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ABSTRACT

As an increasing number of reliable protein–protein
interactions (PPIs) become available and high-
throughput experimental methods provide system-
atic identification of PPIs, there is a growing need
for fast and accurate methods for discovering
homologous PPIs of a newly determined PPI.
PPISearch is a web server that rapidly identifies
homologous PPIs (called PPI family) and infers
transferability of interacting domains and functions
of a query protein pair. This server first identifies
two homologous families of the query, respectively,
by using BLASTP to scan an annotated PPIs
database (290 137 PPIs in 576 species), which is
a collection of five public databases. We deter-
mined homologous PPIs from protein pairs of
homologous families when these protein pairs
were in the annotated database and have significant
joint sequence similarity (E� 10�40) with the query.
Using these homologous PPIs across multiple
species, this sever infers the conserved domain–
domain pairs (Pfam and InterPro domains) and
function pairs (Gene Ontology annotations). Our
results demonstrate that the transferability of con-
served domain-domain pairs between homologous
PPIs and query pairs is 88% using 103 762 PPI
queries, and the transferability of conserved func-
tion pairs is 69% based on 106 997 PPI queries.
The PPISearch server should be useful for searching
homologous PPIs and PPI families across multiple
species. The PPISearch server is available through
the website at http://gemdock.life.nctu.edu.tw/
ppisearch/.

INTRODUCTION

Interactions between proteins are critical to most biolog-
ical processes. To identify and characterize protein–
protein interactions (PPIs) and their networks, many
high-throughput experimental approaches, such as yeast
two-hybrid screening, mass spectroscopy and tandem
affinity purification and computational methods [phyloge-
netic profiles (1), known 3D complexes (2) and interologs
(3)] have been proposed (4). Some PPI databases, such as
IntAct (5), BioGRID (6), DIP (7), MIPS (8) and MINT
(9), have accumulated PPIs submitted by biologists, and
those from mining literature, high-throughput experi-
ments and other data sources. As these interaction data-
bases continue growing in size, they become increasingly
useful for analysis of newly identified interactions.
The discovery of sequence homologs to a known pro-

tein often provides clues for understanding the function
of a newly sequenced gene. As an increasing number of
reliable PPIs become available, identifying homologous
PPIs should be useful to understand a newly determined
PPI. Recently, several PPI databases (e.g. IntAct and
BioGRID) allow users to input one or a pair of proteins
or gene names to acquire the PPIs associated with the
query protein(s). Few computational methods (10,11)
applied homologous interactions to assess the reliability
of PPIs.
To address this issue, we proposed the PPISearch server

for searching homologous PPIs across multiple species
and annotating the query protein pair. According to our
knowledge, PPISearch is the first public server that iden-
tifies homologous PPIs from annotated PPI databases and
infers transferability of interacting domains and functions
between homologous PPIs and the query. PPISearch is an
easy-to-use web server that allows users to input a pair of
protein sequences. Then, this server finds homologous
PPIs in multiple species from five public databases
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(IntAct, MIPS, DIP, MINT and BioGRID) and annotates
the query. Our results demonstrate that this server
achieves high agreements on interacting domain–domain
pairs and function pairs between query protein pairs and
their respective homologous PPIs.

METHOD AND IMPLEMENTATION

Figure 1 shows the details of the PPISearch server to
search homologous PPIs of a query protein pair (A and
B) by the following steps (Figure 1A). This server first
identifies the homologous families (A0 and B0) of A and
B, respectively, with E� 10�10 by using BLASTP to
scan the annotated PPI databases (Figure 1B and C).
All protein pairs of A0 and B0 are considered candidates
of homologous PPIs. We selected homologous PPIs
from these candidates, which are recorded in the anno-
tated databases, and have significant joint sequence simi-
larity (E� 10�40) between candidates and the query
(Figure 1D). Then, we measure the conservation ratios

of domain-domain pairs [DDPs; Pfam (12) and InterPro
(13) domains] and protein functions [Gene Ontology
annotations (14)] derived from these homologous PPIs
of the query (Figure 1E). This server provides conserved
DDPs and protein functions for annotating the query.
Finally, this server provides homologous PPIs in multiple
species; conservations and GO annotations of protein
functions; conservations and annotations of DDPs; and
the best-matched protein pair of the query.

