that the relative ordering of the magnitude of

responses to the three stimuli after learning is CS1.CS2.UCS

for error-coding neurons and UCS.CS2.CS1 for value-coding

neurons. The rationale is similar to a method proposed by one of

us earlier (called ‘‘Locus Analysis’’) to characterize neurons in the

primary motor cortex [78].

Incentive shifts in neural profiles after amphetamine
administration or drug sensitization

The results of the amphetamine and sensitization experiment

revealed that VP neurons ordinarily signalled best the prediction

value of a CS, responding maximally to CS1 (Figure 3). Thus, in

the normal state, these limbic circuits reflect the standard

prediction error model. However, mesolimbic activation or

sensitization changed this profile by enhancing only incentive

salience signals to the CS2, at the expense of the signal for CS1

(and without altering UCS signal) [13] (Figure 4).

The incentive shift toward CS2 was even greater for the

combination of sensitization plus amphetamine administration at

the time of test. The effects of the various mesolimbic

dopaminergic activations can be visualized as the rotation of the

Population Profile Vectors (Figure 4). Thus, it was concluded that

while VP neurons in control animals (after training) tend to follow

a TD error coding profile, mesolimbic dopaminergic activation

causes the neuronal response profiles to shift towards encoding

incentive salience. This shift corresponds to our motivational

transform computation model, and to the idea that mesolimbic

stimulations enhanced k.
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Crucially, for showing the dynamic nature of the incentive

increase, we note that the enhancements of neural firing to CS2

produced by amphetamine and by drug sensitization were evident

right away on the very first presentations of the CS2 in the new

sensitization and/or amphetamine state. That is, as predicted by

our k model, the incentive value of the CS2 was dynamically

increased without need of re-learning about CS-UCS association,

and without additional pairings with the UCS in the transformed

state [13].

Does amphetamine or sensitization of incentive salience

translate into behavioral ‘wanting’ too? In previous studies using

a rigorous behavioral test of cue-triggered ‘wanting’ (based on a

Pavlovian-Instrumental Transfer design or PIT), we and others

have confirmed that acute amphetamine administration and/or

prior drug sensitization both enhance peaks of cue-triggered

‘wanting’ for sucrose reward (Figure 4). In PIT, the phasic peaks of

cue-triggered ‘wanting’ are manifest as a burst of pressing by the

rat on a lever that previously earned sucrose reward: these peaks

were dynamically enhanced by microinjection of amphetamine

directly into the nucleus accumbens, or by sensitizing drug binges

given weeks earlier [72,73] (Figure 4). The ‘wanting’ enhance-

ments occurred even on the first presentations of the CS in the

new physiological states of mesolimbic activation, just as in the

neural firing experiments above (Figure 4) [72,73]. And the

elevations came and went with the coming and going of the

physical CS+ stimulus, which lasted about 30 sec each. Such

dynamic enhancement of CS incentive salience is also consistent

with other behavioral demonstrations of incentive motivation

enhancement by pharmacological dopamine activation or by

psychostimulant-induced neural sensitization [72,73,79,80], even

in the absence of additional learning [81–83]. Our conclusion is

also compatible with other behavioral evidence that the most

predictive CS can be dissociated from the most ‘wanted’ CS

[84,85]. Thus it seems safe to conclude that dynamic increases in

incentive salience are expressed in behavior as well as in neural

activation [15,86–90].

Discussion

As posited by our computational model (Eqns 3, 3a, 3b),

dynamic enhancements of CS incentive salience can be empiri-

cally observed in both neural and behavioral measures of cue-

triggered ‘wanting’. Enhancements were caused by relevant

physiological changes, such as natural salt appetite, and addic-

tion-related amphetamine intoxication and long term sensitization

that modulate brain mesolimbic systems involving dopamine. All

of these physiological manipulations revealed dynamic modulation

of CS-triggered ‘wanting’ as posited by our model (Eqns 3; 3a; 3b).

