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Abstract
Computational models are powerful tools that can enhance the understanding of scientific
phenomena. The enterprise of modeling is most productive when the reasons underlying the adequacy
of a model, and possibly its superiority to other models, are understood. This chapter begins with an
overview of the main criteria that must be considered in model evaluation and selection, in particular
explaining why generalizability is the preferred criterion for model selection. This is followed by a
review of measures of generalizability. The final section demonstrates the use of five versatile and
easy-to-use selection methods for choosing between two mathematical models of protein folding.

1. Introduction
How does one evaluate the quality of a computational model of enzyme kinetics? The answer
to this question is important and complicated. It is important because mathematics makes it
possible to formalize the reaction, providing a precise description of how the factors affecting
it interact. Study of the model can lead to significant understanding of the reaction, so much
so that the model can serve not merely as a description of the reaction, but can contribute to
explaining its role in metabolism. Model evaluation is complicated because it involves
subjectivity, which can be difficult to quantify.

This chapter begins with a conceptual overview of some of the central issues in model
evaluation and selection, with an emphasis on those pertinent to the comparison of two or more
models. This is followed by a selective survey of model comparison methods and then an
application example that demonstrates the use of five simple yet informative model comparison
methods.

Criteria on which models are evaluated can be grouped into those that are difficult to quantify
and those for which it is easier to do so (Jacobs and Grainger, 1994). Criteria such as
explanatory adequacy (whether the theoretical account of the model helps make sense of
observed data) and interpretability (whether the components of the model, especially its
parameters, are understandable and are linked to known processes) rely on the knowledge,
experience, and preferences of the modeler. Although the use of these criteria may favor one
model over another, they do not lend themselves to quantification because of their complexity
and qualitative properties. Model evaluation criteria for which there are quantitative measures
include descriptive adequacy (whether the model fits observed data), complexity or
simplicity (whether the model’s description of observed data is achieved in the simplest
possible manner), and generalizability (whether the model provides a good predictor of future
observations). Although each criterion identifies a property of a model that can be evaluated
on its own, in practice they are rarely independent of one another. Consideration of all three
simultaneously is necessary to assess fully the adequacy of a model.

2. Conceptual Overview of Model Evaluation and Comparison
Before discussing the three quantitative criteria in more depth, we highlight some of the key
challenges of modeling. Models are mathematical representations of the phenomenon under
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study. They are meant to capture patterns or regularities in empirical data by altering parameters
that correspond to variables that are thought to affect the phenomenon. Model specification is
difficult because our knowledge about the phenomenon being modeled is rarely complete. That
is, empirical data obtained from studying the phenomenon are limited, providing only partial
information (i.e., snapshots) about its properties and the variables that influence to it. With
limited information, it is next to impossible to construct the “true” model. Furthermore, with
only partial information, it is likely that multiple models are plausible; more than one model
can provide a good account of data. Given this situation, it is most productive to view models
as approximations, which one seeks to improve through repeated testing.

Another reason models can be only approximations is that data are inherently noisy. There is
always measurement error, however small, and there may also be other sources of uncontrolled
variation introduced during the data collection process that amplifies this error. Error clouds
the regularity in data, increasing the difficulty of modeling. Because noise cannot be removed
from data, the researcher must be careful that the model is capturing the meaningful trends in
data and not error variation. As explained later, one reason why generalizability has become
the preferred method of model comparison is how it tackles the problem of noise in data.

The descriptive adequacy of a model is assessed by measuring how well it fits a set of empirical
data. A number of goodness-of-fit (GOF) measures are in use, including sum of squared errors
(SSE), percent variance accounted for, and maximum likelihood (ML; e.g., Myung, 2003).
Although their origins differ, they measure the discrepancy between empirical data and the
ability of a model to reproduce those data. GOF measures are popular because they are
relatively easy to compute and the measures are versatile, being applicable to many types of
models and types of data. Perhaps most of all, a good fit is an almost irresistible piece of
evidence in favor of the adequacy of a model. The model appears to do just what one wants it
to—mimic the process that generated data. This reasoning is often taken a step further by
suggesting that the better the fit, the more accurate the model. When comparing competing
models, then, the one that provides the best fit should be preferred.

