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ABSTRACT

RegAnalyst is a user-friendly web interface that
integrates MoPP (Motif Prediction Program),
MyPatternFinder (pattern detection tool) and
MycoRegDB (mycobacterial promoter and regula-
tory elements database). Since motif discovery is a
challenging task, numerous tools have been devel-
oped over the past few years. Strikingly, the existing
programs were not successful in detecting the
known consensus in all mycobacterial (epitomizing
degenerate) datasets even in the absence of noise
and their performance was further reduced in the
presence of noise. Consequently, MoPP, a de novo
and greedy (for degeneracy) ‘inexact’ word-based
tool that is tailored to enumerate significantly con-
served degenerate oligonucleotide motifs was devel-
oped. Benchmarking on datasets from MycoRegDB
and SCPD (http://rulai.cshl.edu/SCPD/) indicate
that MoPP (i) consistently outperforms other
motif discovery tools on highly degenerate as well
as less degenerate datasets and (ii) successfully
detects completely degenerate motifs (with no
two instances of a pattern being exactly the same)
even in the presence of noise. We have also devel-
oped another accessory program, MyPatternFinder,
that scans a given sequence or genome to find
exact or approximate matches to a query motif of
any length identified by MoPP or any other user-
defined motif. RegAnalyst will be a valuable tool
for in silico analysis of regulatory networks and
can be accessed at http://www.nii.ac.in/~deepak/
RegAnalyst.

INTRODUCTION

Although transcriptional regulation is one of the most
fundamental processes for all forms of life, it still remains
an intriguing and challenging subject for biomedical
research. Experimental endeavors towards understanding

the regulation of genes are laborious, time-consuming and
expensive but can be substantially accelerated with the use
of in silico methods. Computational identification of tran-
scription factor binding sites has proved to be extremely
valuable for deciphering complex regulatory networks in
functional genomic studies (1,2). Therefore, a variety of
computational algorithms for identifying regulatory
motifs from DNA sequences, with or without additional
information, have been developed over the past few years
(1–6). A motif can be represented as a word of length l
that occurs in q sequences with k mismatches (7). Motif
detection is acknowledged to be challenging, with various
problems potentially requiring different algorithms or
ensembles of different methods (8). Additionally, often
a transcription factor recognizes a highly diversified
(i.e. degenerate) set of elements that vary from each
other at many positions (high k values). Such high degen-
eracy (as observed in mycobacteria) poses another obsta-
cle in detecting motifs. A database of promoter and
regulatory elements from various mycobacterial species,
MycoRegDB, was created with the primary aim of addres-
sing high levels of degeneracy. Surprisingly, the existing
programs were not able to detect the obscured mycobac-
terial motifs very satisfactorily. Therefore, MoPP (Motif
Prediction Program), an exhaustive motif discovery tool
based on ‘inexact’ word detection was developed with a
focus to detect highly degenerate regulatory elements.
Analysis of various mycobacterial datasets from
MycoRegDB unambiguously proves the ability of MoPP
to identify degenerate motifs in the absence or presence of
noise (i.e. background genomic sequences). Furthermore,
limited tests suggest that MoPP may be useful in eukary-
otes. We used MoPP to identify candidate binding sites in
several well studied regulons of Saccharomyces cerevisiae.
Our results indicate that MoPP outperforms other motif
discovery programs on less degenerate datasets (such as
those from yeast) as well.
Along with the growth of available genomic informa-

tion (6,9), our knowledge of organism specific motifs such
as promoters, Shine Dalgarno and regulatory sequences
has increased (10–17). The ability to search genomic
sequences to locate particular patterns in DNA is of
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considerable importance and also helps in designing
primers with engineered restriction sites for use in molec-
ular biology experiments. The program MyPatternFinder,
which we describe here, is useful for detection of user-
tailored motifs in DNA sequences. It uses an exact
search method along with an alignment technique to
find both exact and approximate copies (with/without
indels). Its ability to detect copies with insertions and/or
deletions (to any desired level) is unique.
We demonstrate the utility of MyPatternFinder, by

