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Novel massively parallel sequencing technologies provide highly detailed structures of transcriptomes and genomes by
yielding deep coverage of short reads, but their utility is limited by inadequate sequencing quality and short-read lengths.
Sequencing-error trimming in short reads is therefore a vital process that could improve the rate of successful reference
mapping and polymorphism detection. Toward this aim, we herein report a frequency-based, de novo short-read clus-
tering method that organizes erroneous short sequences originating in a single abundant sequence into a tree structure; in
this structure, each ‘‘child’’ sequence is considered to be stochastically derived from its more abundant ‘‘parent’’ sequence
with one mutation through sequencing errors. The root node is the most frequently observed sequence that represents all
erroneous reads in the entire tree, allowing the alignment of the reliable representative read to the genome without the risk
of mapping erroneous reads to false-positive positions. This method complements base calling and the error correction of
making direct alignments with the reference genome, and is able to improve the overall accuracy of short-read alignment
by consulting the inherent relationships among the entire set of reads. The algorithm runs efficiently with a linear time
complexity. In addition, an error rate evaluation model can be derived from bacterial artificial chromosome sequencing
data obtained in the same run as a control. In two clustering experiments using small RNA and 59-end mRNA reads data
sets, we confirmed a remarkable increase (;5%) in the percentage of short reads aligned to the reference sequence.

[Supplemental material is available online at www.genome.org. The frequency-based de novo short-read clustering
software program, FreClu, is freely available from http://mlab.cb.k.u-tokyo.ac.jp/;quwei/DeNovoShortReadClustering/.
Complete data sets are available at the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under
accession no. SRA003629.]

Next-generation high-throughput DNA sequencers, including the

ABI SOLiD and Illumina systems, produce large numbers of short

reads at very low cost (Barski et al. 2007; Durfee et al. 2008). These

massively parallel sequencing technologies can generate more

than 1 billion base pairs (bp) in a run that takes less than 1 wk,

thereby accelerating capillary sequencing performance by two

orders of magnitude (Holt and Jones 2008).

However, the utility of next-generation sequencers is di-

minished by two major limitations. First, the reads are short; most

reads alluded to in previous reports were 25–36 bp, which could

hinder unique mapping to a reference sequence (Hillier et al.

2008). The second limitation is the low quality of base differen-

tiation. Massively parallel sequencing technologies, such as the

Illumina sequencer, suffer from inherent noise factors, such as

phasing, fading, and fluorophore cross-talk, and these factors in-

crease in later sequencing cycles (Erlich et al. 2008). Approxi-

mately one-half of raw short reads generated in one run cannot be

perfectly mapped to the reference sequence (Hillier et al. 2008).

Excluding a small population of reads with real variations, such as

single-nucleotide polymorphisms (SNPs), insertion/deletion (indel)

mutations, or RNA editing, approximately one-half of reads are

assumed to have one or more sequencing errors. Not only does low

base quality cause fatal errors in polymorphism detection, but se-

quencing errors can occasionally cause short reads to be mapped to

false positions. Therefore, sequencing-error trimming is a very im-

portant step in the correct alignment of short reads to a reference

genome.

Previously described computational methodologies for cor-

recting sequencing errors in short reads suffer from several major

drawbacks (Marth et al. 1999; Altshuler et al. 2000; Brockman et al.

2008). First, a common feature of these methods is that the reads

must map uniquely to the reference sequence, which may result in

failure to detect short erroneous reads aligned to unique, but false,

positions. A better method of detecting sequencing errors before

alignment would reduce this effect. Second, another common

procedure is to set an ad hoc minimum frequency threshold to

remove erroneous sequences derived from highly expressed

sequences; however, this approach both ignores sequences of low

abundance and allows erroneous sequences with high frequency.

The frequency threshold used in error correction for de novo

fragment assembly (e.g., ALLPATHS) is effective when the reads

provide approximately even coverage of the reference sequence,

but the method is unsuitable for transcriptome expression analysis

because the distribution of reads is extremely uneven and follows

a power law (Pevzner et al. 2001; Ueda et al. 2004; Butler et al.

