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ABSTRACT

RNA editing alters plant mitochondrial and chloro-
plast transcripts by converting specific cytidines
to uridines, which usually results in a change in
the amino acid sequence of the translated protein.
Systematic studies have experimentally identified
sites of RNA editing in organellar transcriptomes
from several species, but these analyses have not
kept pace with rate of genome sequencing. The
PREP (predictive RNA editors for plants) suite was
developed to computationally predict sites of RNA
editing based on the well-known principle that edit-
ing in plant organelles increases the conservation of
proteins across species. The PREP suite provides
predictive RNA editors for plant mitochondrial
genes (PREP-Mt), for chloroplast genes (PREP-Cp),
and for alignments submitted by the user (PREP-
Aln). These servers require minimal input, are very
fast, and are highly accurate on all seed plants
examined to date. PREP-Mt has proved useful in
several research studies and the newly developed
PREP-Cp and PREP-AIn servers should be of further
assistance for analyses that require knowledge of
the location of sites of RNA editing. The PREP
suite is freely available at http://prep.unl.edu/.

OVERVIEW

RNA editing is a generic term comprising a variety of
processes that alter the DNA-encoded sequence of a tran-
scribed RNA by inserting, deleting or modifying nucleo-
tides in the transcript. These various processes have been
observed sporadically throughout eukaryotes and in some
viruses, although the mechanisms and outcomes of editing
are generally lineage specific (1). In plants, RNA editing
affects mitochondrial and plastid transcripts of all major
lineages of land plants (i.e. angiosperms, gymnosperms,

ferns, lycophytes, hornworts, mosses and liverworts) and
operates by the site-specific modification of cytidines to
uridines and, in some groups, uridines to cytidines (2-4).
These C-to-U and U-to-C changes are generally found at
codon positions that effect a change in the encoded amino
acid (5). Therefore, it is important to know where sites of
RNA editing exist in the transcriptome in order to under-
stand the proper structure and function of the translated
proteins.

To discover the location of RNA edit sites in plant
organellar transcriptomes, comprehensive experimental
analyses have been carried out for several species. For
chloroplasts, this list now includes over 10 angiosperms
(e.g. 6-8), as well as a gymnosperm, a hornwort and a
fern (9—11). The chloroplasts of ferns and hornworts con-
tain hundreds of C-to-U and U-to-C edit sites (10,11),
whereas angiosperm and gymnosperm chloroplasts
harbor only a few dozen C-to-U sites and no U-to-C
sites at all (6-9). For plant mitochondria, four angios-
perms have been examined and all of them have several
hundred C-to-U sites but no U-to-C sites (5,12—14).

Unfortunately, these systematic analyses of plant orga-
nellar transcriptomes have not kept pace with the rate of
genome sequencing. There are now over 100 plastid and
20 mitochondrial genomes from land plants available in
the sequence databases, and edit sites clearly abound in
almost all of them. Of course, it is neither the aim of many
of these genome sequencing projects to experimentally
identify sites of RNA editing, nor is it always practical
to do so for every newly sequenced genome. In recent
years, several studies have taken various computational
approaches to predict edit sites, with varying degrees of
success (15-18). Some methods attempt to predict sites
using information in the immediate sequence context
(15,17), but these generally suffer from low specificity
resulting in a large number of false positives. This is due
to the low frequency of editing in angiosperm mitochon-
drial genes, where <10% of the cytidines in protein-coding
genes are actually edited (5,12—-14). Other approaches uti-
lize evolutionary information and have achieved better
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results. The predictive RNA editor for plant mitochon-
drial genes (PREP-Mt) identifies sites based on the prin-
ciple that editing increases protein conservation among
species (16). The most successful program to date,
CURE, relies on the shared ancestry of edit sites, only
considering cytidine positions that are known to be
edited in other species (18).

All of the current methods have focused on the abun-
dance of data from angiosperm mitochondria, so it is
unclear whether they will be generally applicable for
more divergent plant groups or for chloroplast editing.
To address the need for a chloroplast predictor, the
predictive RNA editor for plant chloroplast genes
(PREP-Cp) was developed by adapting the PREP-Mt
methodology. PREP-Cp behaves almost identically to
PREP-Mt; the only difference is that PREP-Cp translates
and aligns an input sequence to a pre-defined alignment of
chloroplast homologs, whereas PREP-Mt aligns to a
homologous mitochondrial alignment. And for times
when the pre-defined alignments from PREP-Mt and
PREP-Cp are not adequate, the predictive RNA editor
for user-defined alignments (PREP-Aln) provides an alter-
native. PREP-Aln applies the PREP-Mt methodology to a
custom alignment submitted by the user containing a mix
of RNA sequences (with known edit sites) and DNA
sequences (in which sites will be predicted). This flexibility
allows the user to potentially increase prediction accuracy
by taking advantage of newly published editing data or
by increasing sampling from a targeted lineage of interest.
This suite of web servers should greatly expand our ability
to identify potential sites of RNA editing in plant
organellar transcripts.

