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Cancer-related Fatigue and Sleep Disorders: The 
Need for Further Research

Human fatigue is a multidimensional symptom that is char-
acterized by considerable variation in definition, description, 
and perception on the part of both the patient and the health-
care provider.117 Because of this variation, the assessment of fa-
tigue requires consideration of a number of its features, including 
perceived severity, degree of interference with normal activities, 
daily pattern of occurrence or exacerbation, associated distress, 
and progression or regression over time.131 Cancer-related fatigue 
is defined as a subjective report of tiredness that is associated with 
cancer or its treatment, is persistent, extends in duration or sever-
ity beyond that which might be expected based on a subject’s 
recent physical activity, and is severe enough to cause distress 
and interfere with usual functioning.119 Patients with cancer often 
describe fatigue based on 4 physical changes: decreased physical 
performance, unusual or extreme tiredness, feelings of weakness, 
and unusual need for rest.65,176

Fatigue and disturbed sleep are common short- and long-
term problems experienced by many cancer patients and survi-
vors.7,14,17,86,127 Fatigue is reported by as many as 40% of cancer 
patients at the time of diagnosis, up to 90% of those treated with 
radiation, and up to 80% of those treated with chemotherapy; 
furthermore, fatigue continues for months or years after comple-
tion of treatment in about a third of survivors of cancer.74 Fatigue 
is common in many types of malignancies, including leukemia, 
lung carcinoma, and breast cancer, and is reported to occur be-

fore, during, and after therapy5,17,52,81,97,110,123 One recent study115 
identified greater likelihood of objectively reported fatigue, sleep 
disturbance, and daytime sleepiness among a large population 
of adult survivors of various childhood cancers, including acute 
lymphocytic leukemia, central nervous system tumors, Hodgkin 
lymphoma, soft-tissue sarcomas, and bone tumors, as compared 
with their siblings.

Fatigue is a common problem for breast cancer patients, who 
often develop fatigue in association with both the disease and its 
treatment.5,26,113 For example, patients with breast cancer score 
significantly higher on the Fatigue Symptom Inventory prior to 
adjuvant treatment, regardless of whether the cancer is invasive.2 
Among breast cancer survivors, fatigue is reported by up to 90% 
of patients who received chemotherapy or radiation,81 with re-
sidual fatigue often persisting after or between treatments.7 How-
ever, the relationship of fatigue to therapy is not consistent across 
studies. Some studies report that women with breast cancer expe-
rience both disturbed sleep and fatigue before they begin chemo-
therapy,5 others find higher levels of fatigue among patients who 
received chemotherapy105,174 or both chemotherapy and radia-
tion,30 and still others find no difference in level of fatigue as a 
function of type of treatment.7,20 Cancer-related fatigue can persist 
long after remission. For example, 1 study linked cancer therapy 
to fatigue that began beginning early in the recovery period after 
treatment and in some cases persisted for as long as 10 y.30,31

Cancer-related fatigue may be in part related to disturbed 
sleep, although the precise nature of the relationship and the 
most prevalent types of sleep disorders in cancer survivors have 
yet to be determined.4 The International Classification of Sleep 
Disorders can be used to diagnose primary sleep disorders in 
cancer patients and survivors.19 Insomnia and daytime sleepi-
ness (hypersomnia) are prevalent and often chronic problems 
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ous health conditions made worse by the disease or treatment, 
or psychologic responses to the diagnosis or treatment of cancer. 
Some other potential causes of fatigue during cancer and cancer 
treatment include functional impairments of cancerous or related 
organ systems and tissues (for example, brain, muscle, gut, liv-
er, bone marrow, vasculature, lung kidneys, pancreas, thyroid), 
associated neurotransmitter and hormone dysregulation, and 
general problems such as anorexia, cachexia, depression, and 
pain.7,30,34,140 In addition, socioeconomic factors may influence the 
development of fatigue. For example, breast cancer patients were 
more likely to be fatigued 6 months after treatment if unmarried, 
in a lower income bracket, more fearful of fatigue, obese, or more 
sedentary.53 In response to a standardized social stressor, fatigued 
breast cancer survivors showed a significantly blunted cortisol re-
sponse as compared with nonfatigued survivors, suggesting that 
the enduring fatigue is associated with dysregulation in hypotha-
lamic–pituitary–adrenal axis responsiveness.24 Fatigue has been 
reported to predict survival time of terminal cancer patients.67

Depression is a strong predictor of fatigue in cancer patients, in-
cluding those whose fatigue persists long after treatment,30,31 and 
both fatigue and depression may improve in response to the same 
therapy. For example, psychologic and educational intervention 
focused on coping with common fears improved fatigue, energy, 
cancer-specific distress, and depression in cancer survivors.154 An-
other potential treatment for both depression and fatigue is light 
therapy, which both strengthens diurnal rhythms and improves 
mood.100 Patients who survive cancer eventually experience less 
interaction with a medical team, decreased emotional support, 
and perhaps fear of cancer recurrence; such factors have been 
linked to increased depression and fatigue.10,109,154,167,168