2008). Third, quality value (QV) selections, such as the neigh-

borhood quality standard windows used for capillary sequencing,

do not match the next-generation sequencing strategy, which
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outputs bases at the same position in millions of reads simulta-

neously in one independent sequencing cycle. Thus, another

model for sequencing error correction tailored to the character-

istics of next-generation sequencing must be developed.

In this report, we address these issues and provide an effective

solution. Before alignment to the reference genome, erroneous

‘‘child’’ sequences are clustered into a group represented by

a ‘‘parent’’ sequence; the child sequence is considered to originate

stochastically from its more abundant parent sequence through

sequencing errors produced in the same experiment. Indeed,

mapping experiments show that broad parent–child relationships

are inherent among reads generated in the same experiment.

Subsequently, we integrate the parent–child read relationships

into trees, such that the sequences at the root nodes are the most

frequent sequences in individual trees and are treated as the rep-

resentatives of all erroneous sequences in the trees. As illustrated

in Figure 1, erroneous short reads that might be aligned to in-

correct positions or with failed mapping are clustered so that these

representative sequences are mapped to the genome to anchor the

locations of the erroneous descendant sequences. This approach

effectively resolves the problem of low-quality short-read se-

quencing by avoiding the mapping of erroneous reads to false-

positive positions in the reference genome, and it avoids using an

ad hoc frequency threshold while outputting trees with reliable

representative sequences regardless of abundance. Although this

approach may suffer from the problem that short sequences

originating in different parts of the genome are erroneously clus-

tered into the same group, this fault can be detected and elimi-

nated by aligning the representative sequence to multiple

locations in the genome.

Additionally, we propose an error model adjusted for next-

generation sequencing by refining the traditional random model

of error rate evaluation used in POLYBAYES (Marth et al. 1999) to

involve substitution patterns arising from the fluorophore cross-

talk noise factor. Our two experiments on small RNAs and 59-end

serial analysis of gene expression (SAGE) using Illumina (formerly

Solexa) sequencing technology prove that our de novo clustering

method markedly reduces sequencing errors. Finally, because

massive numbers of reads must be clustered in a reasonable

amount of time, we have attempted to minimize the computa-

tional time of the clustering process. We propose a frequency-

based method for the detection of parent–child relationships

accelerated by hash-based sequence searches that run in time

linear to the number of given reads.

Results

Clustering of small RNAs

Small RNA guides markedly expand the capacity for spatiotem-

poral control of gene expression in multicellular organisms

(Chapman et al. 2007). MicroRNAs (miRNAs), which are about 22

nucleotides (nt) in length and inhibit translation of target genes,

constitute the major class of small RNA. We performed an exper-

iment in which we observed approximately 5 million reads of

small RNAs from the HT-29 human colon adenocarcinoma cell

line using the Illumina small-RNA protocol (see details in Me-

thods).

Because mature miRNAs have paralogs with highly similar

sequences (Bartel 2004), we estimate that many observed miRNAs

are, in fact, derived from errors in sequencing of more abundant

miRNAs with small Hamming distances. For example, we observed

one annotated read (hsa-miR-10a) 9281 times, as well as much less

abundant sequences that had one mismatch to hsa-miR-10a,

which was the most abundant miRNA (Table 1; see Supplemental

material for short-read annotation procedures). Our statistical

method, which considers the frequencies of individual sequences

(see Methods), treats most of these low-abundance sequences as

the result of sequencing errors. Interestingly, these erroneous

sequences included hsa-miR-10b, a paralog of hsa-miR-10a.

Whether hsa-miR-10b is actually expressed is highly doubtful,

because the sequence occurred only five times. Few of the

remaining nonannotated sequences can be real sequences, con-

sidering the low incidence of SNP variation in the human genome

(;1/300).