successfully identifying and validating distinct motifs
(such as promoters or hypoxia consensus sequences) in
Mycobacterium tuberculosis which differ significantly
from those present in other bacterial species, and detection
of which proved to be difficult using existing tools.
Bacterial persistence is a hallmark of tuberculosis and
is thought to result from bacterial adaptation to the pre-
vailing environment within tuberculous lesions and gran-
ulomas that are believed to be deficient in oxygen and/or
nutrient supply (18). A whole genome microarray analysis
revealed widespread changes in gene expression when
M. tuberculosis was briefly subjected to in vitro hypoxic
conditions (19). Among the genes that were induced
was the two-component regulatory system devR-devS
suggesting its possible role in mycobacterial latency.
Recently, DevR (Rv3133c/DosR) was also reported to
be a transcriptional regulator of the hypoxic response in
M. tuberculosis (13). A hypoxia consensus motif (50-TTSG
GGACTWWAGTCCCSAA-30) or a variant thereof was
detected upstream of nearly all M. tuberculosis genes rap-
idly induced by hypoxia (12,13).

METHODS

MycoRegDB

Transcription start points (TSPs) and regulatory elements
experimentally identified in various mycobacterial species
[M. tuberculosis (strains H37Rv and CDC1551), M. bovis,
M. leprae, M. smegmatis and M. avium subsp. paratuber-
culosis] were compiled.

MoPP

MoPP is an exhaustive motif discovery tool that is tailored
to enumerate significantly conserved degenerate oligonu-
cleotide patterns. Figure 1 shows the schematic represen-
tation of MoPP’s algorithm. In the first step, MoPP
identifies patterns that are overrepresented in the input
dataset (FASTA format). By default, the program initially
searches for motifs that are �80% identical and present in
�70% of the sequences (high stringency). Subsequently,
the stringency is reduced to detect motifs that are �70%
identical and present in �60% of the sequences after
masking out the motifs already found (medium strin-
gency). Finally, the stringency is reduced to detect
motifs that are �60% identical and present in �50% of
the sequences after masking out the motifs already found
(low stringency). Using advanced options, a user also
has the freedom to specify the cut-offs for percent identity
and percent sequences that should contain the motif.
Consensus sequence (at each position a nucleotide or set

of nucleotides present in �60% of the sequences is
selected) and enrichment (ratio of copy number in input
dataset to that in the non-coding regions of the genome)
are then computed for each of the patterns.

In the second step, exact/degenerate matches to these
consensus sequences are also searched for in the input
dataset. Furthermore, for every group of similar pat-
terns/consensus sequences identified in the first step, a
consensus sequence is computed and searched for in
the input dataset (as in the first step). All the patterns
identified in the first and second steps are ranked on the
basis of copy number (Rcp) and enrichment (Ren). The
final score of each pattern is given by (1/Ravg)� 100,
where Ravg= (Rcp+Ren)/2.

MoPP’s performance was compared with other pro-
grams by motif level success rate score mSr, which is
defined as the number of target motif groups Np that
have at least one correctly predicted binding site divided
by the total number of target motifs M [mSr=Np/M] (8).
However, the programs YMF, PRISM and Oligo only
report the detected motif, its statistical score(s) and/or
count, but do not explicitly provide the binding sites or
their locations. Therefore, while calculating mSr we have
considered the detection of ‘motif’ instead of ‘binding site’
(on the presumption that if motif has been correctly
detected then at least one binding site would definitely
have been predicted correctly). Furthermore, to avoid
any bias due to different number of motifs predicted by
various programs, we have considered only the top five
motifs for each program as suggested by Tompa et al.
(20). The scalability issue, as to how the algorithm perfor-
mance changes with the motif width and the sequence
length, is also addressed (8). Therefore, yeast datasets
for various motif lengths (6–10 bp) each with different
margin sizes (extending on both sides of target motifs)
of 50, 100, 200, 300, 400, 500 and 800 bp were generated
and analyzed with MoPP by mSr as well as performance
coefficient at binding site level [sPC] (8). The sPC score
indicates whether predicted binding sites overlap with
true binding sites (those that have �75% matches
with the consensus) and is defined as, sPC= sTP/
(sTP+ sFP+ sFN), where sTP is the number of predicted
binding sites which overlaps with the true binding sites by
at least 1 nucleotide, sFP is the number of predicted bind-
ing sites which have no overlaps with the true binding sites
and sFN is the number of true binding sites that have no
overlaps with any predicted binding sites.