Cancer patients often describe their fatigue as a lack of energy, 
which could indicate that fatigue is caused by changes in metabo-
lism and energy generation, particularly in skeletal muscles.64 
In addition, patients undergoing chemotherapy often develop 
anorexia, and reduced food intake could reduce energy avail-
ability and contribute to fatigue.113 Cancer-related anorexia and 
cachexia affect about half of all patients with cancer, often preced-
ing death.96,104,141 However, reduced food intake is not the sole 
cause of cancer-related weight loss, because increasing caloric 
intake may not reverse the weight loss.156

Anemia affects as many as half of all cancer patients, with po-
tential adverse effects on QOL, yet this condition is often undi-
agnosed and untreated.68,76,88,111 Studies using validated survey 
instruments to assess fatigue and QOL in patients receiving che-
motherapy find a relationship between chemotherapy-induced 
anemia, fatigue, and QOL, with improvements in all measures 
achieved by treatment for anemia.38 A recent review of 18 clinical 
trials found statistically and clinically significant improvements 
in both hemoglobin and health-related QOL (particularly with 
regard to fatigue) in cancer patients receiving anemia treatment 
as compared with those receiving placebo or standard of care.86 
For example, anemic cancer patients who were treated with re-
combinant human erythropoietin α reported increased energy 
and improved QOL.50,68

Some chemotherapeutic agents cause neurotoxicity, which 
could induce neuromuscular weakness that might contribute to 
feelings of fatigue. However, the interactions of neurotoxicity and 
fatigue can be complex. For example, the chemotherapeutic drugs 
known as taxanes produce their anticancer effects by stabilizing 
microtubules and thereby interfering with mitosis. By stabiliz-

in cancer patients, with sleep–wake disturbances affecting be-
tween 30% and 60% and persisting in nearly 30% of breast cancer 
patients for months after surgery.63,84,143 Women also list sleep 
problems as among the most distressing symptoms experienced 
during chemotherapy.20 Cancer patients often report altered di-
urnal rhythms, the ability to sleep better during the day, or being 
able to sleep for only 3 or 4 h before awakening.176 Problems with 
sleep, including daytime sleepiness and sleep disturbances, also 
influence perceptions of fatigue.17,18 Patients are more likely to 
experience sleep disturbances, insomnia, or depression after di-
agnosis of cancer if they displayed 1 of those symptoms prior to 
diagnosis or treatment.30,31,142

Numerous factors have been invoked to explain the occur-
rence of fatigue and sleep disorders in cancer patients and sur-
vivors. Factors associated with the development of fatigue and 
disturbed sleep include type of treatment (for example, surgery, 
chemotherapy, radiation therapy, immunotherapy; Figure 1), 
comorbid conditions (for example, anemia, malnutrition, heart 
failure), ancillary medications (for example, opioids, steroids), 
anxiety, depression, physical inactivity, and pain.4,77,117,131,162 Dis-
turbed sleep that may contribute to fatigue also can develop due 
to environmental factors (for example, excess noise and light) 
and dietary factors (for example, caffeine and alcohol consump-
tion).19,118 Therefore, not surprisingly, sleep disorders can cause 
fatigue, daytime sleepiness may be difficult to differentiate from 
fatigue, and epidemiologic studies demonstrate a clustering of 
fatigue and sleep disorders in cancer survivors.87,138,171

Circadian rhythms, which are also known as diurnal rhythms, 
are the normal daily ‘approximately 24-h’ cycles of physiologic 
processes and behaviors; disruptions in normal circadian rhythm 
disruptions are postulated to contribute to cancer itself, as well 
as to cancer-related fatigue.140 Circadian rhythms influence can-
cer development and treatment through the activity of so-called 
‘clock genes,’ which modulate the timing and progression of the 
cell cycle, cell division, and apoptosis.23,40,107 Consistent with a 
role for clock genes and associated processes in reducing cancer 
risk and controlling tumor growth, prolonged exposure to shift 
work and repeated jet lag are associated with increased risk of 
cancer in people.59,89,114,132,135,144 In addition, alterations in behav-
ioral and hormonal diurnal rhythms are associated with risk of 
death in patients with metastatic colorectal and breast cancer, 
respectively.112,148 In addition to clock genes, disruption of normal 
diurnal cycles of other hormones, notably melatonin, might influ-
ence cancer risk, tumor growth, and potentially fatigue.

