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AAbbssttrraacctt

Although investigators using methodologies in bioinformatics have always been useful in genomic
experimentation in analytic, engineering, and infrastructure support roles, only recently have
bioinformaticians been able to have a primary scientific role in asking and answering questions on
human health and disease. Here, I argue that this shift in role towards asking questions in
medicine is now the next step needed for the field of bioinformatics. I outline four reasons why
bioinformaticians are newly enabled to drive the questions in primary medical discovery: public
availability of data, intersection of data across experiments, commoditization of methods, and
streamlined validation. I also list four recommendations for bioinformaticians wishing to get more
involved in translational research.
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IInnttrroodduuccttiioonn
Over the past decade, a large amount of individual-level

molecular data has come from the use of gene expression

microarrays [1,2], proteomics [3], and DNA sequencing

[4,5]. Although high-throughput measurement modalities

such as these have been used in biomedical research for over

a decade, the role of the bioinformatician has often been

relegated to that of data analyst, librarian, database

manager, distribution specialist, or software engineer. Occa-

sionally, with introductions made early enough, bioinforma-

ticians have been included in the early design phases of

experiments, and their role noted as such on manuscripts

and publications. These engineering and infrastructure

roles, although important, evolved under the assumption

that the scientists making these measurements already know

good questions to ask but lack the specific skills to analyze,

store, retrieve, and disseminate their data. Engineering roles

in bioinformatics are important and are reasonably well

funded today (such as in the Cancer Bioinformatics Grid

(caBIG), Bioinformatics Research Network (BIRN), and the

National Centers for Biomedical Computing (NCBC), all in

the United States).

But considering and funding solely the engineering roles in

bioinformatics understates the potential function of

bioinformaticians as scientists - here defined as those who

come up with questions - and, even more importantly, it

limits the vision for bioinformaticians to ask questions that

no other scientists can ask or answer today. It has become

increasingly rare for the bioinformatician to take the role of

questioner, especially with regard to research that has an

impact on medical care or research that yields tools for

clinicians or patients. Here, I argue that the next steps

needed for the field of bioinformatics are a shift in role

towards asking questions and a shift in focus to medicine.

The field of translational bioinformatics, defined as ‘…the

development of storage, analytic and interpretive methods to

optimize the transformation of increasingly voluminous

biomedical data into proactive, predictive, preventative, and

participatory health’ [6], is the mechanism for this shift. I

outline below four reasons why bioinformaticians are newly

enabled to drive the questions in primary medical discovery,

and provide four recommendations for bioinformaticians

who would like to get more involved in translational

research.



FFoouurr  eennaabblliinngg  ooppppoorrttuunniittiieess
The most revolutionary force in translational bioinformatics

is the public availability of molecular data. Sharing data is

not new; large epidemiological datasets and DNA sequences

have been shared in various forms for several decades, even

before the internet era. In addition, the use of previously

published data is not new; the biostatistics literature is full

of novel methodology applied to well known datasets. But

instead of using public data to just improve one’s metho-

dology (for example, to build yet another classifier on Todd

Golub’s leukemia data [7]), or in basic science (for example,

to build yet another predictor for transcription factor bind-

ing sites), such data can now be used to enable new

questions in applied sciences.

Coupled with the public availability of molecular measure-

ment data is the promising capability of intersecting across

multiple experiments. At the time of writing, the National

Center for Biotechnology Information (NCBI) Gene Expres-

sion Omnibus (GEO) contains data from over 307,000

microarrays, from 12,100 independent experiments [8].

Although the growth rate has been exponential, GEO can be

currently described as having made available roughly 100

new microarrays each day since its launch in January 2001.

Imagine: a high school student today who needs to run a

science fair project can type ‘breast cancer’ at the NCBI GEO

home page to find data from nearly 400 experiments

totaling 24,200 samples, as easily as she can find songs on

iTunes. With the right tools, she could even discover the

‘common denominator’ across tens or hundreds of models of

breast cancer. Rhodes et al. [9] used this approach to

compile publicly available published microarray datasets in

which cancer samples were compared with appropriate

normal samples to find common changes in gene expression

across cancers, such as cell cycle genes involved in meta-

stasis, and my colleague and I [10] used 49 publicly available

gene expression, proteomics, and RNA interference datasets

to predict novel variants associated with obesity. Although

there are challenges in using this approach [11], with over

30% of the human-disease morbidity already represented in

GEO [12] there is clearly power in large numbers.

A negative disruptive factor, potentially steering bioinfor-

maticians away from staid approaches, has been the

increasing commoditization of bioinformatics methodology.

Over 1,100 databases are now listed in the Annual Database

issue of Nucleic Acids Research [13], with another hundred

web-servers listed separately [14]. Approximately 60 manu-

scripts are published each month describing software or

methodology in bioinformatics in the journals Genome

Biology, BMC Bioinformatics, BMC Genomics, and Bioin-

formatics. Even sophisticated choices on the best machine-

learning algorithm to use in a particular context have been

made trivial by free tools such as Weka [15], which

essentially abstract away the need to know specific

methodology. It is getting progressively harder to argue that

increasing sophistication and knowledge of this type of

methodology significantly improves one’s results.

