
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
On validation and invalidation of biological models
James Anderson*1,2 and Antonis Papachristodoulou2,3

Address: 1Doctoral Training Centre, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK, 2Department of Engineering 
Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK and 3Oxford Centre for Integrative Systems Biology, South Parks Road, Oxford, 
OX1 3QU, UK

Email: James Anderson* - james.anderson@dtc.ox.ac.uk; Antonis Papachristodoulou - antonis@eng.ox.ac.uk

* Corresponding author    

Abstract
Background: Very frequently the same biological system is described by several, sometimes
competing mathematical models. This usually creates confusion around their validity, ie, which one
is correct. However, this is unnecessary since validity of a model cannot be established; model
validation is actually a misnomer. In principle the only statement that one can make about a system
model is that it is incorrect, ie, invalid, a fact which can be established given appropriate
experimental data. Nonlinear models of high dimension and with many parameters are impossible
to invalidate through simulation and as such the invalidation process is often overlooked or
ignored.

Results: We develop different approaches for showing how competing ordinary differential
equation (ODE) based models of the same biological phenomenon containing nonlinearities and
parametric uncertainty can be invalidated using experimental data. We first emphasize the strong
interplay between system identification and model invalidation and we describe a method for
obtaining a lower bound on the error between candidate model predictions and data. We then turn
to model invalidation and formulate a methodology for discrete-time and continuous-time model
invalidation. The methodology is algorithmic and uses Semidefinite Programming as the
computational tool. It is emphasized that trying to invalidate complex nonlinear models through
exhaustive simulation is not only computationally intractable but also inconclusive.

Conclusion: Biological models derived from experimental data can never be validated. In fact, in
order to understand biological function one should try to invalidate models that are incompatible
with available data. This work describes a framework for invalidating both continuous and discrete-
time ODE models based on convex optimization techniques. The methodology does not require
any simulation of the candidate models; the algorithms presented in this paper have a worst case
polynomial time complexity and can provide an exact answer to the invalidation problem.

Background
Mathematical modelling is the new key tool in systems
biology [1]: There now exist multiple differential equation
models for a wide range of biological phenomena, some-

times over multiple time and spatial scales, from the
molecular to the systems level. Depending on the system
under study, models [2] can be in the form of discrete-
time or continuous-time Ordinary Differential Equations
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(eg, chemical reaction networks with mass action kinet-
ics), Functional (Delay) Differential Equations (eg, to
describe maturation/growth in population dynamics),
Stochastic Differential Equations (eg, to model chemical
reaction networks in which species are found in low copy
numbers), Partial Differential Equations (eg, to describe
spatial dynamics), or even Hybrid models (which incor-
porate both discrete and continuous states) to model
genetic networks. Central to all of these models are the
inherent non-linearities that real life systems exhibit,
which makes their analysis more complicated.

Models are usually developed based on physical princi-
ples which constrain their structure; typically these mod-
els contain parameters that are identified (fitted) using
appropriate sets of observed experimental data and com-
putational techniques [3-5]. No two experiments will ever
yield exactly the same data even when carried out under a
strict protocol, but one hopes that the model can explain
the data within experimental error – hence it is claimed
that the model is valid. In fact, to validate a model would
require an infinite number of experiments and data [6,7].
Models that have many free parameters are usually prone
for invalidation, as it is possible to fit a wide range of sys-
tem responses if there are enough free parameters in the
model. The claim that a model is valid is refuted when
someone undertakes a different experiment which yields
a new data set that cannot be explained by the model.
Given this new data set, the model can be invalidated, by
exhibiting the discrepancies between observed experi-
mental data and the model behaviour. Model invalida-
tion forms an integral part of the model development
cycle, in which experiments are specifically designed in
order to provide data sets that can be used to invalidate a
subset of the models [5,8-10]. Also, model invalidation
may help in identifying where parameters and/or system
structure should be refined to reveal where the model is
just incorrect.

Model validation has been studied from a control engi-
neering perspective in [6,11], where the problem was
posed in the robust control context: Given experimental
input/output data and a model P, does there exist an exter-
nal input (eg, noise) and set of system perturbations (w,
Δ) such that the observed data are produced exactly? Here,
the uncertainty in the model Δ is bounded and of a partic-
ular structure. Moreover, in [12] a methodology for vali-
dating continuous time models using finite experimental
data is proposed.