Numerous pharmacologic and nonpharmacologic therapies 
have been recommended for treating both fatigue and sleep 
disturbances in general and as they develop in association with 
cancer, but these treatments achieve limited success.117 Fatigue 
and disturbed sleep negatively impact quality of life (QOL) and 
may predispose patients to poor psychosocial outcomes, reduce 
compliance with treatment, and lead to interrupted or premature 
withdrawal from treatment, thereby potentially affecting clinical 
outcome and even survival (Figure 1).4,63,113,117,147 The prevalence 
of fatigue and disturbed sleep in cancer patients underscores the 
need to assess more fully potential underlying mechanisms of 
fatigue with a view toward developing improved treatments for 
these conditions, thereby improving QOL (and perhaps treatment 
compliance and clinical outcomes) for cancer patients.

Cancer and fatigue: associated conditions. Fatigue during can-
cer may be associated with the disease itself, the therapy, previ-
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limiting process that is critical for survival. However, some health 
conditions are associated with inflammation that does not resolve 
or self-limit, but rather becomes chronic. Substantial evidence 
supports a causal link between chronic inflammation and the ini-
tiation and progression of cancer.12,13 In addition, tumors often 
contain an infiltrate of inflammatory cells that, together with neo-
plastic cells, express a complex array of cytokines and chemok-
ines.12,43,72,93,174 Cytokines orchestrate communication between 
tumor cells, stromal cells, and tumor-infiltrating immune cells, 
whereas chemokines coordinate trafficking of immune cells into 
areas of inflammation. The immune cells that enter the tissue in 
response to chemokines in turn secrete additional cytokines and 
other tumor promoting mediators. These processes can influence 
tumor progression. For example, infiltration by large numbers of 
macrophages is associated with poor prognosis in some human 
cancers,99 and cytokine production by tumor cells has been as-
sociated with aggressive tumors that grow more rapidly and are 
more likely to metastasize.3

Numerous studies indicate that inflammation and the immune 
response can influence sleep.161 Research that began in the 1970s 
demonstrates that cytokines, particularly the proinflammatory cy-
tokines IL1β and TNFα, are powerful modulators of sleep-wake 
behavior. In general, substances or manipulations that induce 
IL1β or TNFα increase sleep, whereas substances that inhibit the 
synthesis or actions of these cytokines reduce sleep.92,122 In rats, 
mRNA and protein concentrations of IL1β and TNFα vary diur-
nally in brain, with peaks occurring during the sleep phase.32,61 

ing microtubules, taxanes also interfere with neuronal function. 
A comparison of the taxanes paclitaxel and docetaxel in Wistar 
rats showed that both agents reduced nerve conduction velocity 
to a similar degree in a dose-dependent manner, yet histologic 
nerve damage was more severe after paclitaxel administration 
and for both drugs was less severe than expected based on the 
neurophysiologic findings.128 These results were interpreted to 
suggest that taxanes exert their neurotoxic effect not only via 
microtubular stabilization in peripheral nerves but also through 
other unknown mechanisms.128 Paclitaxel neuropathy has been 
associated with hyperalgesia and allodynia in rats in the absence 
of motor impairment.130

Patients receiving treatment for cancer often show diminished 
physical and functional wellbeing as compared with patients not 
receiving treatment.33 Planned postintervention rehabilitation can 
be used to improve strength and cardiovascular conditioning and 
reduce pain and fatigue after treatment.151 Maintaining an exer-
cise program of moderate intensity, individualized to the patient’s 
specific needs, reduced fatigue significantly both during and after 
cancer treatment.145 A meta-analysis of 41 trials that used fatigue 
as an outcome measure for psychologic and activity-based inter-
ventions in adult cancer patients suggested some efficacy of non-
pharmacologic interventions to manage cancer-related fatigue, 
although a paucity of research with heightened fatigue as an eli-
gibility criterion weakened the strength of the conclusions.80

Cytokines, inflammation, and fatigue during cancer and cancer 
therapy. Acute inflammation is a complex, tightly regulated, self-

Figure 1. Effects of cancer and cancer therapy on sleep and fatigue. Cancer and its various treatments have the capacity to cause fatigue via effects of 
sleep. In addition, fatigue may be associated with an increased need for or desire to sleep in cancer patients. These problems can have adverse conse-
quences for the patient.
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Data from both animal and human studies suggest that short-
term sleep loss may be associated with enhanced nonspecific host 
defense mechanisms, whereas chronic or prolonged sleep loss, 
as may occur in cancer patients, can result in immune impair-
ment.78,91,137,158 The contention that sleep loss impairs immune 
competence is most strongly supported by observations that 
chronic unremitting sleep deprivation of rats results in intestinal 
bacterial proliferation, microbial penetration into lymph nodes, 
and septicemia, culminating in about 3 wk in death.55-57 In the 
only animal study we are aware of that evaluates the effects of 
sleep loss on cancer, total sleep deprivation retarded the growth 
of an allogeneic tumor in rats, implying immune enhancement.21 
However, this study did not evaluate the potential impact of 
other physiologic factors (for example, significant weight loss 
and metabolic changes that occur in sleep-deprived animals as 
compared with the control group). Therefore, the direct effects 
of impaired sleep or sleep loss on tumor growth and progression 
are essentially unknown, as are their effects on the response to 
chemotherapy.