Goodness of fit would be suitable for model evaluation and comparison if it were not for the
fact that data are noisy. As described earlier, a data set contains the regularity that is presumed
to reflect the phenomenon of interest plus noise. GOF does not distinguish between the two,
providing a single measure of a model’s fit to both (i.e., GOF = fit to regularity + fit to noise).
As this conceptual equation shows, a good fit can be achieved for the wrong reasons, by fitting
noise well instead of the regularity. In fact, the better a model is at fitting noise, the more likely
it will provide a superior fit than a competing model, possibly resulting in the selection of a
model that in actuality bears little resemblance to the process being modeled. GOF alone is a
poor criterion for model selection because of the potential to yield misleading information.

This is not to say that GOF should be abandoned. On the contrary, a model’s fit to data is a
crucial piece of information. Data are the only link to the process being modeled, and a good
fit can indicate that the model mimics the process well. Rather, what is a needed is a means of
ensuring that a model does not provide a good fit for the wrong reason.

What allows a model to fit noisy data better than its competitors is that it is the most complex.
Complexity refers to the inherent flexibility of a model that allows it to fit diverse data patterns
(Myung and Pitt, 1997). By varying the values of its parameters, a model will produce different
data patterns. What distinguishes a simple model from a complex one is the sensitivity of the
model to parameter variation. For a simple model, parameter variation will produce small and
gradual changes in model performance. For a complex model, small parameter changes can
result in dramatically different data patterns. It is this flexibility in producing a wide range of
data patterns that makes a model complex. For example, the cubic model y = ax2 + bx + c is
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more complex than the linear model y = ax + b. As shown in the next section, model selection
methods such as AIC and BIC include terms that penalize model complexity, thereby
neutralizing complexity differences among models.

Underlying the introduction of these more sophisticated methods is an important conceptual
shift in the goal of model selection. Instead of choosing the model that provides the best fit to
a single set of data, choose the model that, with its parameters held constant, provides the best
fit to data if the experiment were repeated again and again. That is, choose the model that
generalizes best to replications of the same experiment. Across replications, the noise in data
will change, but the regularity of interest should not. The more noise that the model captures
when fit to the first data set, the poorer its measure of fit will be when fitting data in replications
of that experiment because the noise will have changed. If a model captures mostly the
regularity, then its fits will be consistently good across replications. The problem of
distinguishing regularity from noise is solved by focusing on generalizability. A model is of
questionable worth if it does not have good predictive accuracy in the same experimental
setting. Generalizability evaluates exactly this, and it is why many consider generalizability to
be the best criterion on which models should be compared (Grunwald et al., 2005).

The graphs in Fig. 11.1 summarize the relationship among the three quantitative criteria of
model evaluation and selection: GOF, complexity, and generalizability. Model complexity is
along the x axis and model fit along the y axis. GOF and generalizability are represented as
curves whose performance can be compared as a function of complexity. The three smaller
graphs contain the same data set (dots) and the fits to these data by increasingly more complex
models (lines). The left-most model in Fig. 11.1 underfits data. Data are curvilinear, whereas
the model is linear. In this case, GOF and generalizability produce similar outcomes because
the model is not complex enough to capture the bowed shape of data. The model in the middle
graph of Fig. 11.1 is a bit more complex and does a good job of fitting only the regularity in
data. Because of this, the GOF and generalizability measures are higher and also similar. Where
the two functions diverge is when the model is more complex than is necessary to capture the
main trend. The model in the right-most graph of Fig. 11.1 captures the experiment-specific
noise, fitting every data point perfectly. GOF rewards this behavior by yielding an even higher
fit score, whereas generalizability does just the opposite, penalizing the model for its excess
complexity.

The problem of overfitting is the scourge of GOF. It is easy to see when overfitting occurs in
Fig. 11.1, but in practice it is difficult to know when and by how much a model overfits a data
set, which is why generalizability is the preferred means of model evaluation and comparison.
By using generalizability, we evaluate a model based on how well it predicts the statistics of
future samples from the same underlying processes that generated an observed data sample.

3. Model Comparison Methods
This section reviews measures of generalizability currently in use, touching on their theoretical
foundations and discussing the advantages and disadvantages of their implementation. Readers
interested in more detailed presentations are directed to Myung et al. (2000) and Wagenmakers
and Waldorp (2006).

3.1. Akaike Information Criterion and Bayesian Information Criterion
As illustrated in Fig. 11.1, good generalizability is achieved by trading off GOF with model
complexity. This idea can be formalized to derive model comparison criteria. That is, one way
of estimating the generalizability of a model is by appropriately discounting the model’s
goodness of fit relative to its complexity. In so doing, the aim is to identify the model that is
sufficiently complex to capture the underlying regularities in data but not unnecessarily
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complex to capitalize on random noise in data, thereby formalizing the principle of Occam’s
razor.