Several other approaches have been developed using a sta-
tistical framework based on graphical residual analysis.
Very frequently the R2 statistic is used, which is a measure
of the difference in response between model behaviour
and data. Cross-validation can be used to test the capabil-

ity of a model, constructed using a training set, to repre-
sent an unseen subset of the data, usually called the
'validation set' [3]. In this paper, we approach model
invalidation from a different perspective. We first seek to
answer the question 'How bad is the best model for this
data set?', ie, to evaluate how good the model structure is
to represent the experimental observations. To answer this
question, recall that in parameter identification one seeks
to find the point in the allowable parameter set that min-
imizes an objective function which encodes the require-
ment that the error between model evolution and data is
small. (Sometimes this function is not convex and hence
minimizing it using gradient descent algorithms may
result in local minima [13].) While the objective is to
identify a parameter choice in which the error is small,
one should also pay attention to the dual question of
what is the minimum of the possible error that could be
obtained with the particular model structure. If this mini-
mum error is unacceptably high, such a model may not be
adequate to represent the experimental observations and
a different one should be sought. In this paper, we
develop an approach that can calculate a lower bound on
this minimum error, which is important information to
the user as for the validity of the model. For this purpose
we use ideas based on the sum of squares decomposition
of multivariate polynomials [14].

We then provide a methodology for discrete-time and
continuous-time model invalidation using ideas for Real
Algebraic Geometry and Semidefinite Programming. The
aim is to construct functions/certificates that provide
proof of the fact that the model can never represent an
experimental data set. We stress that simulation cannot be
used for this purpose, unless the data is certain, the model
size is small and its structure, initial conditions and
parameters are fixed. The reason for this is that as models
become more complex (containing more states and
parameters) exhaustive simulation for model invalidation
becomes computationally prohibitive – as well as being
inconclusive. Our methodology uses Semidefinite

Programming techniques which have been shown to have
in the worst case a polynomial time complexity. For this
purpose ideas presented in [15] are extended and a differ-
ent class of functions is introduced. Related work appears
in [16,17].

Ideas and notions related to model invalidation are reach-
ability and systems verification; several different
approaches have been developed in this area. For exam-
ple, if one considers the experimental data set as the target
set in a reachability analysis, then its backwards reachable
set (ie, the set of states from which trajectories can reach
the target set) can be used for model invalidation: if the
backwards reachable set does not intersect the initial data
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set then the model can be invalidated. Mitchel et al., [18]
propose a computationally tractable method for calculat-
ing the backward reachable set by solving the Hamilton-
Jacobi-Isaacs partial differential equation.

The structure of this paper is as follows. In the next section
we present some background material on the sum of
squares decomposition of multivariate polynomials and
how it can be obtained. Following this, we describe a
method for obtaining a bound on the minimum achieva-
ble error between data and model structure as well as the
methodology for invalidating continuous-time and then
discrete-time models. Finally, we illustrate our results
through a series of examples.

Methods
In this section we formulate the way system models will
be represented and introduce the sum of squares tech-
niques that will be used in the sequel. We first introduce
the following notation:

�n n-dimensional real vector field

N number of sampled data points

 Sets describing the state space, initial condi-

tions, state values at t� and parameter values

x(tk) or xk predicted value of value of x ∈ �n at time tk from
model

 or  experimental data at time tk

 (tk) or ith element of the data  taken at time tk

The final three terms have alternate notations as shown
above and are used interchangeably where appropriate.

The models we consider are autonomous, in the form of
Ordinary Differential Equations (ODEs) whose n-dimen-
sional vector fields satisfy appropriate smoothness condi-
tions in order to ensure that given an initial condition
there exists a locally unique solution.