Homologous protein–protein interaction

The concept of homologous PPI is the core of the
PPISearch server to identify the PPI family and measure
DDPs and functional conservations of a query protein
pair (A and B). We define a homologous PPI as follows:
(1) homologs of A and B are proteins with significant
sequence similarity BLASTP E-values �10�10 (3,15); (2)
significant joint sequence similarity (joint E-value
JE� 10�40) between two pairs, i.e. (A, A1

0) and (B, B1
0),

of the query protein pair (A and B) and their respective
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Figure 1. Overview of the PPISearch server for homologous protein–protein interaction search and conservation analysis using proteins s1A-adaptin
and g1-adaptin as the query. (A) The main procedure. (B) Identify homologs of s1A-adaptin and g1-adaptin using BLASTP to scan the annotated
PPI databases. (C) The homologous families of s1A-adaptin and g1-adaptin with E-values �10�10. (D) Homologous PPIs of the query. (E)
Conservation ratios of domain-domain pairs derived from homologous PPIs.
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homologs (A1
0 and B1

0) recorded in annotated PPI
databases. This work followed previous studies (3,15) to
define joint sequence similarity as

JE ¼
ffiffiffiffiffiffiffi
EA

p
� EB 1

where EA is the E-value of proteins A and A1
0; and EB

is the E-value of proteins B and B1
0. Here, JE� 10�40 is

considered a significant similarity according to statistical
analysis of 290 137 annotated PPIs and 6597 orthologous
PPI families collected from the PORC database (16).

Annotations of homologous PPI

A query protein pair and its homologous PPIs, significant
both in sequence and joint sequence similarity, can be
considered a PPI family. The concept of PPI families is
similar to that of protein sequence family (12,13) and pro-
tein structure family (17). We believe that PPI families
can be applied widely in biological investigations. Here,
we assume that the members of a PPI family are conserved
on specific functions and in interacting domain(s). Using
these conservations of a PPI family, our server can be used
to annotate the protein functions and DDPs of a query
protein pair.

Transferability of domain–domain pairs. A query protein
pair and its homologous PPIs often show conserve inter-
acting DDPs. To measure the occurence of each DDP in
a PPI family, we define the conservation ratio (CRDp) of a
DDPp in homologous PPIs of a query protein pair i as

CRDp ¼
Number of homologous PPIs with a domain pair p

Number of homologous PPIs of query i

2

Figure 1D and E show an example to calculate the
CRD values of four DDPs. In addition, to evaluate the
transferability of DDPs between a query and its homolo-
gous PPIs statistically, this study defines the shared ratio
(SRD) of DDPs using CRDp and 103 762 annotated PPIs
as query protein pairs. The SRD of DDPs against different
ratio c is given as

SRD ¼

P
i2Q diðCRDp � cÞ

P
i2Q DiðCRDp � cÞ

3

where Q is a set of annotated PPIs in databases (here, the
total number of PPIs in Q is 103 762); i is a query protein
pair; di(CRDp� c) is the number of DDPs with CRDp

values exceeding c; and these DDPs are shared by the
query i and its homologous PPIs. Di(CRDp� c) is the
total number of the DDPs with CRDp� c, where DDPs
are derived from homologous PPIs of the query i.
Here, this work used a statistical approach to determine
the threshold c (here, c=0.6) of CRDp to yield reliable
DDP annotations with an acceptable level of Di. Please
note that CRDp and SRD are computed from a query
protein pair and a set of queries, respectively.

Transferability of molecular function. The members of a
PPI family often have similar molecular functions.
PPISearch uses the molecular function (MF) terms of

Gene Ontology (14) to annotate the functions of a query
protein pair. The conservation ratio (CRFm) of an MF
term pair (MFP) m in homologous PPIs of a query i is
utilized to measure the agreement and is defined as

CRFm¼
Number of homologous PPIs with a GOMF term pairm

Number of homologous PPIs of query i

4

Additionally, the shared ratio of MFPs (SRF), which
is statistically derived from 106 997 annotated queries, is
utilized to estimate the transferability of conserved func-
tion pairs shared by the query and its homologous PPIs.
The SRF against different ratio k is defined as

SRF ¼

P
i2Q fiðCRFm � kÞ

P
i2Q FiðCRFm � kÞ

5

where Q is a set of annotated PPIs in databases; i is a
query protein pair; fi(CRFm� k) is the number of MFPs
with CRFm values exceeding k and these MFPs are shared
by the query i and its homologous PPIs; and Fi(CRFm� k)
is the total number of MFPs with CRFm� k, where MFPs
are derived from homologous PPIs of the query i. Here, k
is set to 0.6.