Studies of the relationship between normal sleep duration and 
cancer risk have generated mixed conclusions. For example, 1 
study of 4033 women with invasive breast cancer and 5314 com-
munity women without breast cancer found that greater sleep 
duration was modestly associated with increased risk of breast 
cancer, although short duration of sleep (less than 7 h/night) was 
not.108 In contrast, an analysis of data that were collected from 
twins over a 20-y period found a significantly lower risk of devel-
oping breast cancer in women who reported sleeping more than 9 
h/night,164 whereas a study of 4223 incident cases of breast cancer 
among 77,418 women found no significant relationship between 
sleep duration and the incidence of breast cancer.129

The study of symptoms in humans and animals. Despite the im-
portance of symptoms with regard to health-related quality of 
life (HR-QOL), the subjective and ambiguous nature of assessing 
symptoms has constrained research on this important topic. As 
a result, little in known about the causes of, and even less about 
the prevention or alleviation of, the prevalent and debilitating 
symptoms that reduce human HR-QOL during prolonged or 
chronic disease. The use of animal models to study subjective 
human symptoms (for example, fatigue) is particularly challeng-
ing as compared with conditions that can be evaluated based on 
objective clinical markers. However, studying symptoms in hu-
man populations is also difficult. Even those human studies with 
well-defined patient and control groups must accommodate high 
genetic and environmental heterogeneity and difficulty in assur-
ing behavioral or reporting compliance with study design. For 
example, in human populations, the imposition of day-to-day de-
mands can cause voluntary curtailment of sleep, and elimination 
of substances like caffeine and alcohol cannot be assured. Because 
of such considerations, the crucial determinants and associated 
symptoms and signs of disease that develop in humans vary 
widely across persons, and studies of mechanisms are largely 
retrospective and correlative.

In contrast to human populations, inbred strains of laboratory 
mice have well-defined and reproducible genetics, can be main-
tained in identical environments, can be exposed to challenges at 
defined doses and ages, can be subjected to standardized treat-
ments, and can undergo euthanasia for sample collection of times 
of interest. Furthermore, the large variety of readily available, 
genetically defined inbred strains of mice provides a simple sur-

In humans, plasma concentrations of TNFα peak during sleep.70 
Administration of exogenous TNFα or IL1β increases both time 
spent in slow-wave sleep and electroencephalographic slow-
wave amplitudes during sleep (a measure of the depth of sleep) 
in a variety of species.49,58 Accumulating evidence suggests that 
IL6 also modulates sleep. IL6 is elevated during conditions associ-
ated with excessive daytime sleepiness (for example, narcolepsy, 
obstructive sleep apnea).166 IL6 concentrations vary in phase 
with sleep–wake behavior in humans and rats.69,165 In healthy 
volunteers, prolonged wakefulness increases IL6 concentrations 
in plasma,149 and administration of IL6 increases sleep.153

Tumor growth and therapy, including chemotherapy, im-
munotherapy, and radiotherapy, typically are associated with 
inflammation and the production of an associated array of proin-
flammatory and sleep-modulatory cytokines, including TNFα, 
IL1β, and IL6.13,16,41,120 For example, the chemotherapeutic drugs 
paclitaxel, tamoxifen, and cisplatin increase serum levels of sleep-
modulatory cytokines in cancer patients.94,133 These and other 
cytokines have been also associated with chronic fatigue.39,94,126 
In persistent cancer-related fatigue, abnormal or unresolved in-
flammatory activation may also continue beyond the treatment 
period and into the remission phase. For example, a study of 
breast cancer survivors with persistent fatigue revealed that their 
immune systems remained activated for as long as 5 y after di-
agnosis, with circulating levels of inflammatory cytokines that 
were up to 5 times higher in breast cancer survivors who had 
fatigue as compared with those who did not.42 Cancer survivors 
with fatigue also may have an altered glucocorticoid response 
to stress;27 this altered response might contribute to both altered 
immune activation and problems with sleep. Two immunologic 
markers, the ratio of soluble IL6 receptor to monocyte-associated 
IL6 receptor and low numbers of circulating CD69+ T lympho-
cytes, were highly diagnostic of fatigue in a cross-validated study 
of breast cancer survivors.42 Collectively, these data demonstrate 
that sleep-modulatory cytokines are likely to be perturbed in can-
cer patients and support the possibility that cytokines contribute 
to their sleep disruption and fatigue.