For x ∈ �n, let

be a candidate system model, where p ∈  ⊂ �m is a vec-
tor of parameters, such as kinetic constants etc. An alter-
native representation which is sometimes used is a
discrete-time ODE of the form:

For the rest of the paper, we assume that either a model of
the form (1) or of the form (2) is being considered, in
which f is a polynomial function of its arguments. Exper-

imental data (ti, ) for i = 1,..., N are provided, where

 are the data points. The sets  encode the

uncertainty in the data because of experimental error, etc.
We will assume in the sequel that these sets are semi-alge-
braic, ie, they can be described by a finite set of polyno-

mial inequalities. For example, if  for i =

1,..., n where  refers to the ith element of the experi-

mental data taken at time t1 then we obtain the n-dimen-

sional hypercube:

Note that when it is clear that we are talking about the
whole vector we drop the superscript notation. In this
paper we make repeated use of the notion of sum of squares
(SOS) polynomials. A polynomial p(y), with real coeffi-
cients, where y ∈ �n, admits an SOS decomposition if one
can find other polynomials q1,..., qm such that

where the subscripts denote the index of the m polynomi-
als. If p(y) is SOS, it can be easily seen that p(y) ≥ 0 for all
y, which means that p(y) is non-negative. Polynomial
non-negativity is a very important property (as many
problems in optimization and systems theory can be
reduced to it) which is however very difficult to test (it has
been shown to be NP-hard for polynomials of degree
greater than or equal to 4 [19]). The existence of a SOS
decomposition is a powerful relaxation for non-negativity
– in fact, it can be verified in polynomial time. The reason
is that p(y) being SOS is equivalent to the existence of a
positive semidefinite matrix Q (ie, Q is symmetric and
with non-negative eigenvalues) and a chosen vector of
monomials Z(y) such that

A proof of this can be found in [14]. This essentially
means that the SOS decomposition of p(y) can be com-
puted using Semidefinite Programming. Software capable
of formulating and solving the problem has been devel-
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oped – SOSTOOLS [20]. All examples in this paper have
been solved with SOSTOOLS and SeDuMi [21], a Sem-
idefinite Programming solver. Semidefinite Programming
has been used in the past for classification of complete
parameter regions, see [22] for examples relevant to sys-
tems biology.

We now turn to the problems we wish to address. First, if
a data set is provided, we develop a method for establish-
ing how well the model structure, irrespective of the par-
ticular parameter values that one could choose, can
represent the data. This can provide an indication for the
quality of the model under consideration. Consequently,
we consider the problem of model invalidation for con-
tinuous and discrete-time systems.

How bad is the best model?
We begin this investigation by highlighting the link
between system identification and model invalidation.
The question we set out to answer is "Given experimental
data, what is the least error one can expect between the data
and predictions from a model with the best parameter choice
within the allowable parameter range?" Most system identi-
fication questions try to find the best parameters in order
to minimize an objective function of the error between
model predictions and data, while the question we are
asking here is dual to that: 'How bad is the best model, for
all allowable parameters?' If the error is large, then this
could indicate that the model structure may be inappro-
priate and one may want to invalidate the model and
repeat the system identification cycle.

For the continuous time system (1), the scope of system
identification is to find

where p* denotes the 'best' parameters and ||·|| denotes a
norm on �n (usually the 2-norm is used) and N the

number of data points. The term  is many

times obtained by simulation, but an appropriate approx-
imation can also be used (eg, using the trapezoidal rule).
Note that if the model is already in discrete-time, ie, its
dynamics are described by (2), and if data are taken at the
same discrete update points then the integral term does
not need to be approximated. Either way, if this approxi-
mation results in an expression affine in the parameters p,

and  then p* can be obtained via convex optimi-

zation (as the problem becomes convex). In this case, a

simple gradient descent algorithm can be used to find the
(global) minimum.

However, when the parameters do not enter in such a
manner or when the experimental measurements are
uncertain, then finding p* becomes more complicated
and locally (but not globally) optimal parameter esti-
mates may be obtained using optimization methods.