Experimental caveats
It is important to acknowledge that each experiment above is

only an imperfect test of the model. The VP sensitization and

amphetamine experiments hinged on the assumption that our

sequential Pavlovian design decoupled the maximal predictive

impact of CS1 from the maximal incentive impact of CS2. If the

assumption were false, the conclusion would be weakened.

Likewise, the salt CS study failed to cleanly separate ‘wanting’

from hedonic ‘liking’, because both were increased together during

a natural sodium appetite. However, each experiment also carries

strengths to counter these weaknesses. The sensitization-amphet-

amine experiment cleanly dissociated ‘wanting’ from ‘liking’

because the dopamine-based activations enhanced ‘wanting’

without at all enhancing sucrose ‘liking’. The salt experiment

cleanly dissociated incentive ‘wanting’ from cached predictions

gained by previous learning, without requiring serial CSs, because

the previously learned CS value was negative and was dynamically

reversed into positive valence at test by a natural specific appetite.

Thus some confidence is gained by noting that our conclusions rest

Figure 4. Behavioral confirmation of dynamic amplification of cue-triggered by amphetamine activation of mesolimbic systems.
Transient ‘wanting’ comes and goes with the cue (A). Amphetamine microinjection in nucleus accumbens dynamically magnifies ‘wanting’ for sugar
reward – but only in presence of reward cue (CS+). Cognitive expectations and ordinary wanting are not altered (reflected in baseline lever pressing
in absence of cue and during irrelevant cue, CS2) (B). From [72].
doi:10.1371/journal.pcbi.1000437.g004
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on the entire body of evidence rather than on any single

experimental result.

Forms of ‘wanting’ modulation
Comparing versions (Eqns 3a and 3b), we note that Eqn (3a)

could be a standard way to express the generic model (Eqn 3) as a

multiplicative gain-control mechanism, which generally applies to

all univalent cases of modulation. These include enhancements of

‘wanting’ by amphetamine activation of mesolimbic dopamine

systems and by permanent sensitization of mesolimbic systems, as

shown here, and would also apply to natural cases such as a

palatable food becoming more valuable in hunger. It would

similarly apply to univalent downshifts in incentive value from

good to less good or neutral (e.g., physiological satiety or

dopamine suppression). Further, Eqn (3a) would also apply to

changes in aversiveness from bad to worse (or vice versa) for fear,

disgust or other negative evaluations that involve a negative

version of motivation salience, such as changes in active fear or in

psychotic paranoia produced by dopamine-blocking drugs or by

psychological mood manipulations [53,54,91] (Figure 1).

Alternatively, Eqn (3b) expresses the generic model as an

additive version, which is intended to account for special cases

where incentive value actually reverses valence between positive

and negative poles. Those include reversal of incentive salience for

intense salt from negatively ‘unwanted’ to positively ‘wanted’

during salt appetite, and would also include flips from ‘wanted’ to

‘unwanted’ such as when a sucrose taste is converted from good to

bad by aversion conditioning (i.e., pairing as CS with nausea as

UCS), or flips between desire and dread [53,90].

Comparing incentive salience model to standard

reinforcement learning models. How does our model (Eqns

3; 3a; 3b) contrast to a cached-value TD model or to a flexible

tree-search model involving a cognitive state space? According to a

standard TD reinforcement model, optimal policy is invariant (i.e.,

remains unchanged) if the entire vector of primary rewards in

every state is subject to the same affine transform (r2.ar+b, a.0)

with fixed a,b. Cached values are relatively stable, and able to

produce the same optimal behavior across a wide range of

homeostatic/motivational states. But they are not able to

dynamically modulate after a shift without further retraining.

The dynamic situations here, however, were very different and

not amenable to a stable solution strategy, as the motivational

revaluation occurred without the individual having had a chance

to relearn. The cached value-function of each state (CSs) would

not have been adjusted until after the next encounter with primary

reward (UCS); the UCS itself would be immediately modulated by

the physiological shift but would still need to be presented to effect

a re-evaluation of CS.