In principle, MoPP has the capability to detect motifs of
any length. However, by default, the program searches
only for motif widths of 6–8 bp. In case 8-mer motifs are
detected, user can repeat the search with longer motif
width(s) of his interest. The algorithm also gives user the
freedom to allow single/multiple hits of the motif in each
input sequence.

MyPatternFinder

The algorithm that is used in MyPatternFinder is men-
tioned briefly as follows. In the first step (Option A), the
input pattern of length N is aligned with the first N bases
of the DNA sequence and percentage score is computed
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(1 for every match, 0 for a mismatch) in a sliding window
with 1 base shift, along the entire sequence [the method
was also incorporated in our previously developed pro-
gram Spectral Repeat Finder (21)]. If indels are permitted
(Option B), the input pattern of length N is aligned with
the first M bases (M=N+number of mutations allowed
by the user) of the DNA sequence using ClustalW (22)
(with gap opening and gap extension penalties of 2.0
each); this allows for indels, and as before, a score can
be computed in a sliding window. In the second step,
windows where the percentage score exceeds a desired
threshold are identified; if there are overlapping patterns,
the one with the highest score is considered.

Flexibility has been incorporated into the
MyPatternFinder algorithm, so that target patterns can
be specified precisely, or with standard abbreviations B,
D, H, V, K, M, W, R, S, Y and N if desired. However, in
Option B no ambiguous bases can be specified in the query
sequence since it is based on ClustalW. Query motifs can
also be chosen from a list of available consensus sequences
(these will constantly be updated). The first version of
MyPatternFinder offers the choice of 34 distinct anno-
tated DNA motifs [15 prokaryotic promoter elements
(including 7 from mycobacteria), 4 eukaryotic promoter
elements, 9 transcription factors and 6 response elements].
Searches can be carried out in various completely
sequenced genomes (choice of >600 organisms is available
at present and it will be kept up-to-date in future) and a
detailed visualization of the patterns detected along with
their positions is provided.

RESULTS AND DISCUSSION

MycoRegDB

MycoRegDB is currently the only available database
of promoter/regulatory elements across various

mycobacterial species. The first release of MycoRegDB
(Supplementary Figure S1) contains 290 annotated DNA
motifs (174 promoters and 116 transcription factor bind-
ing sites) described in 81 research papers. For each data-
base entry, MycoRegDB gives a variety of information
such as gene annotation, CDS positions, promoter/
regulatory sequence (with TSP/binding site explicitly
marked), TSP-CDS/Motif-CDS distance and hyperlinks
to relevant reference(s). Wherever applicable, it also pro-
vides hyperlinks to gene information from TubercuList,
BCGList and Leproma (http://genolist.pasteur.fr/).
These resources are helpful for (i) retrieving DNA/protein
sequences, (ii) knowing family classification of genes, and
(iii) providing cross-references to UniProt, PDB, PFAM
and COG databases. The MycoRegDB will be kept up-to-
date in future releases.

Mycobacterial promoters are quite divergent

Among the 174 promoters in MycoRegDB, 118 are those
for which the TSPs have been experimentally defined.
Of these, for a large subset of 95 promoters the sigma
factor(s) recognizing them is/are not known. A majority
of these promoters are possibly regulated by the house-
keeping sigma factor SigA (23). Alignment of the –10 and
–35 regions revealed that there is only �60% conservation
with the known SigA consensus in both these regions
(Supplementary Figure S2). Only one of the –10 regions
and six of the –35 regions showed perfect match to the –10
and –35 consensus, respectively. This indicates that there
exists considerable degeneracy in mycobacterial pro-
moters. Furthermore, our analysis does not seem to sug-
gest that –35 regions are conserved to lesser extent in
comparison to –10 regions (17). This discrepancy could
possibly be due to accumulation of additional data over
recent years. The remaining 23 promoters were divided
into subsets on the basis of the involvement of a given
sigma factor (SigC: 1, SigD: 6, SigF: 1, SigH: 10 and

Consensus sequence and enrichment calculated for each of the motifs 

Searches for motifs ≥80% identical  
and present in ≥70% sequences (High stringency) 