Instead, in this paper we develop a methodology for
obtaining a lower bound on this error, ie, for finding γ
such that

which can be used as an indication to whether the model
structure that we are trying to fit is suitable or not. The
reader is referred to the Discussion section for a descrip-
tion of the meaning of the value of γ. For this purpose we
can use a method to approximate the integral term by set-
ting f(x(t), p) = f(xi, p), which amounts to Euler discretiza-
tion of the ODE (1), and then the left hand side of the
equation above becomes

where F and G are polynomial functions of the parameter.
Note that other discretization methods can also be used.
Obtaining γ can be done efficiently by solving the follow-
ing optimization problem:

The optimal value, p*, where p* ∈ �m, can be obtained by
the following simple procedure: Substitute γ into the
expression F(p) - γG(p) and compute its SOS decomposi-
tion using SOSTOOLS. This gives a vector of monomials
Z(x) and a positive semidefinite matrix Q as per (5).
Applying some linear algebra we obtain a set of m simul-
taneous polynomial equations with m unknown variables
in the form of (4), setting the right hand side of the system
of equations to zero, i.e. q1 = q2 = ... = qm = 0 and solving
produces the optimal parameter set p*.

We note that as the number of data points increases, so
will the size of the error bound γ and a normalising factor
should be introduced to facilitate comparison. The sim-
plest method for achieving such a normalisation is to
divide γ by the number of points, N. This will avoid
favouring models fitted on smaller data sets to those fitted
on larger ones.
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When obtaining a bound on the error from the model it is
unavoidable that the dataset will contain some uncer-
tainty due to experimental error. Ignoring error in the data
can be thought of as searching for a nominal model, while
an appropriately defined parametric uncertainty accounts
for the experimental error, a technique that underlies
modern robust control theory [23,24]. If an estimate of
the error in the data is known a priori then it is possible to
include this in the identification formulation. The prob-
lem now reduces to finding a model that minimizes γ
while ensuring that it accounts for the uncertain data. A
model satisfying these conditions is said to be valid for
that dataset and should have γ = 0.

Model Invalidation

We now turn to the problem of model invalidation given

experimental data. Given the data points (ti, ) for i =

1,..., N where  and a model of the form (1) or

(2) with parameters that can either be fixed or p ∈ , our
task is to show that the model can not represent the data.
Note that in order to invalidate a model, one data point is
enough apart from the initial time t1 – assume this has

been chosen to be at t� where � ∈ {2,..., N}. The aim is to

show that this experimental observation could not have
arisen from the set of models that are being considered. In

cases where it is not clear which point � ∈ {2,..., N} to
choose, it is suggested that the point with the largest resid-
ual (between the nominal model and data) is chosen. As

already mentioned, the sets  and  are assumed to be

described by polynomial inequalities, eg,

 where gi are polyno-

mial functions.

Continuous-time case
For invalidating nonlinear continuous-time models with
parametric uncertainty given experimental data, we can
use a method similar in concept to that of constructing a
Lyapunov function to establish equilibrium stability: Lya-
punov functions ensure the stability property by making
sure that trajectories do not escape their sub-level sets. In
[25] the related concept of barrier certificates is introduced.
These are functions of state, parameter and time, whose
existence proves that the candidate model is invalid given
a parameter set and experimental data, by ensuring that
the model behaviour does not intersect the set of experi-
mental data. In this paper we describe some practical
aspects of using Barrier functions and develop a para-
metrization that is more efficient for practical applica-
tions. These barrier certificates can be constructed
efficiently using Semidefinite Programming and SOS-
TOOLS.

Consider a system of the form (1) and assume that

. Given this information, if it can be shown

that for all possible system parameters p ∈  the model

cannot produce a trajectory x(t) such that x(t1) ∈ , x(t�)

∈  and x(t) ∈  for all t ∈ [t1, t�], then the model and

parameter set are invalidated by .

Theorem 1 [[15], Theorem 2] Given the candidate model (1)

and the sets , suppose there exists a real valued

function B(x, p, t) that is differentiable with respect to x and t
such that

Then the model is invalidated by . We refer to the

function B(x, p, t) as a barrier certificate.

The above theorem requires the construction of a function
that satisfies certain non-negativity conditions, which is
not easy. If we relax these constraints to sums of squares,
then this computational relaxation can be used to con-
struct barrier certificates. At the same time, this imposes
that B will be polynomial in the states, parameters and
time variables. This may make sense for states and param-
eters, but a more natural choice for the dependence of B
on time is of the form e-λt for some λ. This is because the
Barrier function B resembles in shape system trajectories
and therefore this choice for time-dependence is more
appropriate. The value of λ can be chosen, eg, based on
the characteristic time constant of the system. Denoting μ
= e-λt for fixed λ, we seek a B as a polynomial in (x, p, λ)
with real coefficients c1,..., cm:

where bj(x, p, μ)'s are monomials in x, p, μ. The SOS pro-
gram is then a search for the coefficients cj's such that the
conditions stated in Theorem 1 are met. Note that the
time re-parametrization will change the derivative condi-
tion in the theorem above, as we will see in the sequel, to:

Where  and .
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For concreteness, define the sets  and  as

where the g's are polynomials written in the format
described by (3).