The basic metrics of our initial processing results for Illumina

sequencing of small RNAs are shown in Table 2. About 4.3 million

Figure 1. Illustration of the major benefit of de novo clustering. A real
cDNA is shown as a brown bar, and short reads originating in it are
merged into nonredundant reads with unique sequences presented by
gray bars. (A) The contrast densities of the gray bars are proportional to
their frequencies. The reference genome is shown as a long arrow flagged
with the corresponding locus of the cDNA by a brown bar. (B) Alignments
of best hits are highlighted by blue dashed lines. Red dots emphasize base
positions at which the reads disagree with the original cDNA sequence.
The direct alignment includes correct alignments, as well as some short
reads with multiple best hits, as illustrated by the leftmost read. Some
reads fail in alignment because the sequencing errors are too numerous,
as shown by the aslant bar, and some are aligned to false-positive posi-
tions. (C ) These short reads are organized into the tree by the proposed
de novo clustering before alignment with the genome. The root indicates
the representative sequence of the cluster; this is the darkest, most
abundant read denoted with an asterisk. In the tree, parent–child rela-
tionships are depicted by dashed lines.
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reads out of 5 million QV-filtered reads were linker trimmed at their

39 ends. Their given Illumina QVs and expected error rates are

shown in Figure 2. The sequencing quality decreased drastically

after the 20th base, causing an intense upswing in the estimated

error rate. Eland alignment results of linker-trimmed reads, in-

cluding unique and nonunique mappings with at most two mis-

matches to references, are shown in Table 3 (see Supplemental

material). Of the total number of linker-trimmed reads, 88% were

aligned. As expected, sequences exactly matching the reference

were more abundant than nonaligned sequences. For example,

sequences with unique, perfect alignments dominated 47% of re-

dundant reads (reads observed more than once), but constituted

only 6% of nonredundant sequences, suggesting that reads with

sequencing errors are more likely to be of relatively low abundance.

A total of 837,503 nonredundant small RNA sequences were

clustered to 561,240 trees, of which 76,883 had more than one

nonredundant sequence. The most abundant tree, represented by

miRNA hsa-let-7f, occurred 385,285 times. The representative se-

quence itself, which was also the most abundant, occurred

309,820 times. This huge tree contained 3,175 sequences and had

a depth of seven; an example of longest path is shown in Figure

3A. Only the root node for the representative sequence was an-

notated; the other sequences were not associated with any known

annotation. The change in cumulative frequency before and after

clustering is shown in Figure 3B. Collectively, the 400 most

abundant sequences accounted for 50% of the total reads, whereas

after clustering the top 87 clusters accounted

for 50%. This indicates that highly expressed

sequences generate large numbers of errone-

ous sequences that can be merged through de

novo clustering.

We then measured the effect of clus-

tering by comparing the percentages of reads

aligned to the reference genes and genome.

We attempted to map only the representa-

tive sequence among all of the sequences in

a cluster. If a unique location was identified

as a perfect match, the remaining erroneous

sequences in the cluster were subsequently

added to the location and treated as per-

fect matches. As a result, the percentage of

redundant reads perfectly matched to their

reference rose from 49% to 66%, as illus-

trated in Figure 3C. The fraction of perfectly

matched nonredundant sequences increased

even more, from 8% to 25% corresponding

to a relative raise of 200%. Many erroneous

sequences were almost perfectly matched se-

quences, and the erroneous sequences were

more correctly aligned to the reference by de

novo clustering. However, the number of

reads aligned with one or two mismatches

decreased because many of these reads were

merged into the ‘‘perfect match’’ clusters. Eventually, the per-

centage of nonaligned redundant reads decreased from 12% to

10%, and that of nonredundant reads decreased from 38% to 32%.

Similar changes were observed among uniquely aligned reads (see

Supplemental material). Additionally, 61 nonredundant reads

with best hits associated with known mature miRNAs were local-

ized to different positions before and after de novo clustering;

these 61 reads were candidate false positives for expression before

de novo clustering.