Searches for motifs ≥70% identical and present in ≥60% sequences, 
masking the motifs already detected (Medium stringency) 

Searches for motifs ≥60% identical and present in ≥50% sequences, 
masking the motifs already detected (Low stringency) 

Consensus sequence computed 
for similar consensus 

Consensus sequence computed 
for similar motifs 

Searched in input dataset with similar stringency as above; consensus  
sequence and enrichment calculated for each of these 

All motifs scored 
as described 

Figure 1. Schematic representation of MoPP’s algorithm. The unparalleled ability of MoPP in detecting degenerate motifs is due to the steps
indicated in italics.
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SigL: 5). Here again, the promoter elements were quite
degenerate although less than SigA dataset (Supplemen-
tary Figure S3). However, it would be important to point
out that these datasets are small in size and the level of
degeneracy is expected to increase as more data get
accumulated.

Evaluating MoPP and other motif prediction programs
on mycobacterial datasets in absence of noise

The –10 and –35 regions from the SigA, SigD, SigH and
SigL class (Supplementary Figures S2 and S3) were then
used to evaluate MoPP, YMF (24), Oligo (25), MEME
(26), PRISM (27) and SCOPE (28). MoPP was successful
in detecting the known consensus in all eight datasets
(Table 1). However, even in the absence of noise, the exist-
ing programs were not totally successful; MEME and
Oligo, closely followed MoPP, with being successful in
seven datasets (Table 1). The ensemble program SCOPE
was able to detect the consensus in only five datasets. This
enhanced ability of MoPP to detect highly degenerate
motifs is because the algorithm (i) deduces the consensus
sequences in three different ways, and (ii) allows imperfec-
tions not only in the initial step but also each time it
searches for matches to the consensus in the input dataset
(Figure 1).

Evaluating MoPP and other motif prediction programs
on mycobacterial datasets in presence of noise

Input sequences for motif finding programs typically con-
sist of motifs buried in noise. Therefore, to simulate real
scenario, we made a dataset (MycoSigA50bp) by extract-
ing 50 bp sequences upstream of TSPs (encompassing both
–10 and –35 regions) for the SigA regulon. This formed an

ideal dataset since it contained 95 genes with highly degen-
erate motifs. Here also, MoPP was successful in detecting
both –10 and –35 consensus sequences (Table 1 and
Figure 2). None of the other programs was able to
detect the –10 consensus for which only a single perfect
match occurred in the whole dataset. However, both
MEME and Oligo were able to find a pattern TTGACT
that matched with the –35 consensus since there existed six
exact occurrences of this pattern in the dataset. This illus-
trates the ability of MoPP in detecting a completely degen-
erate motif (with not even two instances of exact match to
the consensus) in the presence of noise.

MoPP is not restricted to mycobacteria

To demonstrate that MoPP algorithm is not organism spe-
cific, we compared MoPP against other programs on 20
well-characterized S. cerevisiae regulons (http://rulai.cshl.
edu/SCPD/). MoPP was able to detect the known
consensus in 12 of 20 regulons (Supplementary Table
S1). Interestingly, MoPP (mSr=0.60) outperformed
all other programs including SCOPE (mSr=0.55),
which combines the output of three different programs.
The overall comparison of MoPP with other tools across
a total of 30 datasets derived from mycobacteria (with
or without noise) and yeast also revealed that MoPP
(mSr=0.74) outperformed SCOPE (mSr=0.54)
(Figure 3a). MoPP was followed by MEME and Oligo
which had an mSr of 0.64 and 0.57, respectively.
However, it would be important to point out that the supe-
rior performance of MoPP was primarily because of its
ability in detecting highly degenerate motifs present in
mycobacterial datasets wherein it outperformed other pro-
grams by 20–60%.