More flexible are tree-search models, sometimes called model-

based systems because they model or map the world in a way that

explicitly represents goal values and relationships in a nested tree

or similar recursive structure [14,17,21,22,39,40,92]. Psychologi-

cal counterparts include cognitive maps of goal outcomes, with

values obtained by episodic memories of experience with those

goals in states similar to current conditions, and understanding of

act-outcome relationships needed to obtain those goals

[17,18,89,92–94]. Still, some model-based formulations and

psychological counterparts are constrained by whether the tree

contains sufficient information to compute a new value in a state,

which for some systems may depend on whether the goal has ever

been tasted before while in a similar state [17,18]. For example, as

Dickinson and Balleine put it in describing the behavior of rats

when guided by cognitive act-outcome relations involving

hedonically positive memories of a sucrose goal they used to work

for, but which had subsequently been devalued by taste-aversion

conditioning: ‘‘we gave (some of) our rats the opportunity to taste

the sugar after they had acquired a latent aversion to it. This re-

tasting had a profound effect when we subsequently tested their

desire to search for the sugar water by lever pressing. In the

absence of the re-tasting, they behaved as though they were

ignorant of their aversion…, whereas those that had re-tasted the

sugar water showed little propensity to seek it out again (the

devalued sugar water)’’ (p. 103) [17]. That is, the rat’s cognitive

system needed to re-taste the sugar in order to know that the

former reward had become unpleasant and was no longer a

positive goal. To the extent that computational models aim to

capture real psychological cognition, retasting may remain an

important feature of many model-based systems

[17,18,21,22,28,39,40,44].

Of course an empirical need for retasting by rat brains (or

human brains) does not necessarily imply that all model-based RL

computational mechanisms necessarily require retasting. Recently,

Daw, Niv and Dayan have explicitly proposed an alternative tree

model that can update without needing to retaste, using

feedforward recalculation of goal value in a full look-ahead tree

even before the goal is experienced [39,95]. Such a model might

be able to accomplish revaluations of CS value prior to UCS

retasting such as those demonstrated in our experiments.

Yet differences remain between our Pavlovian-guided incentive

salience model (mediated by mesolimbic brain circuits) and a

cognitive map or full look-ahead tree model (plausibly mediated by

cortical brain circuits) [39,95]. One difference is that attribution of

incentive salience to a CS makes the cue itself become

motivationally ‘wanted’, beyond being a signal or trigger to ‘want’

the UCS goal [84,85]. Another difference is that mesolimbic

circuits computing k modulate only the primary reward

motivation and not state-values or state-action values. Loosely

speaking, our model (Eqns 3; 3a; 3b) is analogous to one-step look-

ahead in a model-based (tree-search) approach. Consider that cue-

triggered ‘wanting’ shoots up upon presentation of a CS, but

importantly, also goes down again nearly as soon as the CS is

taken away. Coupling to CS is evident in behavioral PIT

experiments, where lever-pressing peaks fade away as soon as

the CS is removed (see figure 4) – even though the salt appetite,

dopamine drug, or sensitization state that enhanced the cue’s

motivation-eliciting power persist. Neuronal VP firing peaks are

even shorter, and linked to the onset of the CS presentation, and

then typically decay within a second. Neither baseline levels of

lever pressing rates nor neuronal firing rates were reliably

enhanced at moments in between cues.

A full tree-model is usually thought to have an advantage of

providing a stable cognitive map of declarative goals and available

actions within the tree’s representation of the world. Having once

successfully recomputed the goal in advance of retasting the UCS,

then, it may seem odd that a full look-ahead tree model should

immediately abandon the goal value again as soon as the CS

disappears, and to repeat the cycle each time the CS comes or

goes. Yet to accommodate our data, some such transient and

repetitive adjustment of a full-tree model would be required.