INPUT, OUTPUT AND OPTIONS

The PPISearch is an easy-to-use web server (Figure 2).
Users input a pair of protein sequences in FASTA
format or UniProt ID, and choose E-value thresholds
for homologs and for homologous PPIs (Figure 2A). In
addition, users can assign the CRD and CRF thresholds,
specific species and the number of homologous PPIs in
a species.
Typically, the PPISearch server yields homologous

PPIs within 20 s when sequence length is �350
(Figure 2B). This server identifies homologous PPIs in
multiple species; conservations and GO annotations of
protein functions; conservations and annotations of
DDPs; and the best-matched protein pairs of the query
(Figure 2C). Additionally, the PPISearch server provides
multiple sequence alignments of homologous PPIs and
indicates the conserved residues based on amino acid
types. For each homologous PPI, this server shows the
alignments and experimental annotations (e.g. interaction
types, experimental methods, gene names and GO terms).

Example analysis

�1A-adaptin and g1-adaptin. Figure 1C and D show
search results using s1A-adaptin (UniProt accession
number: P61967) and g1-adaptin (P22892) of Mus muscu-
lus as the query. These two proteins are components of the
heterotetrameric adaptor protein complex 1 (AP-1), which
medicates clathrin-coated vesicle transport from the trans-
Golgi network to endosome (18). According to the crystal
structure (PDB code 1W63) (19), this protein pair is a
physical interaction, but it is not recorded in the annotated
PPI database. For this query, the PPISearch server iden-
tifies 14 homologous PPIs, a PPI family, from four species
(human, mouse, fruit fly and yeast). This PPI family has
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four DDPs (Figure 1E)—PF01217-PF01602 (CRD is 1.0),
PF01217-PF02883 (0.93), PF1217-PF02296 (0.14) and
PF01217-PF07718 (0.07). Two DDPs (PF01217-PF01602
and PF01217-PF02883) with highest CRD ratios are the
domain compositions of the query and PF01217-PF01602
is the interacting domains (19).

This server allows users to choose the JE threshold
of homologous PPIs. For example, when JE is set to
10�100 (default value is 10�40), the number of homologous
PPIs decreases from 14 to 10 by filtering out the last
four PPIs (Figure 1D). These 10 homologous PPIs consis-
tently include the two DDPs PF01217-PF01602 and

Figure 2. The PPISearch server search results using proteins MIX-1 and SMC-4 of Caenorhabditis elegans as the query. (A) The user interface for
assignments of query protein sequences and E-value thresholds of homologs and homologous PPIs. (B) Homologous PPIs of MIX-1�SMC-4 in
multiple species and public databases. (C) Conserved protein functions (GO terms) and domain-domain pairs (Pfam and InterPro) of homologous
PPIs with a conservation ratio � 0.6.
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PF01217-PF02883, each with a CRD=1.0. Furthermore,
users can choose the best match or number of homologous
PPIs in a species. In this manner, the PPISearch server is
able to select the primary homologous PPIs of each species
for specific applications, such as evolutionary analysis of
essential proteins.

MIX-1 and SMC-4. Mitotic chromosome and X-chromo-
some-associated protein (MIX-1, Q09591) and structural
maintenance of chromosomes protein 4 (SMC-4, Q20060)
of Caenorhabditis elegans are members of SMC protein
family, and are required for mitotic chromosome segrega-
tion (20). Both MIX-1 and SMC-4 are essential compo-
nents in forming the condensin complex for interphase
chromatin to convert into mitotic-like condense chromo-
somes (20,21). Using C. elegans MIX-1 and SMC-4 as the
query protein pair and JE is set to 10�40, the PPISearch
server found seven homologous interactions from anno-
tated PPI databases (Figure 2B). These seven homologous
PPIs are consistently SMC–SMC protein interactions,
including SMC-2�SMC-4, SMC-3�SMC-4 and SMC-
2�SMC-1, in four species. Among these homologous
PPIs, two PPIs, Q95347-Q9NTJ3 (Homo sapiens) and
P38989-Q12267 (Saccharomyces cerevisiae), are ortholo-
gous interactions of the query MIX-1�SMC-4 (16).