The first condition in Theorem 1 states that B(x�, p, ) -

B(x1, p, ) must be positive. As a SOS decomposition

provides a polynomial that is nonnegative and not posi-
tive, a small positive scalar " must be subtracted before the
constraint is asked to be a SOS.

In order to include the constraints in the formulation, we
need to adjoin them to the two conditions given in Theo-
rem 1. This can be done using Lagrange-type multipliers,
for the first condition we denote the multipliers with an
M: MP, i(x1, x�, p) for all gpi(p), M1, i(x1, x�, p) for all g1, i(x1)
and M�, i(xl, x�, p) for all g�i(xi), while the multipliers for
the second condition are denoted with by an N. All of the
multipliers have to be nonnegative (SOS), as they are used
to adjoin inequality constraints to the optimization prob-
lem. The SOS optimization problem can now be stated as:

If a solution to the optimization problem described by
(12)–(13) can be found that satisfies all the constrains

(8)–(11) then a barrier certificate B(x�, p, μt�) has been

constructed which proves that the model is invalid as per
Theorem 1. A solution to the optimization problem will
provide the coefficients (cj's) which make expressions

(12)–(13) and MP, i, M1, i, M�i, NP, i, NX, i for all i and Nt

sums of squares and invalidates the model and the param-

eter set by . In the final section results are

shown for barrier certificates constructed using the ordi-
nary and new time parametrization method.

Discrete-time case
Given the discrete-time model of the form (2) one can
develop a relationship between x� and x1:

which we write in short

Since f was assumed to be polynomial, F� is also polyno-
mial and the problem of model invalidation can be for-
mulated as the emptiness of the following set:

The sets ,  and  are assumed to be described by

polynomial inequalities as described in the previous sec-
tion, in which case invalidation is equivalent to

where h(x1, x�, p) = F�(x1, p) - x�. Testing emptiness of the
latter can be done in many ways, the simplest of which is
to construct multipliers σi(x1, x�, p) that are Sum of
Squares and λ(x1, x�, p) polynomial so that

To see why this is so, suppose there is a point in the set we
want to show is empty, ie, a point (x1, x�, p) that satisfies
the inequalities gi(x1, x�, p) ≥ 0 and h(x1, x�, p) = 0. Then
the above condition says that something negative is a
SOS, a contradiction. In this case the multipliers form a
certificate that the set is empty, ie, that the model is inval-
idated by the data. These certificates can be constructed
via convex optimization and sum of squares program-
ming, as explained in the previous section. The above for-
mulation is a special case of Positivstellensatz, a central
theorem in real algebraic geometry – for more details see
[26].

Results
We now present examples that illustrate how the methods
described in the previous section can be used. We first
consider a simple biochemical reaction network, that of
an enzymatic reaction with product degradation. The sec-
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ond example demonstrates the methodology previously
described for invalidating a discrete time model.

Continuous-time: Biochemical Reaction Network
A simple biochemical reaction network with a product
degradation term is given by:

The enzyme, E, binds reversibly with the substrate, S, to
form a complex ES which then forms a product P and
releases the enzyme E. The parameters on the arrows
denote the rate constants and are used to quantitatively
describe the speed of a reaction in a given direction.
Denoting the concentration of the reactants by lowercase
letters where [·] denotes concentration and e = [E], p = [P],
s = [S] and c = [ES], the law of mass action results in the
system of equations:

where e(t) can be calculated from the conservation rela-
tion e(t) = e(t0) -c(t). The above system is initialized from
s(t0) = s0, c(t0) = 0 and p(t0) = 0. The reaction rates and e(t0)
are assigned values as described later in this section.