The Akaike information criterion (AIC; Akaike, 1973; Bozdogan, 2000), its variation called
the second-order AIC (AICc; Burnham and Anderson, 2002; Sugiura, 1978), and the Bayesian
information criterion (BIC; Schwartz, 1978) exemplify this approach and are defined as

(11.1)

where y denotes the observed data vector, ln f(y|w*) is the natural logarithm of the model’s
maximized likelihood calculated at the parameter vector w*, k is the number of parameters of
the model, and n is the sample size. The first term of each comparison criterion represents a
model’s lack of fit measure (i.e., inverse GOF), with the remaining terms representing the
model’s complexity measure. Combined, they estimate the model’s generalizability such that
the lower the criterion value, the better the model is expected to generalize.

The AIC is derived as an asymptotic (i.e., large sample size) approximation to an information
theoretic distance between two probability distributions, one representing the model under
consideration and the other representing the “true” model (i.e., data-generating model). As
such, the smaller the AIC value, the closer the model is to the “truth.” AICc represents a small
sample size version of AIC and is recommended for data with relatively small n with respect
to k, say n/k < 40 (Burnham and Anderson, 2002). BIC, which is a Bayesian criterion, as the
name implies, is derived as an asymptotic expression of the minus two log marginal likelihood,
which is described later in this chapter.

The aforementioned three criteria differ from one another in how model complexity is
conceptualized and measured. The complexity term in AIC depends on only the number of
parameters, k, whereas both AICc and BIC consider the sample size (n) as well, although in
different ways. These two dimensions of a model are not the only ones relevant to complexity,
however. Functional form, which refers to the way the parameters are entered in a model’s
equation, is another dimension of complexity that can also affect the fitting capability of a
model (Myung and Pitt, 1997). For example, two models, y = axb + e and y = ax + b + e, with
a normal error e of constant variance, are likely to differ in complexity, despite the fact that
they both assume the same number of parameters. For models such as these, the aforementioned
criteria are not recommended because they are insensitive to the functional form dimension of
complexity. Instead, we recommend the use of the comparison methods, described next, which
are sensitive to all three dimensions of complexity.

3.2. Cross-Validation and Accumulative Prediction Error
Cross-validation (CV; Browne, 2000; Stone, 1974) and accumulative prediction error (APE:
Dawid, 1984; Wagenmakers, Grunwald and Steyvers, 2006) are sampling-based methods for
estimating generalizability from data, without relying on explicit, complexity-based penalty
terms as in AIC and BIC. This is done by simulating the data collection and prediction steps
artificially using observed data in the experiment.

Cross-validation and APE are applied by following a three-step procedure: (1) divide observed
data into two subsamples, the calibration sample, ycal, simulating the “current” observations
and the validation sample, yval, simulating “future” observations; (2) fit the model to ycal and
obtain the best-fitting parameter values, denoted by w*(ycal); and (3) with the parameter values
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fixed, the model is fitted to yval. The resulting prediction error is taken as the model’s
generalizability estimate.

The two comparison methods differ from each other in how data are divided into calibration
and validation samples. In CV, each set of n − 1 observations in a data set serves as the
calibration sample, with the remaining observation treated as the validation sample on which
the prediction error is calculated. Generalizability is estimated as the average of n such
prediction errors, each calculated according to the aforementioned three-step procedure. This
particular method of splitting data into calibration and validation samples is known as the leave-
one-out CV in statistics. Other methods of splitting data into two subsamples can also be used.
For example, data can be split into two equal halves or into two subsamples of different sizes.
In the remainder of this chapter, CV refers to the leave-one-out cross validation procedure.

In contrast to CV, in APE the size of the calibration sample increases successively by one
observation at a time for each calculation of prediction error. To illustrate, consider a model
with k parameters. We would use the first k + 1 observations as the calibration sample so as to
make the model identifiable, and the (k + 2)-th observation as the validation sample, with the
remaining observations not being used. The prediction error for the validation sample is then
calculated following the three-step procedure. This process is then repeated by expanding the
calibration sample to include the (k + 2)-th observation, with the validation sample now being
the (k + 3)-th observation, and so on. Generalizability is estimated as the average prediction
error over the (n − k − 1) validation samples. Time series data are naturally arranged in an
ordered list, but for data that have no natural order, APE can be estimated as the mean over all
orders (in theory), or over a few randomly selected orders (in practice). Figure 11.2 illustrates
how CV and APE are estimated.