Inflammation also has been associated with other common 
symptoms and clinical correlates of cancer. For example, proin-
flammatory cytokines can cause anorexia, anhedonia and depres-
sion, and may perturb CNS systems that regulate energy balance, 
the hypothalamic–pituitary–adrenal axis, the sympathetic ner-
vous system, and the immune system.6,104,141 Rapid induction of 
proinflammatory cytokines can also suppress the formation of 
red blood cells, leading to mild or moderate anemia.69 Inflamma-
tory cytokines have also been linked to serotonin dysregulation, 
fatigue and depression.140,172 For example, administration of the 
cytokine interferon α as a cancer chemotherapeutic agent causes 
anorexia and fatigue that are not easily controlled with antide-
pressant medication.37,103,134 A weighted meta-analysis of cancer 
studies measuring inflammatory markers and fatigue showed 
significant positive correlation between fatigue and circulating 
levels of IL6, IL1 receptor antagonist, and neopterin but not IL1β 
or TNFα.146 A study of patients with metastatic colorectal can-
cer revealed significant correlations among serum levels of IL6, 
circadian patterns of activity, serum cortisol, and tumor-related 
symptoms, including fatigue, supporting the hypothesis that 
some cancer symptoms are related to tumor- or host-generated 
cytokines and could reflect cytokine effects on the circadian tim-
ing system.136
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of running wheel activity as an index of fatigue in mice can be 
broadened by concurrent measurement of horizontal locomotion 
on the cage floor. Horizontal locomotion, which incorporates the 
activity necessary for essential maintenance behaviors such as 
feeding, drinking, and grooming, can be viewed as largely obliga-
tory and to some degree essential for life. In contrast, running 
wheel activity is voluntary, is not essential for survival, and per-
haps can even be viewed as recreational. Comparison of running 
wheel activity and normal (obligatory) locomotion in the home 
cage offers the advantages of simplicity and spontaneity of be-
havior. Furthermore, conditions or treatments that alter spontane-
ous activity on the running wheel do not necessarily alter normal 
locomotor (obligatory) activity. Rodents with overtly impercep-
tible illness may reduce running wheel but not locomotor activity, 
thus providing an objective yet nonverbal measure of well being 
that is consistent with fatigue.

Other approaches to quantifying fatigue could include, for ex-
ample, measuring motivated behavior by requiring the animal to 
press a bar to obtain food, monitoring the animal’s willingness to 
avoid or terminate a mildly aversive stimulus, such as a vibration, 
shock, or air puff, or using a forced activity such as swimming. 
However, these approaches introduce other complicating factors 
such as, respectively, the need for food restriction and the effect 
of cancer-related changes in appetite, sensory or motor impair-
ments associated with the tumor or its treatment, or exposure of 
the animal to severe stress due to life-threatening situations. A 
recent model used both timed swimming tests and assessment of 
postswim grooming and rearing to differentiate muscle strength, 
motor impairments, and postexertional fatigue.35 In this model, 
mice that lacked vitamin D receptors were similar to controls in 
preswim activity and in the time taken to swim a 1-m distance 
to reach a visible platform; however, in contrast to normal mice, 
which displayed high levels of grooming and rearing after the 
swim, the deficient mice were far less active, suggesting postex-
ertional fatigue.35

Changes in sleep may provide indirect indications of fatigue. 
However, the relationship between sleep and fatigue is complex 
in that behavioral activity and sleep can either reflect fatigue (that 
is, less activity and more sleep in fatigued subjects) or contribute 
to fatigue (that is, increased physical activity and inadequate sleep 
can cause fatigue). To our knowledge, electroencephalography-
based assessment of sleep in animals undergoing cancer or che-
motherapy has not been reported. However, studies in mice with 
infectious or inflammatory disease indicate how such evaluations 
can contribute to assessment of fatigue. For example, C57BL/6 
mice develop both increased sleep and reduced locomotor activ-
ity during the active phase after inoculation with influenza virus, 
whereas infected BALB/cByJ mice show poor-quality or reduced 
sleep during their normal diurnal rest phase as well as reduced ac-
tivity and impaired sleep during the dark phase.157,160 In another 
example, both C57BL/6J and BALB/cByJ mice develop reduced 
locomotor activity after injection with synthetic double-stranded 
RNA (poly I:C) or Newcastle disease virus, but only the C57BL/6J 
mice show an associated significant increase in sleep.157