Clustering of 59-end SAGE reads

Serial analysis of gene expression (SAGE) is an efficient method for

identifying expression levels of coding and noncoding RNA tran-

scripts. Because most transcripts are expressed at a very low level

(Velculescu et al. 1999), massively parallel sequencing technologies

can make a great contribution to the detection of low-abundance

mRNAs. As an extension of the SAGE method, 59-end SAGE can also

identify transcription start sites by targeting the 59 ends of tran-

scripts (Hashimoto et al. 2004). We found extremely high, inherent

sequence similarities among 59-end SAGE reads. We compared all-

against-all pairwise alignments of 59-end SAGE reads with align-

ments between reads and their reference genome (Drosophila mel-

anogaster [dmel]), which revealed that more extensive reads were

aligned between the reads’ own alignments. The percentage of

nonaligned redundant reads decreased from 57% in the reference

alignment to 21% in the all-against-all align-

ments (see Supplemental material). This result

indicates the importance of broad parent–

child relationships that are detected by our

de novo clustering method.

A total of 3,513,538 nonredundant se-

quences were clustered into 2,766,228 trees.

Of these trees, 112,386 contained multiple se-

quences; the remaining trees were singletons.

Table 1. Observed sequences with one mismatch to hsa-miR-10a

Original sequence Frequency Annotation

TACCCTGTAGATCCGAATTTGTG 9281 hsa-miR-10a

Mismatch position One-mismatch sequences Frequency Annotation

1 AACCCTGTAGATCCGAATTTGTG 13 No hit
1 CACCCTGTAGATCCGAATTTGTG 22 No hit
1 GACCCTGTAGATCCGAATTTGTG 58 No hit
2 TCCCCTGTAGATCCGAATTTGTG 59 No hit
2 TGCCCTGTAGATCCGAATTTGTG 1 No hit
2 TTCCCTGTAGATCCGAATTTGTG 0 No hit

11 TACCCTGTAGCTCCGAATTTGTG 151 No hit
11 TACCCTGTAGGTCCGAATTTGTG 15 No hit
11 TACCCTGTAGTTCCGAATTTGTG 2 No hit
12 TACCCTGTAGAACCGAATTTGTG 5 hsa-miR-10b
12 TACCCTGTAGACCCGAATTTGTG 2 No hit
12 TACCCTGTAGAGCCGAATTTGTG 12 No hit

21 TACCCTGTAGATCCGAATTTGAG 1 No hit
21 TACCCTGTAGATCCGAATTTGCG 16 No hit
21 TACCCTGTAGATCCGAATTTGGG 6 No hit
22 TACCCTGTAGATCCGAATTTGTA 109 No hit
22 TACCCTGTAGATCCGAATTTGTC 22 No hit
22 TACCCTGTAGATCCGAATTTGTT 158 No hit

Mismatches to the original hsa-miR-10a sequence are highlighted in bold. Only one sequence is
annotated with hsa-miR-10b; however, all of the sequences, including the one annotated with hsa-
miR-10b, may stem from sequencing errors.

Table 2. Illumina data processing metrics for small RNA reads of HT-29 cells

Total raw
reads

Total reads
without N

QV filtered
reads

Linker-trimmed
reads

Redundant reads 7,650,548 7,409,740 5,009,872 4,266,238
Nonredundant sequences 4,288,701 4,170,704 2,106,258 837,503

Short-read clustering for error trimming
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Compared with the sample of small RNAs, the percentage of reads

aligned to the genome was smaller for this sample due to different

data preparation procedures (see Methods) and rates of sequencing

error. Nevertheless, the de novo clustering method proved to be

effective in increasing the aligned percentage. As shown in Figure

3D, the percentage of redundant reads with perfect matches

rose from 12% to 17% with clustering. The percentage of non-

redundant, perfect-match sequences more than doubled, from 4%

to 9%. In total, the percentage of nonaligned redundant reads

decreased from 57% to 53%, and the percentage of nonaligned,

nonredundant sequences decreased from 77% to 72% (the relative

decrease in nonredundant reads was 5%/23% = 22%; see Supple-

mental material). The cumulative frequency of the top 179,759

sequences or 11,721 clusters accounted for 50% of the total reads,

revealing the remarkable effect of merging sequencing-error

sequences with their parent sequences.