Formally, CV and APE are defined as

(11.2)

In the aforementioned equation for CV, −ln f(yi | w* (y ≠ i)), is the minus log likelihood for the
calibration sample yi evaluated at the best-fitting parameter values w*(y ≠i), obtained from the
validation sample y ≠i. The subscript signifies “all observations except for the ith observation.”
APE is defined similarly. Both methods prescribe that the model with the smallest value of the
given criterion should be preferred.

The attractions of CV and APE are the intuitive appeal of the procedures and the computational
ease of their implementation. Further, unlike AIC and BIC, both methods consider, albeit
implicitly, all three factors that affect model complexity: functional form, number of
parameters, and sample size. Accordingly, CV and APE should perform better than AIC and
BIC, in particular when comparing models with the same number of parameters. Interestingly,
theoretical connections exit between AIC and CV, and BIC and APE. Stone (1977) showed
that under certain regularity conditions, model choice under CV is asymptotically equivalent
to that under AIC. Likewise, Barron and colleagues (1998) showed that APE is asymptotically
equivalent to BIC.

3.3. Bayesian Model Selection and Stochastic Complexity
Bayesian model selection (BMS; Kass and Raftery, 1995; Wasserman, 2000) and stochastic
complexity (SC; Grunwald et al., 2005; Myung et al., 2006 Rissanen, 1996, 2001) are the
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current state-of-the-art methods of model comparison. Both methods are rooted on firm
theoretical foundations; are nonasymptotic in that they can be used for data of all sample sizes,
small or large; and, finally, are sensitive to all dimensions of complexity. The price to pay for
this generality is computational cost. Implementation of the methods can be nontrivial because
they usually involve evaluating high-dimensional integrals numerically.

Bayesian model selection and SC are defined as

(11.3)

Bayesian model selection is defined as the minus logarithm of the marginal likelihood, which
is nothing but the mean likelihood of data averaged across parameters and weighted by the
parameter prior π(w). The first term of SC is the minus log maximized likelihood of observed
data y. It is a lack of fit measure, as in AIC. The second term is a complexity measure, with
the symbol z denoting potential data that could be observed in an experiment, not actually
observed data. Both methods prescribe that the model that minimizes the given criterion value
is to be chosen.

Bayesian model selection is related to the Bayes factor, the gold standard of model comparison
in Bayesian statistics, such that the Bayes factor is a ratio of two marginal likelihoods between
a pair of models. BMS does not yield an explicit measure of complexity but complexity is
taken into account implicitly through the integral and thus avoids overfitting. To see this, an
asymptotic expansion of BMS under Jeffrey’s prior for π(w) yields the following large sample
approximation (Balasubramanian, 1997)

(11.4)

where I(w) is the Fisher information matrix of sample size 1 (e.g., Schervish, 1995). The second
and third terms on the right-hand side of the expression represent a complexity measure. It is
through the Fisher information in the third term that BMS reflects the functional form
dimension of model complexity. For instance, the two models mentioned earlier, y = axb + e
and y = ax + b + e, would have different values of the Fisher information, although they both
have the same number of parameters. The Fisher information term is independent of sample
size n, with its relative contribution to that of the second term becoming negligible for large
n. Under this condition, the aforementioned expression reduces to another asymptotic
expression, which is essentially one-half of BIC in Eq. (11.1).

Stochastic complexity is a formal implementation of the principle of minimum description
length that is rooted in algorithmic coding theory in computer science. According to the
principle, a model is viewed as a code with which data can be compressed, and the best model
is the one that provides maximal compression of the data. The idea behind this principle is that
regularities in data necessarily imply the presence of statistical redundancy, which a model is
designed to capture, and therefore, the model can be used to compress data. That is, data are
reexpressed, with the help of the model, in a coded format that provides a shorter description
than when data are expressed in an uncompressed format. The SC criterion value in Eq. (11.3)
represents the overall description length in bits of maximally compressed data and the model
itself, derived for parametric model classes under certain statistical regularity conditions
(Rissanen, 2001).
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The second (complexity) term of SC deserves special attention because it provides a unique
conceptualization of model complexity. In this formulation, complexity is defined as the
logarithm of the sum of maximized likelihoods that the model yields collectively for all
potential data sets that could be observed in an experiment. This formalization captures nicely
our intuitive notion of complexity. A model that fits a wide range of data patterns well, actual
or hypothetical, should be more complex than a model that fits only a few data patterns well,
but does poorly otherwise. A serious drawback of this complexity measure is that it can be
highly nontrivial to compute the quantity because it entails numerically integrating the
maximized likelihood over the entire data space. This integration in SC is even more difficult
than in BMS because the data space is generally of much higher dimension than the parameter
space.