WEBSITE USAGE

The PREP suite of servers was designed for ease of
use. Inputs and outputs are intended to be intuitive and
straightforward, and predictions are returned nearly
instantaneously. A help file is available that describes
the input parameters and the output in more detail.
Sample data are also provided.

To use PREP-Mt or PREP-Cp, the user is required to
submit a protein-coding sequence (with introns spliced
out) and to select its gene identity and the codon position
of the first nucleotide. The user is also given the option to
provide a name for the input sequence, such as the species
name from which the sequence originated, and to define a
cutoff value (C). The cutoff value sets the minimum score
that a predicted edit site must receive before it is reported
as a prediction. Because edit sites receive a score between
0 and 1, C must also be a number in this range. Lower C
will increase the number of predicted edit sites. The upside
is that this increases the number of true edit sites that will
be found, but at the same time, the number of incorrect
predictions will also be higher. Higher C, in contrast,
will make fewer incorrect predictions but will also find
fewer true sites. If no cutoff value is selected, the server
defaults to optimal values described below. PREP-Mt and
PREP-Cp are also able to process multiple sequences
at once. To use batch mode, the user must upload a tab-
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delimited text file containing five parameters on a single
line for each sequence to be tested. The five parameters
correspond to the inputs described above for single sub-
missions and must be placed in the following order:
(i) a sequence name; (ii) the gene name; (iii) the codon
position of the first nucleotide; (iv) a cutoff value; and
(v) the protein-coding sequence.

The input for PREP-Aln is slightly different because it
allows users to define their own custom alignments to be
used for prediction, in contrast to PREP-Mt and PREP-
Cp that rely on pre-defined alignments. To use PREP-Aln,
the user must provide a codon-based nucleotide alignment
in FASTA format. In other words, the alignment should
consist of protein-coding sequence only with gaps placed
between codons and gap lengths in multiples of three. An
alignment of this nature can be generated by using an
alignment of the translated protein sequences to guide
the positioning of gaps in the nucleotide alignment.
Several online resources, such as PAL2NAL (http://coot.
embl.de/pal2nal/) and RevTrans (http://www.cbs.dtu.dk/
services/RevTrans/), can produce codon alignments auto-
matically. The alignment submitted to PREP-AIn must
also contain at least one RNA sequence (preferably
more) and any number of DNA sequences. All RNA
sequences in the alignment must be flagged by adding
‘ RNA’ to the end of their definition lines.

The output for all programs is simple (Figure 1). For
each predicted edit site, information is provided about its
location, effect and score. The ‘Nt Pos’, ‘AA Pos’ and
‘Align Col’ columns list the location of the predicted site
in the nucleotide sequence, predicted protein sequence and
resulting alignment, respectively. The ‘Effect’” column
shows how the edit site changes the codon and the
encoded amino acid. The ‘Score’ of the site is a rough
indicator of the confidence of prediction and is equal to
the proportion of sites in the alignment that have the same
amino acid at that position as the edited version of the
input sequence. In addition to the on-screen output,
downloadable files are provided. These files include a
tab-delimited version of the on-screen results and
FASTA files of the edited RNA and protein sequence.
Most importantly, the alignment used to guide the predic-
tion of edit sites is made available. Users of PREP-Mt and
PREP-Cp should check this alignment carefully to ensure
that the input sequence aligned properly to the pre-defined
alignment of homologs. When using PREP-Aln or batch
mode of PREP-Mt and PREP-Cp, the downloadable data
files for all examined sequences are combined and stored
as compressed archives in .tgz and .zip formats.