Suppose a model for the above system has been proposed
that takes the form

This model structure is very commonly used in practice to
describe the chemical reaction network described by (15).
In fact, the appropriate parameter choice should be V =

k2e0,  and λ = k3 if a singular perturbation of

the c dynamics in (16) – (18) were allowed.

The original model (16–18) is simulated to generate
experimental data, for the purposes of this example. The
parameters are fixed to k1 = 4.5(nM s)1, k-1 = 2.5s-1, k2 =
56s-1, k3 = 2s-1 and the initial condition to e0 = 3.5 nM. We

first follow the approach described previously to find a
lower bound on the error between the model predictions
and experimental data, and then use the continuous-time
approach that we described to invalidate this model.

The error between the model predictions and the experi-
mental data is given by:

Here, the following (Euler) discretized version of the
model described by (19)–(20) is used

where Δt denotes the discretization time step, which is
equal to the sampling rate of the experimental data. It
should be noted that the Euler discretization has been
chosen for simplicity. There are numerous alternative
methods of discretizing the system (eg, central difference
approximation).

A lower bound on the minimum value that the expression
(21) can achieve can be found using the sum of squares
decomposition, as described in the Methods section.
Reformulating (21) to remove the denominator we
require that

where N is the number of samples,  and

The optimization objective is now to maximize γ, which
represents the lowest bound achievable for the difference
between model predictions and observed data. Once such
a value for γ has been obtained and is exact, we can sub-
stitute this back into the original equation and solve for p*
as described in the methods section.

We used the method described above to find that the
lower bound on the error between data and the predic-
tions of the model given by (19)–(20) is γ = 0.00328. This
was done using nine data points and the optimal param-

E S ES P E P
k

k k k
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1
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h K sk k= +( )2

gi(K, V, λ) = ((ŝi+1 − ŝi)(K + ŝi) + ΔtV ŝi)
2 + ((p̂i+1 − p̂i + Δtλp̂i)(K + ŝi) − ΔtV ŝi)

2.
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eter values that give this error are K = 1.313, V = 14.856
and λ = 1.736. The behavior of the system for this set of
parameters is shown in Figure 1, plotted against the exper-
imental data. There, it is evident that the model has cap-
tured adequately the dynamics of the system – the fast
transient responses have been reflected in the model data.

We now focus on the validity of the model given the
parameters obtained. For this, a second data set is simu-
lated for the purpose of invalidation. The new experimental
data is obtained by simulating model (16–18) in the same
manner as before with k1 = 8.5(nM s)-1, k-1 = 2.5s-1 and e0
= 4.5 nM with the remaining parameters unchanged. We
also consider an uncertain model of the system (to
account for possible experimental error in the original
data set) and we assume that we do not have an exact

value for V (in [nM]/s) but rather we are confident that V
lies in the interval V ∈ [13,15]. Uncertain initial condi-
tions in the substrate concentration [S] are introduced
such that s(t0) = s0 ∈ [0.49, 0.51] and finally, the time
point chosen to invalidate the model at is t� = 0.0923
where the product data due to experimental error lies in
the range p(t�) = p� ∈ [0.4, 0.45]. We choose to attempt
the invalidation at this point because the error between
the nominal model prediction and the data point is very
large as can be seen in Figure 2. For high order nonlinear
models invalidation through visual inspection of all pos-
sible trajectories is not possible. Once it has been shown
that the model and data do not agree at a single time point
the model is said to be invalid. Describing the uncertainty
in the form of constraints using the notation of (8)–(11)
we have:

Simulated experimental data (dashed points) and the minimum error bounded model (smooth curves)Figure 1
Simulated experimental data (dashed points) and the minimum error bounded model (smooth curves). In this 
figure the first 9 data points from the experimental data obtained from (16–18) are represented by the colored dashes. The 
complex, substrate and product concentrations are denoted by the red, blue and green dashes respectively. Shown in compar-
ison to this are the data obtained from the minimum error bounded model (19–20), the green curve represents the product 
concentration and the blue curve the substrate concentration.
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In this instance we look for a barrier certificate of the form
B(x, V, t) ie, a polynomial function of state, parameter and
time. This is a more demanding problem than the nomi-
nal system invalidation problem as we are dealing with
uncertain data, as well as model uncertainty in the form of
unknown initial conditions and parameters. We aim to
invalidate the model based on experimental observations
from the product of the reaction alone.