Interestingly, a large-sample approximation of SC yields Eq. (11.4) (Rissanen, 1996), which
itself is an approximation of BMS. More specifically, under Jeffrey’s prior, SC and BMS
become asymptotically equivalent. Obviously, this equivalence does not extend to other priors
and does not hold if the sample size is not large enough to justify the asymptotic expression.

4. Model Comparison at Work: Choosing between Protein Folding Models
This section applies five model comparison methods to discriminating two proteinfolding
models.

In the modern theory of protein folding, the biochemical processes responsible for the unfolding
of helical peptides are of interest to researchers. The Zimm–Bragg theory provides a general
framework under which one can quantify the helix–coil transition behavior of polymer chains
(Zimm and Bragg, 1959). Scholtz and colleagues (1995) applied the theory “to examine how
the α-helix to random coil transition depends on urea molarity for a homologous series of
peptides” (p. 185). The theory predicts that the observed mean residue ellipticity q as a function
of the length of a peptide chain and the urea molarity is given by

(11.5)

In Eq. (1), fH is the fractional helicity and gH and gC are the mean residue ellipticities for helix
and coil, respectively, defined as

(11.6)

where r is the helix nucleation parameter, s is the propagation parameter, n is the number of
amide groups in the peptide, H0 and C0 are the ellipticities of the helix and coil, respectively,
at 0° in the absence of urea, and finally, HU and CU are the coefficients that represent the urea
dependency of the ellipticities of the helix and coil (Greenfield, 2004; Scholtz et al., 1995).

We consider two statistical models for urea-induced protein denaturation that determine the
urea dependency of the propagation parameter s. One is the linear extrapolation method model
(LEM; Pace and Vanderburg, 1979) and the other is called the binding-site model (BIND;
Pace, 1986). Each expresses the propagation parameter s in the following form
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(11.7)

where s0 is the s value for the homopolymer in the absence of urea, m is the change in the Gibbs
energy of helix propagation per residue, R = 1.987 cal mol−1 K−1, T is the absolute temperature,
d is the parameter characterizing the difference in the number of binding sites between the coil
and helix forms of a residue, and k is the binding constant for urea.

Both models share four parameters: H0, C0, HU, and CU. LEM has two parameters of its own
(s0, m), yielding a total of six parameters to be estimated from data. BIND has three unique
parameters (s0, d, and k). Both models are designed to predict the mean residue ellipticity
denoted q in terms of the chain length n and the urea molarity [urea]. The helix nucleation
parameter r is assumed to be fixed to the previously determined value of 0.0030 (Scholtz et
al., 1991).

Figure 11.3 shows simulated data (symbols) and best-fit curves for the two models (LEM in
solid lines and BIND in dotted lines). Data were generated from LEM for a set of parameter
values with normal random noise of zero mean and 1 standard deviation added to the ellipticity
prediction in Eq. (5)(see the figure legend for details). Note how closely both models fit data.
By visual inspection, one cannot tell which of the two models generated data. As a matter of
fact, BIND, with one extra parameter than LEM, provides a better fit to data than LEM (SSE
= 12.59 vs 14.83), even though LEM generated data. This outcome is an example of the
overfitting that can emerge with complex models, as depicted in Fig. 11.1. To filter out the
noise-capturing effect of overly complex models appropriately, thereby putting both models
on an equal footing, we need the help of statistical model comparison methods that neutralize
complexity differences.

We conducted a model recovery simulation to demonstrate the relative performance of five
model comparison methods (AIC, AICc, BIC, CV, and APE) in choosing between the two
models. BMS and SC were not included because of the difficulty in computing them for these
models. A thousand data sets of 27 observations each were generated from each of the two
models, using same nine points of urea molarity (0, 1, 2, …, 8) for three different chain lengths
of n = 13, 20, and 50. The parameter values used to generate simulated data were taken from
Scholtz et al. (1995) and were as follows: H0 = −44,000, C0 = 4400, HU = 320, CU = 340, s0
= 1.34, m = 23.0 and temperature T = 273.15 for LEM and H0 = −42,500, C0 = 5090, HU =
−620, CU = 280, s0 = 1.39, d = 0.52, k = 0.14 for BIND. Normal random errors of zero mean
and standard deviation of 1 were added to the ellipticity prediction in Eq. (11.5).