Table 1. Performance comparison of MoPP with five popular motif finders on mycobacterial datasets

Regulon Consensus Size MoPPa YMF PRISM SCOPE Oligo MEME

MycoSigA-10 TATAMT 95 TAYAVT (1)b TATtrW (5)
TATtAW (6)

tTAcAAT (3) TANDVTgk (2) TAgACT (1)
TAcAAT (2)

TAgACT (1)

MycoSigA-35 TTGACW 95 cTKGAC (1)
cTBGAC (3)

TTGACW (6) gnhWTGACW (1) wyTTGMMW (1) TTGACT (2) TTGACT (1)

MycoSigA50bp TATAMT 95 TATACT (2)
TAKACT (3)

TAgWCW (14) tTAcAAT (14) ataTHDMAY (2)c TAgACT (6) TATtAT (11)

TTGACW TRACTa (1)
TaKACT (3)

TaGWCW (14)
TWGACW (22)

TTGACT (4) TTGACT (2)

MycoSigD-10 WNATGTd 6 gTTATG (1)
gTTABG (4)

ACATaT (15)

MycoSigD-35 GTAACG 6 gGWAWC (3) gGTAAC (2) GTAACG (1) GTAACG (1)
MycoSigH-10 SGTTS 10 tCGTT (1)

gCGKT (2)
SGTTar (21) cGGTT (3) cGGTT (3) gCGTT (1) cCGTT (2)

MycoSigH-35 SGGAAC 10 GGGAAt (1)
GGGAAY (2)

GGGAAC (1)
GGGAAY (2)

CGGAA (2) CGGAA (2) GGGAAC (1) GGGAAC (1)

MycoSigL-10 CGTGTC 5 CGTGTC (1) GTGTCa (5) GTGTCa (1)
CGTGTC (2)

GTGTCa (1)

MycoSigL-35 TGAACC 5 tTGAAC (1)
bTGAAC (2)

TGWACY (3)
TGAACY (5)

TGAAC (1) bTGAAC (1) TGAACC (1) cTGAAC (1)

mSr 1.0 0.4 0.5 0.5 0.8 0.8

aWeeder could not be compared since the background file was not available.
bPattern is highlighted in bold if it matches the consensus with not more than one mismatch and ranks among top five. Number in parenthesis
indicates rank of the pattern.
cNot considered a match since �80% of the matching residues are degenerate nucleotides or matching with degenerate nucleotides.
dAccording to MtbRegList (www.usherbrooke.ca/vers/MtbRegList).
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Figure 2. A typical output of MoPP on analysis of a large (95 genes) and highly degenerate dataset, MycoSig50bp. MoPP successfully identified both
–10 (motifs ranked 2 and 3) and –35 consensus (motifs ranked 1 and 3) sequences. For each of the detected motif, user can view (i) a colored display
of patterns along with their positions (by clicking on the count link), (ii) a tabular output of patterns and their positions and (iii) alignment and
frequency matrix of patterns (by clicking on the consensus sequence).
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Furthermore, MoPP’s motif level success rate (mSr) was
not affected by sequence length and/or motif width since it
is an exhaustive enumeration program (Figure 3b). These
results are consistent with similar observations for MEME
(8). It would also be important to mention that for each
dataset (irrespective of the margin size) the motif (with
�80% matches with the consensus) was correctly identi-
fied. The prediction accuracy at the binding site level
(sPC) on yeast datasets (Figure 3b) was also higher (for
all margin sizes) in comparison to those observed for other
programs on Escherichia coli datasets (8).

Detecting known consensus sequences by MyPatternFinder

The consensus motif sequences of 7 of the 13M. tubercu-
losis sigma factors (SigA, SigC, SigD, SigE, SigF, SigH
and SigL) have been recently published (10,15). As repre-
sentative examples, MyPatternFinder was used to search
the exact consensus motifs of three sigma factors SigA,
SigF and SigH (Table 2; complete details are available
at http://www.nii.ac.in/�deepak/MyPattern/supl/sigma).

No exact copy of the motif for the primary housekeeping
sigma factor, SigA, was found and only four copies of
the SigF motif could be located (15). This corroborates
our observation that there exists considerable flexibility
in promoter recognition and a search for promoter
sequences must necessarily accommodate mismatches in
sequence or spacing of the bipartite elements. We were
indeed able to detect 20 copies of the SigA motif by allow-
ing one mismatch with the consensus sequence, several of
which were present upstream of various genes (Table 2).
Some of these could possibly also be active in E. coli since
they are almost identical to E. coli s70 consensus promoter
sequence; such comparisons with promoters of another
organism(s) such as E. coli can help in predicting whether
the organism(s) is a good candidate for studying
these mycobacterial promoters (29). Another interesting
finding was that out of the 150 exact copies of SigH
motif identified, more than 80% were not present in the
upstream region of genes but rather within the protein-
coding regions.