Rodents also can be used to study the association between in-
flammation and symptom development during cancer or cancer 
treatment. For example, in mice, Lewis lung carcinoma 1 (LLC1) 
tumor and the chemotherapeutic drug etoposide both increase se-
rum IL6,175 which has been associated with anorexia in rodents.90 
However, whereas the drug reduced food intake for 24 h after ad-

rogate for human genetic diversity. However, the study of symp-
toms of disease in animals often triggers questions such as “How 
do you know it’s really fatigue?” Questions of this type are well-
intended and important in their implications, yet they seem to 
overlook an important feature of clinical medicine: healthcare 
providers routinely rely on subjective behavioral signs to diag-
nose and successfully manage health problems in their patients. 
For the pediatrician, parental report and observed behavioral 
changes are crucial for evaluating preverbal children. Similarly, 
because veterinary patients cannot self-report their condition, 
veterinarians rely extensively on observed and owner-reported 
behavioral changes when diagnosing and treating animals. These 
behavioral assessments constitute a vital supplement to objective 
measurable signs of illness (for example, fever, weight loss, clini-
cal chemistry values). Such behavioral approaches to medicine 
are also bulwarks for medical and nursing management of psy-
chiatric and mentally handicapped patients. Behaviorists (and 
parents and animal owners) know that children and animals can 
respond in nonverbal ways that convey their ‘feelings.’ For ex-
ample, children may become noticeably less active and lose their 
appetites when they are ill.

So-called ‘sickness behaviors’ (for example, fatigue, anorexia, 
anhedonia, reduced social interaction) have been linked to facets 
of the host response to immune or inflammatory challenge in 
both people and animals.46,47,170 As reviewed in preceding sec-
tions, ample evidence links facets of the host defense response 
to altered sleep or fatigue in animals and people.101,159 Given this 
relationship, prolonged production of even low levels of sleep-
promoting or sleep-disruptive cytokines (for example, IL1β, IL6, 
and TNFα) may underlie fatigue associated with chronic illness. 
For example, chronic low-level or nonresolving immune activa-
tion has been associated with chronic fatigue in breast cancer sur-
vivors.25,29 However, fatigue remains largely unexplored under 
either acute or chronic conditions. Therefore, establishing models 
for immune-related or cancer-related fatigue in animals could 
provide a means of studying (and eventually understanding) 
how immune factors may cause fatigue regardless of the etiology 
of the immune stimulation.

Approaches to measuring fatigue in rodents during cancer and 
cancer therapy. The assessment of sleep in mammals, including 
people, is based on evaluation of the electroencephalogram, the 
electromyogram, and other physiological measures in a process 
known as polysomnography.159 These generally accepted mea-
sures allow the quantitative evaluation of sleep for both clini-
cal (human) and experimental (human and animal) purposes. 
However, in contrast to sleep, the subtle and subjective nature 
of fatigue makes it a difficult variable to assess in both people 
and animals.75 This difficulty can be mitigated both clinically and 
experimentally by the use of objective performance measures to 
quantify fatigue (Figure 2).

One approach to meeting this challenge in animals is to evalu-
ate various forms of forced or spontaneous activity. A common-
ly used method is the measurement of voluntary activity on a 
running wheel. For example, mice given an antigenic challenge 
showed normal amounts of wheel running during the initial 2 
h after dark onset, but this active period was followed by a sub-
sequent reduction in running during the remainder of the dark 
(active) phase.125 This pattern may be analogous to that of peo-
ple who begin the day with normal energy but then experience 
unusual and increasing fatigue as the day progresses. The use 
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condition, posture, salivation, lacrimation, and vocalization. An 
appropriate panel of quantitative behavioral markers (exempli-
fied in Table 1) should then be evaluated.11,44,45 Open-field activity 
can be used to assess grossly observable signs of impaired mobil-
ity, including that which may be attributable to tumor location or 
size. Various tests of grip strength, balance, and motor coordina-
tion can differentiate fatigue from vestibular and neurotoxic side 
effects of chemotherapeutic drugs.

Gene–environment interactions can also influence the as-
sessment of fatigue and other cancer-related variables in mice. 
For example, physiologic concentrations of the pineal hormone 
melatonin show preventive, oncostatic, and inhibitory effects 
in various experimental models of cancer,82 and light-induced 
suppression of the normal nighttime production of melatonin 
has been implicated in increased cancer risk for those exposed to 
chronic shift work or repeated jet lag.8,15,48 However, many com-
monly used strains of rodents, including C57BL/6 and BALB/c, 
are deficient in production of melatonin, whereas other, includ-
ing C3H/He and CBA, show pronounced diurnal rhythms of 
melatonin.54,66,139,169 Therefore, choosing the appropriate mouse 
strain is essential to studying the potential role of melatonin in 
controlling cancer in mice. In addition, cancer can cause severe 
skeletal muscle wasting that can contribute to fatigue. Rats have 
been used to determine whether physical conditioning can re-
duce cancer-related muscle wasting73,124 and to differentiate the 
effects of interventions on chemotherapy-induced inactivity and 
anorexia.102

ministration, the tumor alone did not significantly influence food 
intake.175 Etoposide also reduced hemoglobin levels in nontumor-
bearing mice, although the reduction was not severe enough to 
be classified as anemia; mice with LLC1 developed anemia with 
or without etoposide treatment.175 To our knowledge, this study 
is the only 1 to date that has evaluated spontaneous behavioral 
activity or the development of fatigue in the context of cancer and 
chemotherapy in mice. In this study, administration of the chemo-
therapeutic agent etoposide reduced voluntary wheel running in 
both tumor-bearing and nontumor-bearing mice; furthermore, 
the reductions in wheel running were significantly correlated 
with serum concentrations of IL6175