PREDICTION METHOD

As mentioned, the PREP suite of programs identifies
potential sites of RNA editing based on the evolutionary
principle that editing increases protein conservation
among species. This is a fundamental quality of RNA
editing in plants that was noticed upon its discovery in
1989 (19-21) and has been repeatedly observed in nearly
all subsequent studies. Full details of the PREP-Mt meth-
odology have been published previously (16). Essentially,
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Predictive RNA Editor for Plants

PREP-Aln PREP-Mt Contact

Prediction Results for Nicotiana_Sample atpl (C=0)

Nt Pos AA Pos  Align Col Effect Score
7 3 5 CTT (L) => TTT (F) 0.50
1039 347 349 CCC (P)=>TCC (S) 1.00
1178 393 395 TCA (S)=>TTA (L) 0.90
1216 406 408 CTT (L) => TTT (F) 1.00
1292 431 433 CCG (P)=>CTG (L) 0.80
1415 472 474 CCA (P)=> CTA (L) 1.00
1490 497 499 CCA(P)=>CTA (L) 0.90

Downloadable Results

Predicted editing sites
Alignment used for prediction

Edited nucleotide sequence
Edited amino acid sequence

Figure 1. Sample output from a PREP analysis. Prediction results show
the location, effect and score of each edit site. Downloadable files are
also provided, including a tab-delimited version of prediction results,
FASTA files of the edited RNA and protein sequence and the align-
ment used for prediction.

all three programs perform the same series of steps:
(i) an input sequence is translated using the standard
genetic code; (i) the translated sequence is aligned to a
set of homologous proteins; (iii) the alignment is examined
column-by-column to determine if an editing event could
increase the similarity of the input sequence to the
sequences in the pre-defined alignment. An edit site is
predicted if a C-to-U change in a codon causes it to
produce an amino acid that is found in more of the homol-
ogous proteins than the amino acid coded for by the une-
dited codon. If a cutoff value is specified by the user, the
score of the edited version of the codon must also be >C.

The major difference between each server is in the set of
homologous proteins used for comparison to the input
sequence. For PREP-Aln, the protein homologs derive
from the RNA-tagged sequences in the input file provided
by the user. PREP-AlIn pulls out all of the DNA sequences
from the input alignment, and then builds the homologous
protein alignment by translating the RNA sequences
remaining in the input alignment. PREP-Aln then com-
pares each of the pulled DNA sequences to the translated
RNA alignment. For PREP-Mt and PREP-Cp, the set of
homologous proteins is determined by the user when the
gene name parameter is specified. These alignments of
known mitochondrial or chloroplast proteins have
been pre-generated from data available in GenBank and
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A Mitochondria Genes  Pos Neg

Arabidopsis 31 433 5938

Brassica 32 417 5927
Oenothera 23 378 4453
Beta 30 353 5471
Nicotiana 36 514 6224
B r— Oryza 34 485 5990
L— Titicum 26 439 4784
Liriodendron 39 816 6043
Amborella 38 835 5809
Ginkgo 14 541 2010
B Chloroplast

Arabidopsis 15 29 2726
Pisum 26 27 4429
Nicotiana sylv. 16 33 3674
Nicotiana taba. 17 38 3751
Atropa 16 31 3681
Saccharum 14 23 3288
I__r_E Zea 22 26 4589
Oryza 14 25 3634
——— Phalaenopsis 29 42 4760
Pinus 14 27 1925

L L L L L L L ]

Figure 2. Seed plants with extensive editing data for (A) mitochondrial
genes and (B) chloroplast genes. For each species is listed the number
of genes with editing information, along with the number of edited
(Pos) and unedited (Neg) cytidines found in those genes. The chrono-
gram shows evolutionary relationships and approximate divergence
times for species. Divergence times are listed in millions of years
(MYA) and were taken from published analyses (22,23). Species in
black were used to generate the sets of homologous protein alignments
and to optimize the cutoff value. Species in red were used for the
unseen tests only.

literature sources. The mitochondrial alignments were
described previously and consist predominantly of six spe-
cies with widespread transcriptomic sequence data
(Figure 2A), and three species (Marchantia polymorpha,
Chara vulgaris, Chaetosphaeridium globosum) that lack
RNA editing (16). To create the chloroplast alignments,
chloroplast genomes from seed plants whose transcrip-
tomes have been extensively examined for editing
(Figure 2B) were downloaded from GenBank. The
known positions of edit sites were used to reconstruct
mature, edited RNA sequences and these sequences were
translated using the standard genetic code. Homologous
proteins were aligned with ClustalW and manually
adjusted when necessary to produce a collection of 35
alignments representing all chloroplast genes with evi-
dence for editing in at least one of the seed plants in this
study (Figure 2B).