Using MyPatternFinder, we also searched for the
hypoxia consensus motif (13) in the M. tuberculosis
H37Rv genome. Complete details of the best 100 motifs
identified are available at http://www.nii.ac.in/�deepak/
MyPattern/supl/hypmotif. We were not only able to
detect all the motifs reported by Park et al. (13), but
also identified a number of additional motifs among
which several were positioned upstream of coding regions
(Table 3). Although most of these genes were not hypoxia
responsive by microarray analysis (13), one of the genes,
Rv3318 (sdhA), was repressed in hypoxia in M. tuberculo-
sis H37Rv:�dosR (13) while another, Rv1039c (PPE15),
was significantly induced within artificial granulomas in
mice (30) substantiating our results. Further analysis
revealed that a number of motifs (with significantly high
scores) were present within protein-coding regions of
genes, a majority of which were also not regulated by
hypoxia. The possible significance of this observation is
unclear at present.

The utility of this server is also not limited to mycobac-
terial sequences: we screened for thyroid hormone
response elements (TREs) which are regulatory sequences
known to exist upstream of metallothionein genes (31).
The metallothionein protein protects the cell against
excess concentrations of heavy metals, by binding the
metal and removing it from the cell. The gene is expressed
at a basal level, but is induced to greater levels of expres-
sion by heavy metal ions (such as cadmium) or by gluco-
corticoids. The TRE has a binding site for transcription
factor AP1 and this interaction is part of the mechanism
for constitutive expression. Furthermore, this binding
reaction is one of the mechanisms (not necessarily the
only modality) by which phorbol esters such as TPA
(an agent that promotes tumors) trigger a series of tran-
scriptional changes. The TRE motif (TGACTCA) was
identified, in 1–6 copies, upstream of various human
metallothionein genes (MT1E, MT1K, MT2, MT3 and
MT4) when the pattern was allowed to contain indels
(Supplementary Figure S4; details are available at http://
www.nii.ac.in/�deepak/MyPattern/supl/TRE). It is note-
worthy to mention that motif discovery in datasets derived
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Figure 3. (a) Performance comparison of MoPP with other motif dis-
covery tools on 30 datasets derived from mycobacteria and yeast.
�Weeder could not be assessed on mycobacterial datasets since the
background file was not available. (b) Scalability of MoPP in terms
of motif level success rate (mSr) and performance coefficient at binding
site level (sPC) with respect to the sequence length (margin size).
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from large complex genomes pose certain additional chal-
lenges, and the speed and performance of the two algo-
rithms (MoPP and MyPatternFinder) were not assessed
on such datasets (e.g. genome-wide ChIP-chip or ChIP-
seq datasets).

Validation of motifs detected

MyPatternFinder was used to detect matches to the vari-
ous sigma consensus elements upstream of the experimen-
tally determined TSPs in the Rv3134c-devR-devS operon
(32). The P2Rv3134c promoter showed similarity to both
M. tuberculosis SigA consensus as well as E. coli s70 con-
sensus. As predicted, the P2Rv3134c promoter was
indeed found to be functional in both M. smegmatis
[model for studying M. tuberculosis promoters since the
transcriptional machinery is well conserved between the

Table 2. Detection of exact sigma consensus sequences in the complete M. tuberculosis H37Rv genome by MyPatternFinder

Sigma factor Consensus sequence (Ref.) Total number of hits Genea,b Distance from start codonc

SigA TTGACW-N17-TATAMTd (15) 0 – –
TTGACW-N16–21-TATAMT (15,17) 0 – –
TTGACW-N16–21-TATAMT (15,17) 20e Rv0068f �84

Rv0305c (PPE) �163
Rvnr01 (16S rRNA) �225
Rv1403c �84
Rv2011cf �50
Rv2487c (PE_PGRS) �288
Rv2578cf �35
Rv3082c (virS)f �44
Rv3760 �485

SigF GTTT-N17-GGGTAT (15) 4 Rv1248c (sucA) �358
Rv3287c (rsbW/usfX)g �35
Rv3349c �264