A crucial factor in interpreting running wheel data is the ani-
mal’s physical ability to perform the behavior. For example, the 
chemotherapeutic drugs known as taxanes stabilize cellular 
microtubules and in that manner impair both cell division and 
neuronal transport. The former feature contributes to their che-
motherapeutic efficacy, whereas the latter causes the side effect of 
peripheral neuropathy in a substantial percentage of patients.95,105 
In 1 study, 2 of 5 mice that received the maximum tolerated dose 
of a taxane developed a transient paralysis in 1 hindlimb 6 d after 
the last dose121—this effect obviously would impair running abil-
ity. Because neurologic side effects may mask or mimic fatigue, 
rodents that show reduced wheel running or locomotor activity 
should undergo a comprehensive neurologic evaluation before 
investigators conclude that the fatigue is not due to neurologic 
impairment. This assessment can be accomplished by first eval-
uating qualitative measures of general wellbeing such as coat 

Figure 2. Assessment of fatigue in people and mice. Several approaches are available for the assessment of fatigue in both people and rodents. Subjec-
tive approaches involve responses to questions (people) or observation (research evaluation of rodents and, in human cancer patients, oral reports by 
care-givers). Objective approaches involve the acquisition of quantitative data regarding performance, anatomic variations (e.g., muscle atrophy), or 
physiological functions.
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Xenograft and syngeneic models both offer the advantages of 
experimental reproducibility, a precise known onset of tumor for-
mation, rapid tumor development, and easy tumor visualization. 
However, these models lack the stepwise genetic changes that 
accompany spontaneous tumor development and progression, 
as well as the native tumor stroma. In addition, the phenotypes 
of implanted cell lines are often altered by culture conditions and 
genetic drift and therefore may not accurately reproduce the phe-
notype of the tumor of origin. Finally, general technical caveats of 
cell culture systems, such as viral or Mycoplasma infection, mis-
labeling of individual cell lines, and uncertainty regarding the 
actual identity of the tumor of origin, must be considered when 
using xenograft and syngeneic tumor models.60,62 The normal 
immune competence of recipient mice used in syngeneic models 
makes them more likely than xenograft hosts to accurately repro-
duce the normal host reaction to a tumor, particularly if the tumor 
is implanted orthotopically. Because immune mediators, includ-
ing cytokines and chemokines, are implicated in the development 
of cancer-related fatigue,28,30,94,113 syngeneic models are probably 
more appropriate for studying such symptoms.

Genetically engineered mouse models, which provide in situ 
tumor development in an immune competent host, are an al-
ternative to traditional preclinical xenograft models. In general, 
these mice are engineered to overexpress a transgene (oncogene 
or point mutation), contain a genetic knock-in of a point muta-
tion, or have complete or conditional deletion of a specific gene 
(for example, using the cre–lox system).1,163 However, because 
the genomic alteration is present in the germ line or in a large 
proportion of somatic cells, most genetically engineered mouse 
models are more representative of human cancer predisposition 
syndromes rather than of random tumorigenesis. This situation 
contrasts with most human cancers, in which gene alterations are 
typically rare and stochastic.85 In addition, relatively few geneti-
cally engineered models develop metastases, and those that do 
tend to display metastases with different tissue specificity than 
occurs in human cancer.85,152 Despite these limitations, several 
genetic engineered models of breast cancer have been developed 
that replicate the molecular events that occur in human breast 
cancer.22,51,152 However, even these models differ in important 
ways from human breast cancer (for example, in terms of estro-
gen receptor status and metastatic pattern).152 Such differences 
could influence the tendency or mechanisms by which the host 
develops symptoms such as fatigue.

Another topic that merits discussion in the context of this re-
view is the comparative differences in sleep among rodents, hu-
mans, and other animal species. Most notably, many rodents are 
nocturnal. Thus, their primary sleep period occurs during the 
light phase. Furthermore, the sleep architecture of rodents is often 
highly fragmented compared with that of humans and other spe-
cies, whose sleep patterns are often characterized by long bouts 
of consolidated sleep. In addition, different strains of rodents vary 
widely in terms of both physiologic and behavioral characteris-
tics, including patterns of sleep. However, a discussion of strain 
variation in activity and sleep among mouse strains is beyond the 
scope of this review. Interested readers are referred elsewhere for 
comprehensive discussions of species and rodent strain differ-
ences in activity, sleep, and sleep architecture.36,98,150,155,159