PERFORMANCE EVALUATION

To evaluate predictive performance, PREP-Mt and
PREP-Cp were subjected to several tests. Prediction
results for all cytidines were compared with their known
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editing status and then classified as true positives (TP) or
true negatives (TN) when correct, and false positives (FP)
or false negatives (FN) when incorrect. Performance
was evaluated using several standard measures including
sensitivity (Sens), specificity (Spec), positive predictive
value (PPV), and Matthews Correlation Coeflicient
(MCC):

Sens = TP/(TP + FN),
Spec = TN/(TN + FP),
PPV = TP/(TP + FP),

TP x TN — FP x FN

MCC = .
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

It was not necessary to independently test the performance
of PREP-Aln. This is because PREP-Aln produces results
that are identical to PREP-Mt and PREP-Cp if given the
same set of inputs and homologous sequences.

Optimization of the cutoff value

As already mentioned, the cutoff value, C, affects the
number of edit sites that are predicted. Lower values pro-
duce more TP but also more FP, whereas higher values
produce fewer of both. To examine the effect of the cutoff
value on PREP-Mt and PREP-Cp predictive performance,
genes from species listed in black in Figure 2 were
subjected to leave-one-out cross-validation over a range
of C (Figure 3). As observed previously (16), PREP-Mt
performed well over a broad range of cutoff values from
0 to 0.6 (Figure 3A). PPV increased slightly over this range
indicating a mild increase in the efficiency of prediction,
whereas sensitivity dropped a little due to a small reduc-
tion in the number of true edit sites identified. MCC
remained steady at 82-83% suggesting that the trade-off
between sensitivity and PPV was quite balanced over this
range, with a slight peak of performance at C =0.2.
PREP-Mt performance diminished noticeably at cutoff
values >0.6. The performance results of PREP-Cp show
that it behaves quite differently (Figure 3B). PREP-Cp
performed increasingly better with higher cutoff values,
achieving maximal overall performance at C = 0.8 with
a MCC of 76%. The need for a high cutoff for accurate
prediction in seed plant chloroplasts may result from the
fact that there are so few true edit sites present, making
it critical to keep FP as low as possible.

Predictive performance

There are now four published methods to predict sites
of RNA editing in plant mitochondrial genes (15-18).
Two of these approaches (15,17) were not tested here for
two reasons: (i) they are not available online, and (ii) their
published specificity is low, which results in a large
number of false positive predictions due to the fact that
the vast majority of cytidines in the mitochondrial tran-
scriptome are not edited. Performance of the two online
resources, PREP-Mt and CURE, has been compared
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Figure 3. Effect of the cutoff value. Performance of (A) PREP-Mt
Score and (B) PREP-Cp Score are shown for a series of cutoff values
ranging from 0 to 1. Performance was visualized by plotting sensitivity
(Sens), positive predictive value (PPV) and Matthews Correlation
Coefficient (MCC) for each cutoff value. Maximal performance mea-
sures are shown with large open circles. Maximal MCC values were
used to determine optimal cutoff values in the tests of unseen data.

previously (18). In that publication, the CURE method
was shown to perform slightly better than PREP-Mt
on angiosperms with extensive editing data. However,
because the CURE method relies on the shared ancestry
of edit sites, it is unclear whether it will perform as well on
unseen data from species that are more distantly related
to the angiosperms used for training.