SigH SGGAAC-N17–22-SGTTS (15) 150 Rv0384c (clpB)g �72
Rv0474 �150
Rv0563 (htpX) �78
Rv0569 �475
Rv1072 �79
Rv1535 �93
Rv1786 �448
Rv1792 �112
Rv1883c �217
Rv2018 �182
Rv2184c �178
Rv2308 �34
Rv2334 (cysK) �364
Rv2373c (dnaJ2) �138
Rv2466cg �77
Rv2525c �345
Rv2694c �96
Rv2745c �66
Rv2804c �384
Rv2839c (infB) �313
Rv3179 �321
Rv3482c �248
Rv3597c (lsr2) �203
Rv3832c �481
Rv3913 (trxB2)g �66

aGene is reported only if the distance of consensus sequence is �500 bp upstream of the start codon and it has a non-coding upstream region of �25 bp.
bAccording to Cole et al. (36).
cLocation is relative to the translation start site as determined at http://genolist.pasteur.fr/TubercuList, except for Rv3287c (rsbW/usfX), where
location is relative to transcription start site according to Beaucher et al. (37).
dW=A/T; M=A/C; S=G/C.
eBy allowing one mismatch in the consensus sequence.
fAlso predicted to be an E. coli s70 promoter with one mismatch.
gInvolvement of the particular sigma factor has been experimentally verified (37,38).

Table 3. Hypoxia responsive motifs present upstream of genesa

Sequenceb Scorec Gened

ccGGGGAtgAAcGTCCCCgc 11.8486 Rv1039c (PPE15)e

TgCGGGACTAcAaTCCCGgg 11.7186 Rv1811 (mgtC)
ggCGGGACTATgGTCgCGAc 11.414 Rv1552 (frdA)
gTCGGGgCggTgGTCCCCgg 11.2576 Rv0345
TTGGGGcCaTccGgCCCGgA 11.195 Rv0877
aTaGtGACaTTcGaCCCGAA 10.8046 Rv3318 (sdhA)f

aTCGGGcCgAAcGTCaCGAt 10.761 Rv1824
cTCGGGACaTTAcTtCCGtt 10.7435 Rv1881c (lppE)
caCGGGACgAgcaTCCCCAg 10.7301 Rv2194 (qcrC)
cTCGGGtgTgAgGTCCCatA 10.6815 Rv2221c (glnE)
gcCaGGACgTcgGgCCCGAg 10.5356 Rv1256c (cyp130)

aIn addition to those detected by Park et al. (13).
bLower case characters show disagreement to motif consensus.
cCalculated as mentioned in Park et al. (13).
dAccording to Cole et al. (36).
eInduced in artificial granulomas (30).
fRepressed in hypoxia in M. tuberculosis H37Rv:�dosR (13).
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two organisms (33)] and E. coli (32) substantiating the
results of MyPatternFinder.
Distant matches to the DevR consensus motif were also

identified in the region encompassing the devR upstream
region, Rv3134c coding sequence and Rv3134c upstream
region (32). Although these low scoring Dev boxes did not
show interaction with DevR (34), their comparison with
various high scoring Dev boxes revealed the importance of
C8 base in the consensus motif (35).

CONCLUSION

We have unambiguously proved the efficacy of MoPP (i)
in prokaryotes and lower eukaryotes, (ii) in detecting
motifs of various lengths, (iii) in detecting highly degener-
ate as well as less degenerate motifs, and (iv) in the pres-
ence of high noise (large sequence lengths). Similarly,
the utility of MyPatternFinder has been shown (i) in pro-
karyotes and small eukaryotic sequences, (ii) in short
sequences as well as complete less complex genomes, and
(iii) for various consensus sequences (sigma factors,
hypoxia motifs and TREs). Thus, both MoPP and
MyPatternFinder work efficiently for smaller, less com-
plex genomes and may also be useful for higher eukary-
otes with larger, more complex genomes. The patterns
detected using MyPatternFinder have been experimen-
tally validated. The detection of conserved motifs
(by MoPP) and user-defined patterns of interest (by
MyPatternFinder) in genomic sequences should facilitate
the understanding of gene expression and regulatory
pathways in biological systems.
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