Finally, despite the widespread use of rodent models in cancer 
research, several recent reviews discuss the context in which such 
models are generally valuable and provide caveats concerning 

General considerations in the use of rodents to study cancer and 
cancer-related fatigue. The utility of any specific animal model 
is influenced directly by how closely it reproduces the human 
disease (for example, in terms of histology, physiologic effects, 
biochemical pathways, and metastatic pattern). Mouse models for 
the study of cancer can be generally classified as spontaneous, en-
grafted (syngeneic, allogeneic, or xenogeneic), pathogen-induced, 
or chemically induced. Syngeneic models rely on the implanta-
tion or injection of tumor cells into immune-competent recipients 
of the same genetic background. In contrast, xenograft models 
rely on grafting of a tumor cell line derived from 1 species (for 
example, human) onto a different recipient species (for example, 
mouse). To prevent immunologic rejection of the foreign tissue, 
the immune response of the xenograft host must be impaired. In 
mice, this result is most commonly accomplished by using mouse 
strains or stocks that bear the mutations nude (Foxn1nu) or severe 
combined immunodeficiency (SCID; Prkdcscid). Mice that are ho-
mozygous for nude mutation have thymic epithelial dysgenesis 
that results in T cell deficiency.79 Consequently, these mice show a 
reduced lymphocyte population that is comprised almost entirely 
of B-cells, a poor response to thymus-dependent antigens, includ-
ing failure to reject allogeneic and xenogeneic skin and tumor 
grafts, and reduced B cells and bone marrow stem cells, due in 
part to the T-cell defect. Mice that bear the SCID mutation have 
a spontaneous mutation in protein kinase, DNA-activated, cata-
lytic polypeptide (Prkdc), which is instrumental in recombining 
the variable, diversity, and joining segments of immunoglobulin 
and T-cell receptor genes. Therefore, mice homozygous for the 
SCID mutation show absence of mature functional T cells and 
B cells, a normal hematopoietic microenvironment, and normal 
antigen-presenting, myeloid, and NK functions.79 SCID mice 
accept allogeneic and xenogeneic grafts, making them ideal for 
implantation of human tumor cell lines. Although the defective 
adaptive immune responses of nude and SCID mice allow the 
engraftment of primary human tumor cells or cell lines, these 
strains of mice have normal, or even increased, innate immune re-
sponses (for example, natural killer cells, antigen presenting cells, 
macrophages, and complement). Therefore, the nature of the host 
immune response to tumor antigens, particularly with respect to 
the associated profile of cytokine production, almost certainly dif-
fers in immune impaired mice as compared with normal mice.

Table 1. Quantitative assessment of mice for neuromuscular and ves-
tibular toxicity

Test Measure

Open field activity Pattern of exploration, amount of horizontal 
activity, amount of rearing, pattern of change 

with time
Balance beam Time mouse remains on beam; ability and 

time necessary to walk to enclosed shelter
Vertical pole Angle above horizontal at which mouse falls 

off
Wire hang Time mouse maintains grip (normal mice can 

maintain grip for 60 s, which can be used as a 
maximum)

Inverted screen Time it takes for the mouse to turn to face 
upward or to fall off screen (normal mice will 
turn upward within 30 s, which can be used 

as a maximum)
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their use, value, and interpretation.9,71,83,116 Interested readers are 
referred to these reviews for additional information when design-
ing similar studies.

Summary
Many types of physiologic and behavioral measures and clini-

cal samples are difficult, extremely expensive, or impossible to 
collect from people. These impediments complicate the study of 
complex multigenic and multifactorial human health conditions, 
particularly as related to symptoms. The growing and impera-
tive importance of learning more about perceived symptoms in 
the context of healthy aging, prolonged or chronic disease, and 
maximizing HR-QOL calls for an immediate and imaginative ap-
proach to this challenge. To that end, inbred mice offer a valuable 
surrogate for human populations, supporting the identification 
of genes and mechanisms that differentially predispose different 
genetically distinct subjects to so-called ‘sickness behaviors.’ The 
ready availability of numerous strains of inbred mice, with their 
identical genomes and standardized environments, provides a 
valuable population for studying complex diseases, as has been 
done successfully in the past. However, to date such studies have 
predominantly focused on disease pathophysiology, rather than 
on the pathogenesis and treatment of associated or persistent 
symptoms.

Despite their importance, little is known about symptoms. 
Enormous complexities, including logistics, expense, uncontrol-
lable variation, and ethical concerns, discourage the application of 
genetic and physiologic approaches to the study of these issues di-
rectly in humans. In contrast, exploring promising animal models 
can provide the insights needed to foster hypothesis-based stud-
ies of the mechanisms that underlie apparently similar symptoms 
in humans. The potential for discovery is enormous. The develop-
ment of valid models for the study of disease-related symptoms 
that impair QOL has obvious widespread significance.
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