The five model comparison methods were compared on their ability to recover the model that
generated data. A good method should be able to identify the true model (i.e., the one that
generated data) 100% of the time. Deviations from perfect recovery reveal a bias in the selection
method. (The MatLab code that implements the simulations can be obtained from the first
author.)

The simulation results are reported in Table 11.1. Values in the cells represent the percentage
of samples in which a particular model (e.g., LEM) fitted best data sets generated by one of
the models (LEM or BIND). A perfect selection method would yield values of 100% along the
diagonal. The top 2 × 2 matrix shows model recovery performance under ML, a purely
goodness-of-fit measure. It is included as a reference against which to compare performance
when measures of model complexity are included in the selection method. How much does
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model recovery improve when the number of parameters, sample size, and functional form are
taken into account?

With ML, there is a strong bias toward BIND. The result in the first column of the matrix shows
that BIND was chosen more often than the true data-generating model, LEM (53% vs 47%).
This bias is not surprising given that BIND, with one more parameter than LEM, can capture
random noise better than LEM. Consequently, BIND tends to be selected more often than LEM
under a goodness-of-fit selection method such as ML, which ignores complexity differences.
Results from using AIC show that when the difference in complexity due to the number of
parameters is taken into account, the bias is largely corrected (19% vs 81%), and even more
so under AICc and BIC, both of which consider sample size as well (7% vs 93% and 9% vs
91%, respectively). When CV and APE were used, which are supposed to be sensitive to all
dimensions of complexity, results show that the bias was also corrected, although the recovery
rate under these criteria was about equal to or slightly lower than that under AIC. When data
were generated from BIND (right column of values), the data-generating model was selected
more often than the competing model under all selection methods, including ML.

To summarize, the aforementioned simulation results demonstrate the importance of
considering model complexity in model comparison. All five model selection methods
performed reasonably well by compensating for differences in complexity between models,
thus identifying the data-generating model. It is interesting to note that Scholtz and colleagues
(1995) evaluated the viability of the same two models plus a third, seven-parameter model,
using goodness of fit, and found that all three models provided nearly identical fits to their
empirical data. Had they compared the models using one of the selection methods discussed
in this chapter, it might have been possible to obtain a more definitive answer.

We conclude this section with the following cautionary note regarding the performance of the
five selection methods in Table 11.1: The better model recovery performance of AIC, AICc,
and BIC over CV and APE should not be taken as indicative of how the methods will generally
perform in other settings (Myung and Pitt, 2004). There are very likely other situations in which
the relative performance of the selection methods reverses.

5. Conclusions
This chapter began by discussing several issues a modeler should be aware of when evaluating
computational models. They include the notion of model complexity, the triangular relationship
among goodness of fit, complexity and generalizability, and generalizability as the ultimate
yardstick of model comparison. It then introduced several model comparison methods that can
be used to determine the “best-generalizing” model among a set of competing models,
discussing the advantages and disadvantages of each method. Finally, the chapter demonstrated
the application of some of the comparison methods using simulated data for the problem of
choosing between biochemical models of protein folding.

Measures of generalizability are not without their own drawbacks, however. One is that they
can be applied only to statistical models defined as a parametric family of probability
distributions. This restriction leaves one with few options when wanting to compare
nonstatistical models, such as verbal models and computer simulation models. Often times,
researchers are interested in testing qualitative (e.g., ordinal) relations in data (e.g., condition
A < condition B) and comparing models on their ability to predict qualitative patterns of data,
but not quantitative ones.

Another limitation of measures of generalizability is that they summarize the potentially
intricate relationships between model and data into a single real number. After applying CV
or BMS, the results can sometimes raise more questions than answers. For example, what

Myung et al. Page 9

Methods Enzymol. Author manuscript; available in PMC 2009 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



aspects of a model’s formulation make it superior to its competitors? How representative is a
particular data pattern of a model’s performance? If it is typical, the model provides a much
more satisfying account of the process than if the pattern is generated by the model using a
small range of unusual parameter settings. Answers to these questions also contribute to the
evaluation of model quality.