Discussion
Next-generation sequencing technologies revolutionize compre-

hensive genome studies by producing massive numbers of short

nucleotide sequence reads. As an initial step toward addressing the

vexing problem of low base quality, we have developed an effi-

cient de novo short-read clustering method with linear time

complexity for sequencing-error trimming. Our approach focuses

on the broad parent–child relationships hidden in a set of short

reads generated from identical experiments with the same starting

points. We refined the error rate evaluation according to actual

substitution patterns and QV adjustments. We achieved a re-

markable increase (;5%) in the percentage of reads aligned to the

reference sequence and a particularly dramatic increase (a relative

raise of ;200%) in the percentage of reads perfectly matched to

the reference sequence, which led to a reduction in false-positive

alignments as well. Our frequency-based clustering method

establishes a novel framework for correcting sequencing errors in

short reads by consulting the inherent relationships among an

entire set of reads. Because our clustering method does not use any

reference genome data, it is expected to perform an essential

function in de novo transcript identification and genome assem-

bly with deep coverage.

The reader might wonder whether this approach would be

advantageous in shotgun sequencing. Indeed, it will be, if a way of

organizing overlapping short reads that may not be derived from

the same start point can be developed. Multiple alignments would

be useful in grouping overlapping short reads; however, combin-

ing frequency-based clustering with the multiple alignment of

short tags becomes highly nontrivial. Because one short read can

have multiple, more abundant, parents that may not necessarily

overlap, the selection of a single parent for a short sequence is

a difficult problem that we will leave for future investigation.

Methods
Our linear time complexity clustering algorithm consists of two
main steps: statistical frequency-based detection of parent–child
relationships and hash-based sequence searches. In preparing the
input data, we adjusted QVs by sequencing and mapping control
data obtained from BACs in the same run. We also considered the
dependence of QV on base position due to noise factors that vary
with the sequencing cycle. In addition, we calculated substitution
patterns arising from the fluorophore cross-talk noise factor, with
consideration of QV dependence.

Preparation of input data sets

An input data set should be a set of short reads generated in the
same lane with information such as nucleotide sequence, fre-
quency, and expectation of sequencing-error frequency, which is
discussed below. Here we prepared two different kinds of data sets,
small RNAs and 59-end SAGE reads. For both of the data sets, we
used a loose minimum QV threshold for the initial removal of
apparently low quality reads from the Illumina results. A maxi-
mum of four bases in the first 20 bases of a read were allowed to
have a QV less than 9.

The small RNA data set was generated from HT-29 human
colon adenocarcinoma cells by Illumina sequencing using the
small RNA protocol provided by Illumina. We performed an
overlap alignment without gaps between raw reads and a 39 linker
(59-TCGTATGCCGTCTTCTGCTTGT-39). Because the QV of Illu-
mina sequencing reads decreases toward the 39 ends, we set a fairly
low threshold to identify the 39 linker. A read containing a 39

linker should be aligned to the linker at its 39 end with at least five
bases and 80% similarity if the alignment is less than 11 bases
long. The linker-trimmed reads of lengths ranging from 15 to
31 bases were retained for further clustering analysis. We then

Table 3. Eland alignment results of linker-trimmed small RNA reads of HT-29 cells

Unique Nonunique

Perfect
match

One
mismatch

Two
mismatches Total

Perfect
match

One
mismatch

Two
mismatches Total Nonaligned

Redundant reads 2,012,801 848,663 465,038 3,326,502 2,092,842 1,000,148 662,412 3,755,402 510,836
Percent 47.2 19.9 10.9 78.0 49.1 23.4 15.5 88.0 12.0

Nonredundant sequences 53,132 117,416 167,283 337,831 70,650 174,422 273,289 518,361 319,142
Percent 6.3 14.0 20.0 40.3 8.4 20.8 32.6 61.9 38.1

Figure 2. Distribution of base quality QVs given by Illumina of small
RNA reads after trimming of 39 linker sequences. (A) Average of given
Illumina QVs at each base position. (B) Expected Illumina error rate P at
each base. P is calculated from Q (the Illumina QV) at each position
according to the formula: Perror = 1/[1 +10(Q/10)].