The algorithm is able to construct a barrier certificate that
is bounded by monomials of maximum degree 4 in state
and first degree in time and parameter (the barrier certifi-
cate obtained is given in the online Additional File 1). The
existence of a barrier certificate tells us that given the
observed experimental data at t = 0 and t = t� the proposed
model is not able to replicate the observed data given
these initial conditions and parameter sets, hence it is
invalidated. For comparison we now seek to find a barrier
certificate of the form B(x, p, μ) where μ = e-λt. Setting λ =
0.8 the algorithm is able to find a lower order certificate,
in this case the barrier certificate is bounded by monomi-
als of the state vector of degree three. We have shown for

g V V V

g s s s

g p p

P( ) ( )( )

( ) ( . )( . )

( ) (

= − − −
= − − −
= − −

13 15

0 49 0 51

0
1 0 0 0

A A A .. )( . )4 0 45pA −

Experimental data (dashes) and model data with unknown initial conditions in the substrate (blue) and parametric uncertainty in VFigure 2
Experimental data (dashes) and model data with unknown initial conditions in the substrate (blue) and para-
metric uncertainty in V. Simulated experimental data using the new parameter set from the model described by (16–18) are 
plotted with the complex, substrate and product shown in red, blue and green respectively. All possible trajectories of the 
product and substrate (given the uncertain sets described) from the model (19–20) are shown by the solid red and blue 
patches respectively. We aim to invalidate the model with the data at t = 0.0923 where the experimental data contains uncer-
tainty as indicated by the black error bar.
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this example that the time re-parametrization can provide
a more efficient means for constructing barrier certificates.

Discrete-time: Population Growth
We now give an example of discrete model invalidation
using the formulation shown previously. We use a
delayed logistic equation to model single species growth
with after effect to generate experimental data:

where r ∈ [1.5, 2]. The model that is being considered
ignores the delay and takes the following form:

The only free parameter in this model is r and we shall
constrain it such that r ∈ [1.5, 2].

Our aim is to show that given a set of experimental data
we can provide an invalidation certificate for our model.

A plot of the behaviour of the two models given the
parameter and initial condition ranges is shown in Figure
(3). Model invalidation amounts to ensuring that at some
point the set of possible model behaviours and the exper-
imental data set do not intersect given the uncertainty.
Examining Figure (3) it is clear that at k = 3 and k = 4 the
intersection of the two sets is empty, however this is also
true for k = 2. Normally when a model has multiple
parameters or is nonlinear of high dimension it may not
be possible analytically or through simulation to see
where this occurs. This reason alone highlights the impor-

tance of our method. For this example we have r ∈ [1.5, 2]

and x0 ∈ [0.01, 0.1] (assuming that the delayed model has

x rx xk k k+ −= −1 10 7 6( . ). (23)

x rx xk k k+ = −1 1( ) (24)

Discrete time logistic growth modelFigure 3
Discrete time logistic growth model. Data ranges for the simulated experimental data (red) generated from (23) and 
model data (blue) from (24) given parametric and initial condition uncertainty. The first green bar indicates that both data sets 
start from the same unknown initial condition set.
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constant initial conditions) and at k =2, 

where x is the experimental data at that point in time and

x2 = 0.00225,  = 0.016384. We therefore define the fol-

lowing sets:

In this case, the invalidation problem becomes

where

The test described by (14) becomes

where si are sums of squares and t is a polynomial. The
degree of the unknown polynomial t and the SOS varia-
bles si has to be chosen carefully in order to make sure that
the computational effort is acceptable. The above SOS
program was implemented using SOSTOOLS and the
model was successfully invalidated based on the experi-
mental data at k = 2. The degree of the multipliers was
deg{s1} = 2, deg{s2} = 2, deg{s3} = 2 and deg{t1} = 1:

As we can see from the above, the multipliers certifying
the emptiness of set (26) are large, indicating the sensitiv-
ity of the certificate to changes in the model structure and
parameters. This should be expected, as the fact that the
model can be invalidated using data at k = 2 is not imme-
diately obvious by looking at Figure (3). The computa-
tional effort needed to invalidate the model increases as
data for larger k are used in the invalidation, since the pol-
ynomial Fk in (26) becomes more complicated. However,
the coefficients of the multipliers become smaller, indicat-
ing that the certificate robustly verifies that the model is
invalid.