We have begun developing methods to address questions such as these. The most well-
developed method thus far is a global qualitative model analysis technique dubbed parameter
space partitioning (PSP; Pitt et al., 2006, 2007). In PSP, a model’s parameter space is
partitioned into disjoint regions, each of which corresponds to a qualitatively different data
pattern. Among other things, using PSP, one can use PSP to identify all data patterns a model
can generate by varying its parameter values. With information such as this in hand, one can
learn a great deal about the relationship between the model and its behavior, including
understanding the reason for the ability or inability of the model to account for empirical data.

In closing, statistical techniques, when applied with discretion, can be useful for identifying
sensible models for further consideration, thereby aiding the scientific inference process
(Myung and Pitt, 1997). We cannot overemphasize the importance of using nonstatistical
criteria such as explanatory adequacy, interpretability, and plausibility of the models under
consideration, although they have yet to be formalized in quantitative terms and subsequently
incorporated into the model evaluation and comparison methods. Blind reliance on statistical
means is a mistake. On this point we agree with Browne and Cudeck (1992), who said “Fit
indices [statistical model evaluation criteria] should not be regarded as a measure of usefulness
of a model…they should not be used in a mechanical decision process for selecting a model.
Model selection has to be a subjective process involving the use of judgement” (p. 253).

Acknowledgments
This work was supported by Research Grant R01-MH57472 from the National Institute of Health to JIM and MAP.
This chapter is an updated version of Myung and Pitt (2004). There is some overlap in content.

References
Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrox, BN.;

Caski, F., editors. Second International Symposium on Information Theory. Akademia Kiado;
Budapest: 1973. p. 267-281.

Balasubramanian V. Statistical inference, Occam’s razor and statistical mechanics on the space of
probability distributions. Neural Comput 1997;9:349–368.

Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE
Trans Inform Theory 1998;44:2743–2760.

Berger JO, Berry DA. Statistical analysis and the illusion of objectivity. Am Sci 1998;76:159–165.
Bozdogan H. Akaike information criterion and recent developments in information complexity. J Math

Psychol 2000;44:62–91. [PubMed: 10733858]
Browne MW. Cross-validation methods. J Math Psychol 2000;44:108–132. [PubMed: 10733860]
Browne MW, Cudeck RC. Alternative ways of assessing model fit. Sociol Methods Res 1992;21:230–

258.
Burnham, LS.; Anderson, DR. Model Selection and Inference: A Practical Information-Theoretic

Approach. Vol. 2. Springer-Verlag; New York: 2002.
Dawid AP. Statistical theory: The prequential approach. J Roy Stat Soc Ser A 1984;147:278–292.
Greenfield NJ. Analysis of circular dichroism data. Methods Enzymol 2004;383:282–317. [PubMed:

15063655]
Grunwald, P.; Myung, IJ.; Pitt, MA. Advances in Minimum Description Length: Theory and Application.

MIT Press; Cambridge, MA: 2005.

Myung et al. Page 10

Methods Enzymol. Author manuscript; available in PMC 2009 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jacobs AM, Grainger J. Models of visual word recognition: Sampling the state of the art. J Exp Psychol
Hum Perception Perform 1994;29:1311–1334.

Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc 1995;90:773–795.
Myung IJ. Tutorial on maximum likelihood estimation. J Math Psychol 2003;44:190–204. [PubMed:

10733864]
Myung, IJ.; Forster, M.; Browne, MW., editors. J Math Psychol. Vol. 44. 2000. Special issue on model

selection; p. 1-2.
Myung IJ, Navarro DJ, Pitt MA. Model selection by normalized maximum likelihood. J Math Psychol

2006;50:167–179.
Myung IJ, Pitt MA. Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychon Bull

Rev 1997;4:79–95.
Myung, IJ.; Pitt, MA. Model comparison methods. In: Brand, L.; Johnson, ML., editors. Numerical

Computer Methods, Part D. Vol. 383. 2004. p. 351-366.
Pace CN. Determination and analysis of urea and guanidine hydrochloride denatiration curves. Methods

Enzymol 1986;131:266–280. [PubMed: 3773761]
Pace CN, Vanderburg KE. Determining globular protein stability: Guanidine hydrochloride denaturation

of myoglobin. Biochemistry 1979;18:288–292. [PubMed: 570408]
Pitt MA, Kim W, Navarro DJ, Myung JI. Global model analysis by parameter space partitioning. Psychol