These seven homologous PPIs of MIX-1 and SMC-4
include 136 GO term pairs. Among these GO terms, the
CRF ratios of four GO MF term pairs and two GO BP
term pairs exceed 0.6 (Figure 2C). These six GO term pairs
are consistent with the term-pair combinations of MIX-1
and SMC-4. For example, MIX-1 and SMC-4 have the
same two GO MF annotations, protein binding
(GO:0005515) and ATP-binding (GO:0005524). Addition-
ally, these seven homologous PPIs contain four
DDPs with CRD ratios of 1.0. These four DDPs,
PF02463-PF02463, PF06470-PF02463, PF02463-
PF06470 and PF06470-PF06470, are recorded in
iPfam (12) and are consistent with the query pair.
The hinge–hinge interaction (PF02463-PF02463) is exper-
imentally proved, and is conserved in the eukaryotic

SMC-2–SMC-4 heterodimer (22). These analytical results
reveal that the PPISearch server is able to identify homol-
ogous PPIs that share conserved DDPs and MFPs with
the query.

RESULTS

To evaluate the usefulness of the PPISearch server for the
discovery of homologous PPIs and for the annotations of
a query protein pair, we selected two query protein sets,
termed HOM and ORT. To search homologous PPIs,
HOM and ORT are used to assess PPISearch performance
and to determine the threshold of joint E-value JE
[Equation (1)] (Figure 3A). In addition, the HOM set
was applied to infer the relations between conservation
ratios [CRD and CRF defined in Equations (2) and (4)]
and the transferability of DDPs and MFPs, respectively,
between a query and its homologous PPIs (Figure 3B and
Supplementary Figure S1). The HOM set includes all
290 137 PPIs and the ORT set has 6597 orthologous PPI
families (14 571 PPIs) derived from the annotated PPI
database and PORC orthology database (16).
HOM and ORT were used to assess the PPISearch

server in identifying homologous PPIs and orthologous
PPIs, respectively, by searching the annotated PPI data-
base (290 137 PPIs with 54 422 proteins). Figure 3A shows
the relationships between joint E-value JE and number
of orthologous PPIs (black) and homologous PPIs (red).
The orthologous PPIs often have the same functions
and domains. When JE� 10�40, the number of ortholo-
gous PPIs decreases significantly; conversely, the number
of homologous PPIs decreases more gradually than that at
JE� 10�40. This result shows that the proposed method is
able to identify 98.2% orthologous PPIs with a reasonable
number of homologous PPIs when JE� 10�40.
To evaluate the transferability of DDPs and MFPs

between a query and its homologous PPIs, we used the
SRD [Equation (3)] and SRF [Equation (5)]. The HOM
set is used to evaluate the utility of the PPISearch server in
annotating the query protein pair. By excluding proteins
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without domain annotations from the query set, 103 762
PPIs are used to evaluate the transferability (SRD) of
conserved DDPs between these query PPIs and their
respective homologous PPIs (Figure 3B). The transferabil-
ity (SRF) of conserved functions between the 106 997 PPIs
and their homologous PPIs is assessed by excluding pro-
teins without molecular function terms of GO from the
original query set (Supplementary Figure S1).
Figure 3B shows the relationship between conservation

ratios (CRD) of DDPs and the SRD ratios. The SRD
ratio increases significantly (solid lines) when the CRD
increases and CRD� 0.6. Conversely, the number of
DDPs derived from 103 762 PPI families decreases
(dotted lines) as CRD increases. If the CRD is set to 0.6
and the joint E-value is set to 10�40 (green lines), the SRD
is 0.88 and the number of DDPs is 252 728. This result
demonstrates that members of a PPI family derived by
PPISearch reliably share DDPs (or interacting domains).
Additionally, similar results were obtained for transfer-
ability of conserved functions between homologous PPIs
and the query (Supplementary Figure S1). The members
of a PPI family have similar molecular functions, and SRF
ratios are highly correlated with conservation ratios
(CRF) of MFPs. When the CRF is 0.6 and the joint
E-value is 10�40 (green lines), the SRF is 0.69 and the
number of MFPs is 454 251.
These results reveal that the PPISearch server achieves a

high SRD with a reasonable number of DDPs when the
joint E-value is set to 10�40. In summary, these experimen-
tal results demonstrate that this server achieves high agree-
ment on DDPs and MFPs between the query and their
respective homologous PPIs.

CONCLUSIONS

This study demonstrates the utility and feasibility of the
PPISearch server in identifying homologous PPIs and
inferring conserved DDPs and MFPs from PPI families.
By allowing users to input a pair of protein sequences,
PPISearch is the first server that can identify homologous
PPIs from annotated PPI databases and infer transferabil-
ity of interacting domains and functions between homol-
ogous PPIs and a query. Our experimental results
demonstrate that the query protein pair and its homolo-
gous PPIs achieve high agreement on conserved DDPs
and MFPs. We believe that PPISearch is a fast homolo-
gous PPIs search server and is able to provide valuable
annotations for a newly determined PPI.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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