With the availability of enormous sets of data and the

commoditization of methodology, merely making lists of

potential biomarkers and causal factors will eventually lose

value and significance. Although much additional value

comes from validation in real human samples, these samples

have typically been difficult to obtain, until now. Figure 1

shows one example out of many websites that now offer

human samples, antibodies that can be used to stain those

samples, and pathology services that can be used to read the

results. One can always question the reliability and quality of

these samples and services, as one can question samples and

services within one’s own institution. However, it is difficult

to ignore the importance of having these facilities available

to the bioinformatician. Although caveats must be acknow-

ledged, in many ways all that is now left to do is to ask the

interesting question.

FFoouurr  rreeccoommmmeennddaattiioonnss
How can the field of bioinformatics successfully adapt to the

translational movement? First, if the hardest part to scien-

tific endeavors in biomedical informatics is to ask the right

question, then investigators in biomedical informatics need

to learn more about open problems in medicine. Some of

this learning will come from non-traditional sources, such as

medical or surgical grand rounds (regular conferences

discussing the science around particularly challenging or

instructive cases) in a medical center. Often, ‘domain-

specific learning’ is viewed as a slippery slope; informa-

ticians sometimes retort that it is not possible to gain

competence across all areas of medicine while retaining
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Screenshot from US Biomax [19] showing a tissue microarray for sale
with 101 cases of pancreatic cancer or adjacent normal tissues. This figure
is representative of many other available companies offering products and
services for validation. Other such services can be found by searching the
internet with terms such as ‘tissue microarray’, ‘tissue samples’, and
‘serum samples’.



expertise in a computational discipline. But learning about

the unaddressed challenges even in one particular area of

medicine is still better than knowing little or nothing about

any area of medicine; as most physician scientists know,

focus in one particular medical area of interest provides

more than enough challenges for a career. As informatics

tools become more easily accessible, understood, and used

without assistance by medical researchers, the reverse also

has to occur, with medical problems becoming understood

and addressed by computational investigators.

The corollary to this point is a second recommendation

directed towards bioinformaticians: with the commoditiza-

tion of bioinformatics methodologies, researchers in

informatics should not just build tools, they should be the

first to use them, even on publicly available data. Indeed, no

other investigator knows those tools better than the

inventor. Those who build tools to address a specific medical

question can and should report on both their tool and their

findings. After tools and methods have been shown to

answer one question particularly well, they can then be

generalized for additional questions. This recommendation

is contrary to the usual practice of building tools in bio-

informatics to enable others. In general, this will mean that

tools that have successfully enabled their creator to discover

an important finding should be viewed with higher regard,

as opposed to tools presenting a fancier user interface or

marginal gains in performance.

It is often easiest to criticize the quality of publicly available

resources, whether these resources are data or tools. Many

initiatives within the community of biomedical informatics

have tried to add value to these public resources by creating

standardized annotations (and metadata), catalogs, struc-

tured vocabularies, and ontologies, which can be used to

store, index, and retrieve them more efficiently and effec-

tively [16,17]. Although these efforts have the best of

intentions, we have to ensure that, in the push to improve

the quality of metadata, we do not inadvertently cause a

delay in the release of data or tools.

The final recommendation is for informaticians to broadly

consider their sources for molecular data. A tertiary care

academic medical center might see tens to hundreds of

thousands of patients with injuries and diseases each year.

In modern hospitals, nearly every intervention applied to

these patients is electronically recorded, and hundreds of

thousands of blood measurements are made yearly, along

with high-resolution images and tissue pathology. The scale

of the clinical enterprise easily dwarfs the abilities of most

typical animal model facilities, and the requirements for

quality assurance for medical measurements greatly exceeds

the typical levels of rigor applied in model experimentation.

Put another way, the typical clinical laboratory measurement

is much more believable than the typical spot on a micro-

array. There are barriers to accessing clinical data, but as

these can be overcome, bioinformaticians should start

considering humans as the ultimate model organism [18].

CCoonncclluussiioonnss
It is remarkable that in the decade or two since their

creation, high-throughput molecular measurements, such as

microarrays, have already been used to study so many

human diseases, and that data from these experiments are

publicly available. Representing so many diseases by

molecular measurements in gene expression (and other

measurement modalities in the future) brings us closer to a

consideration of the nature of disease itself. As the

community of biomedical informaticians is increasingly

involved (and funded) in the construction of infrastructure

and policies to gather and consolidate clinical and experi-

mental data, we have to consider that this community will

also be the prime user of these tools and techniques. Those

who apply their research to publicly available data, commo-

ditized tools, and streamlined paths through validation will

be able to create novel diagnostics and discover fundamental

causes of disease as targets for therapies. Investigators

empowered by methodologies in bioinformatics have never

been so well positioned to take on the role of translational

scientist, to build the tools to ask the questions that yield

discoveries to improve human health.
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