Rev 2006;113:57–83. [PubMed: 16478301]
Pitt MA, Myung IJ. When a good fit can be bad. Trends Cogn Sci 2002;6:421–425. [PubMed: 12413575]
Pitt MA, Myung IJ, Altieri N. Modeling the word recognition data of Vitevitch and Luce (1998): Is it

ARTful? Psychon Bull Rev 2007;14:442–448. [PubMed: 17874585]
Rissanen J. Fisher information and stochastic complexity. IEEE Trans Inform Theory 1996;42:40–47.
Rissanen J. Strong optimality of the normalized ML models as universal codes and information in data.

IEEE Trans Inform Theory 2001;47:1712–1717.
Schervish, MJ. The Theory of Statistics. Springer-Verlag; New York: 1995.
Scholtz JM, Barrick D, York EJ, Stewart JM, Balding RL. Urea unfolding of peptide helices as a model

for interpreting protein unfolding. Proc Natl Acad Sci USA 1995;92:185–189. [PubMed: 7816813]
Scholtz JM, Qian H, York EJ, Stewart JM, Balding RL. Parameters of helix-coil transition theory for

alanine-based peptides of varying chain lengths in water. Biopolymers 1991;31:1463–1470.
[PubMed: 1814498]

Schwarz G. Estimating the dimension of a model. Ann Stat 1978;6:461–464.
Stone M. Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc Ser B

1974;36:111–147.
Stone M. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J

Roy Stat Soc Ser B 1977;39:44–47.
Sugiura N. Further analysis of the data by Akaike’s information criterion and the finite corrections.

Commun Stat Theory Methods 1978;A7:13–26.
Wagenmakers EJ, Grunwald P, Steyvers M. Accumulative prediction error and the selection of time series

models. J Math Psychol 2006;50:149–166.
Wagenmakers EJ, Waldorp L. Editors’ introduction. J Math Psychol 2006;50:99–100.
Wasserman L. Bayesian model selection and model averaging. J Math Psychol 2000;44:92–107.

[PubMed: 10733859]
Zimm BH, Bragg JK. Theory of the phase transition between helix and random coil. J Chem Phys

1959;34:1963–1974.

Myung et al. Page 11

Methods Enzymol. Author manuscript; available in PMC 2009 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.1.
An illustration of the relationship between goodness of fit and generalizability as a function of
model complexity. The y axis represents any fit index, where a larger value indicates a better
fit (e.g., maximum likelihood). The three smaller graphs provide a concrete example of how
fit improves as complexity increases. In the left graph, the model (line) is not complex enough
to match the complexity of data (dots). The two are well matched in complexity in the middle
graph, which is why this occurs at the peak of the generalizability function. In the right graph,
the model is more complex than data, capturing microvariation due to random error. Reprinted
from Pitt and Myung (2002).
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Figure 11.2.
The difference between the two sampling-based methods of model comparison, cross-
validation (CV) and accumulative prediction error (APE), is illustrated. Each chain of boxes
represents a data set with each data point represented by a box. The slant-lined box is a
validation sample, and plain boxes with the bold outline represent the calibration sample. Plain
boxes with the dotted outline in the right panel are not being used as part of the calibration or
validation sample. The symbol PE(yi), i = 1, 2, … n, stands for the prediction error for the ith
validation data point.
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Figure 11.3.
Best fits of LEM (solid lines) and BIND (dotted lines) models to data generated from LEM
using the nine points of urea molarity (0,1,2, ….,8) for three different chain lengths of n = 13
(•), 20 (▲), and 50 (■). Data fitting was done first by deriving model predictions using Eqs.
(5)–(7) based on the parameter values of H0 = −44,000, C0 = 4400, HU = 320, CU = 340, s0 =
1.34, and m = 23.0 reported in Scholtz et al. (1995). See text for further details.
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Table 11.1
Model recovery performance of five model comparison methods

Data generated from

Model comparison method Model fitted LEM BIND

ML LEM 47 4

BIND 53 96

AIC LEM 81 16

BIND 19 84

AICc LEM 93 32

BIND 7 68

BIC LEM 91 28

BIND 9 72

CV LEM 77 26

BIND 23 74

APE LEM 75 45

BIND 25 55

Note: The two models, LEM and BIND, are defined in Eq. (7). APE was estimated after randomly ordering the 27 data points of each data set.
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