To test the performance of PREP-Mt and CURE
on unseen data, unpublished editing information was
obtained from four species (Nicotiana tabacum,
Liriodendron tulipifera, Amborella trichopoda and Ginkgo
biloba) that are progressively more distantly related to the
angiosperms used for training (Figure 2A). These new
data were evaluated with PREP-Mt using a cutoff value
of 0.2 (based on optimizations shown in Figure 3) and
with CURE wusing default settings (Table 1). For
Nicotiana, which is most closely related to the training
species, CURE performs slightly better overall with a
MCC of 87% versus 85% for PREP-Mt, consistent with
previous results (18). However, CURE performance gets
progressively worse as evolutionary distance increases:
MCC drops to 80%, 71% and 47% for Liriodendron,
Amborella and Ginkgo, respectively. In contrast, MCC
for PREP-Mt stays >80% for all species and achieves
the highest score for Ginkgo, the most evolutionarily dis-
tant species tested. Both methods consistently return very
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Table 1. Performance of PREP-Mt and CURE on unseen data
Species Software TP N FP FN Sens Spec PPV MCC
Nicotiana CURE 430 6189 35 84 0.837 0.994 0.925 0.870
PREP-Mt 428 6173 51 86 0.833 0.992 0.894 0.852
Liriodendron CURE 583 6006 37 233 0.714 0.994 0.940 0.800
PREP-Mt 676 5986 57 140 0.828 0.991 0.922 0.858
Amborella CURE 500 5762 47 335 0.599 0.992 0.914 0.712
PREP-Mt 655 5729 80 180 0.784 0.986 0.891 0.814
Ginkgo CURE 162 1996 14 379 0.299 0.993 0.920 0.472
PREP-Mt 462 1976 34 79 0.854 0.983 0.931 0.865
Overall CURE 1675 19953 133 1031 0.619 0.993 0.926 0.733
PREP-Mt 2221 19864 222 485 0.821 0.989 0.909 0.847
Table 2. Performance of PREP-Cp on training data
Species TP TN FP FN Sens Spec PPV MCC
Arabidopsis 26 2711 15 3 0.897 0.994 0.634 0.751
N. tabacum 31 3747 4 7 0.816 0.999 0.886 0.849
Atropa 29 3674 7 2 0.935 0.998 0.806 0.867
Zea 25 4577 12 1 0.962 0.997 0.676 0.805
Oryza 22 3624 10 3 0.880 0.997 0.688 0.776
Phalaenopsis 34 4739 21 8 0.810 0.996 0.618 0.705
Pinus 24 1894 31 3 0.889 0.984 0.436 0.616
Overall 191 24966 100 27 0.876 0.996 0.656 0.756
Table 3. Performance of PREP-Cp on unseen data
Species TP N FP FN Sens Spec PPV MCC
Pisum 22 4405 24 5 0.815 0.995 0.478 0.621
Nicotiana sylvestris 32 3672 2 1 0.970 0.999 0.941 0.955
Saccharum 23 3285 3 0 1.000 0.999 0.885 0.940
Overall 77 11362 29 6 0.928 0.997 0.726 0.819

high specificity values (98-99%), which is a critical
requirement for any predictor of editing to keep FP pre-
dictions low. The major difference between the two meth-
ods is in their ability to detect edit sites. The sensitivity
for CURE falls from a high of 84% for Nicotiana to only
30% for Ginkgo, whereas PREP-Mt sensitivity ranges
from 78% to 86% for all four species. The wide variation
in results for CURE suggests that it may be overoptimized
for the data used for training. PREP-Mt does not seem
to suffer the same problem, and therefore may be more
reliable in general.

PREP-Cp was also subjected to a series of performance
tests. PREP-Cp performance was first examined on species
present in the pre-defined sets of protein alignments using
leave-one-out cross-validation (Table 2). These results
derive from the cutoff value optimization tests performed
previously (Figure 2B). Results using the optimal C = 0.8
are shown. Overall results from PREP-Cp are quite good,
although there is some variation in individual species per-
formance. MCC is highest for Atropa (87%) and lowest

for Pinus (62%). This variability is not due to an inability
of PREP-Cp to find edit sites because sensitivity is high
(81-96%) for all seven species. Rather, the variability of
performance among species can be largely attributed to
the number of FP predictions. Nicotiana and Atropa
have the highest MCC and the fewest FP, whereas Pinus
and Phalaenopsis have the lowest MCC and the most FP.
PREP-Cp was evaluated on unseen data as well (Table 3).
Results for N. sylvestris and Saccharum are very good,
which is not surprising because their editing profiles are
very similar to N. tabacum and Zea, respectively. Pisum
performs more poorly, again the result of a high level
of FP. The variability in performance of chloroplast
editing may, in part, be due to the incomplete nature
of the experimental analyses performed for some
species. Several of the FP predictions made by PREP-Cp
may in fact be real edit sites that have yet to be
verified experimentally. PREP-Cp thus provides a useful
platform to search for novel edit sites in chloroplast
transcriptomes.
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CONCLUSIONS

The PREP suite is a family of web servers dedicated
to predicting sites of RNA editing in plant organellar
genes. The PREP-Mt server was developed several
years ago (16) to find mitochondrial edit sites, and it
has been used in a number of genomic (24), evolutionary
(25-28) and phylogenetic (29-31) studies that required
knowledge of the location of sites of RNA editing.
PREP-Mt performs well on all seed plants tested to
date, whereas CURE performed poorly on unseen data
from several angiosperms and a gymnosperm. Given the
strong performance of PREP-Mt, the same methodology
has now been applied by the PREP-Cp server to the prob-
lem of chloroplast RNA editing. PREP-Cp performs well
and is the first and only online tool to predict edit sites in
chloroplast genes. The third server, PREP-Aln, is also
unique and allows the user to supply custom alignments
for prediction, allowing greatest flexibility for advanced
users.

AVAILABILITY

The PREP suite is available at http://prep.unl.edu/. It is
free for all to use and there is no login requirement.
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