Transience, on the other hand, is quite typical of motivational

states. In particular, the incentive salience mechanism is especially

compatible with transient peaks in ‘wanting’ being tied to CS

presence because the Bindra-Toates rules of Pavlovian motivation

specify that a synergy exists between CS presence and current

mesolimbic state, which controls the intensity of motivation at

each moment [1–5,8,96]. The physical presence of a Pavlovian CS

is a crucial factor in generating incentive salience, and a sporadic

CS can lead to up-and-down changes in ‘wanting’. This synergy
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feature is precisely why hungers make their relevant cues much

more powerful motivators, as well as why a food CS can trigger an

increase in appetite for its UCS in a not particularly hungry person

or a drug CS trigger relapse in an addict [2–5,7,8,19,89,96,97].
Multiple motivation-learning systems. We should

acknowledge again that we do not suggest that incentive salience

is the only computational form of goal-directed system operating

in the brains of rats or people, any more than stimulus-stimulus

Pavlovian associations are the only form of reward learning.

Incentive salience ‘wanting’ is but one mechanism of motivation,

occurring alongside others. For example, ample evidence

described elsewhere indicates that ‘wanting’ (with quotation

marks: incentive salience) exists alongside ordinary wanting

(without quotation marks: cognitive predictions), which may

plausibly be based on full look-ahead cognitive representations

of expected goal values and their related act-outcome strategies to

obtain those goals [3,7,14,17,18]. Ordinarily, wanting and

‘wanting’ act together to guide behavior toward the same goals,

with incentive salience serving to add motivation ‘oomph’ to

cognitive representations. But under some important conditions

the two motivation mechanisms may diverge. For example,

divergence can lead to ‘irrational wanting’ in addiction for a

target that the individual does not cognitively want, nor

predictively expect to be of high value [7–9]. Our current model

may help to computationally capture the incentive salience limb of

that divergence.

Future challenges
Finally, we stress that our model (Eqns 3, 3a, 3b) is not meant as

a finished model of incentive salience, but only is an incremental

step towards more adequate computational models. Several

important challenges remain. One challenge for a future incentive

salience model is to better solve the specificity problem involved in

the question of ‘what to want most’? That problem includes

describing how specific types of k (e.g., sodium appetite, hunger,

drug sensitization) interact with specific CSs and their UCS

rewards (e.g., salt, food, drugs) to determine the direction of

maximal attribution of incentive salience toward a particular

target. A related problem concerns the control of how sharply

‘wanting’ is focused by amygdala-related systems on one CS

motivational magnet [48,85], or on one UCS target in a winner-

take-all fashion (as when an addict excessively ‘wants’ only drugs),

or instead is spread somewhat over several targets (as when the

addict also excessively ‘wants’ to gamble or engage in sex) [8].

Another challenge is to model the relation of incentive salience

‘reboosting’ (via incremental pairings of CS and UCS) to dynamic

modulation (as shown here for a specific CS). A final challenge is

to better capture the computational differences between Pavlov-

ian-based ‘wanting’ described here versus tree-based cognitive goal

systems and cached-based habit learning systems, and to better

understand the conditions that determine whether those three

systems cohere or diverge.

Conclusion
To summarize, we have proposed a computational model of

incentive salience as a motivational gating mechanism that

dynamically responds to post-learning shifts in physiological states

when encoding a relevant CS for reward. Our computation of

incentive salience integrates a current change in physiological state

with previously learned associations between a CS and its state-

relevant UCS reward to generate ‘wanting’ in a dynamic and

reversible fashion.

The computation of incentive salience outlined here implies that

cue-triggered ‘wanting’ amounts to activating associations that

exist between CS and UCS, and then dynamically recomputing

motivational value based on current physiological state to generate

the motivational magnet property of a reward cue [2,3,7,8]. In

natural appetites, like salt appetite or food hunger, the dynamic

modulation is adaptive, and guides motivated behavior towards an

appropriate incentive without need for stable experience-gained

knowledge of the goal. In addicts, amplified motivation may

maladaptively pull the addict like a magnet towards compulsively

‘wanted’ drugs, and so make it harder to escape from the addiction

[8,13,98].
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