Discussion
In this paper we have presented a method for calculating
a bound on the error between predictions from an ODE
model of a particular structure and experimental data. We
introduced an error metric γ which is used to quantify a
lower bound on this difference. Note that γ is actually an
error metric in the same way the sum of squares error
(SSE) is commonly used for fitting models to data: for that
reason it should only be used to compare the goodness of
fit in different scenarios, eg, comparing competing model
structures or the same model structure for different data
sets. Ideally γ should be as low as possible.

An alternative error metric that may be worth investigat-
ing in the future is the maximum difference between the
model prediction and all data points. With this method,
normalization of γ is not required. This error metric gives
us additional information on where the model predic-
tions are weakest, which could be used to automatically
select the instance at which to begin the invalidation proc-
ess.

As mentioned already, our methodology for identification
and invalidation uses the fact that we can quantify the
level of uncertainty in the experimental data and using
this information, develop a parameterized, uncertain
model that can be used to describe the data set. In fact, the
researcher that conducted the experiments should be able
to provide upper and lower bounds on measurements,

which can then be used for building the uncertain sets .

At the same time, the set  should ensure that the uncer-
tain model can describe every point in the data set that
was used to fit it. This set could also be used to encompass
all the uncertainty present in the system, including envi-
ronmental fluctuations, experimental error and measure-
ments that prove difficult to obtain accurate measures for.
See [4] for more details on how the set  can be con-
structed.

Traditionally, models are fitted on one data set and a sec-
ond, unseen data set can be used to either validate it (and
refine its parameters), or invalidate it. Assume that we
have fitted a model of the form  = f(x, p), from some

experimental data set x ∈  and obtained the parameter

set p ∈  using the error bounding method described in
the Methods section. Given a second data set, we would
like to know how well our model describes these new
data. This can be formulated as an optimization problem
that seeks to find a parameter value , so that the new

model  = f(x, q) can represent the new data set. The size

of ||δp|| = ||q - p||, reflects the magnitude of the change
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required in the parameter values in order for the model to

replicate the new data. If ||δp|| is large then this indicates
that the original model does not accurately describe the

system under study. If ||δp|| is not large and , then

we can refine the model parameters appropriately by
grouping the two data sets. Otherwise, we can formally
invalidate the old model and seek a different structure in
the dynamics of the system under consideration, using eg,

the approach in [27]. To this end, ||δp|| provides a meas-
ure of the sensitivity of the model parameter set to new
experimental data. This cyclic approach will then lead to a
better understanding of the system under study as it can
also be used to identify what in the model structure fails
to replicate the data.

Conclusion
We have demonstrated how questions related to system
identification and model invalidation for biological sys-
tems can be answered using optimization, real algebraic
geometry and dynamical systems concepts. We have
emphasized that formal model invalidation in conjunc-
tion with system identification can be used to develop
reliable models of biological systems.

Finding a lower bound on the error during an identifica-
tion approach is important information that can not only
be used to provide feedback as to the suitability of the
model structure chosen, but also can help in identifying
the suitable parameters, as demonstrated in the results
section. More complicated model structures can also be
used, even if these are not polynomial, through appropri-
ate recasting [28].

One of the biggest problems encountered when trying to
construct a barrier certificate (for continuous-time sys-
tems) and appropriate multipliers (for discrete-time sys-
tems) is determining the minimum order of the
polynomials that would allow invalidation. For compli-
cated system descriptions, constructing such polynomials
can be computationally demanding, but the problem still
remains polynomial-time verifiable. This is in contrast to
simulation-based approaches that require an exponential
number of runs and anyway cannot always answer the
invalidation question conclusively. The examples given in
this paper aim to introduce the algorithms that can be
used for model invalidation and were hence kept simple
for clarity-the algorithmic formulations are suitable for
more complicated examples.

A future direction will be to investigate what information
barrier certificates and multipliers (for invalidation of
continuous and discrete time systems respectively) can
provide about the invalidated model – ie, what system

structure could be changed in order for such a certificate
not to exist.
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