Qu et al.
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determined the frequency of each unique sequence. For each base
of each unique sequence, we summed the expected error fre-
quency estimated from the QV of each read as shown below. To
convert from a given Illumina base quality score back to a proba-
bility value, we used to following:

Perror = 1=½1 + 10ðQ=10Þ�;

where Perror is the probability of a base being incorrect and Q is the
QV of an Illumina base. As we know,

Perror = Nerror=ðNerror + NcorrectÞ;

where Nerror is the number of observed errors and Ncorrect is the
number of observed correct bases (Ewing and Green 1998).
Transforming the above equation gives

Nerror = Perror=ð1�PerrorÞNcorrect:

If we use the expected probability Perror from the Illumina base
QV score Q in the above formula, the left-hand side of the
above formula, Nerror, gives the expected error frequency, which
serves as a highly important indicator for the determination of
whether similar nucleotide sequences arise from sequencing
errors. Therefore, we did concrete evaluations of QV using our BAC
sequencing data as a control, focusing on the overall accuracy of
QV and its dependence on base position and specific substitution
patterns.

Using the BAC sequence alignment results, we calculated the
actual accuracy of the given Illumina QV without consideration of
insertions and deletions (see Supplemental material). Over-

estimations of Illumina QV across all of
the base positions were observed from
BAC alignment when QV was >8. As
shown in Supplemental Figure S1, for
given QVs of 40 and 20, the actual QVs
fell to <25 and <15, respectively. Addi-
tionally, the position-specific dependency
of Illumina QVs illustrates a strict accu-
racy problem at the first base as well. For
a given QV of 40 at the first base, the
actual QV fell all the way to 11. However,
for the other base positions, only a
smooth change in base accuracy was ob-
served. In previous work on substitution
biases in sequencing (Li et al. 2004;
Dohm et al. 2008), it was suggested that
each nucleotide base has a specific error
pattern that varies across the QV range.
Indeed, we calculated the empirical error
rates of sequencing error patterns from
the BAC alignment and obtained results
consistent with that of Dohm et al. (2008)
(see Supplemental material). As shown
in Supplemental Figure S2, the relative
error rates of the three miscalled bases
were dramatically different. For instance,
adenines were most often miscalled as
cytosine and rarely as guanine or thy-
mine; the dominance of the adenine !
cytosine error is the result of significant
overlap of the adenine and cytosine flu-
orophore spectra. The relative error rates
varied across QVs as well.

Obviously, these factors vary con-
siderably when estimating error fre-
quency. Thus, when the QV is Q, the

expected number of errors of pattern R (e.g., A!C ) at position,
pos, is:

Nerrorðpos;Q;RÞ = Perror=½1�Perrorð posÞ�Ncorrect½RateðQ;RÞ�;

where Perror (pos) is the adjusted error rate derived from Illumina
QV at pos (Supplemental Table S1), and Rate(Q,R) implies the
probability that substitution pattern R occurs at QV Q (Supple-
mental Table S3). Our model extends POLYBAYES (Marth et al.
1999), which uses a random error pattern, by considering both the
dependence on base position and specific error patterns, thereby
improving the accuracy of error rate prediction.

The 59-end SAGE reads data set was generated using a high-
resolution analysis of the 59-end transcriptome (Hashimoto et al.
2004) of an embryo cDNA pool from the wild-type Canton-S strain
of D. melanogaster (dmel). The cDNAs were cleaved by EcoP15I
approximately 25–28 bases downstream of the transcription start
site before sequencing. We trimmed all Illumina reads at 25 bases
to remove the 39-linker sequence. Then, we determined the fre-
quency of each unique sequence and estimated the error fre-
quency according to the methods used for small RNAs described
above.

Frequency-based short-read clustering

We begin with defining several technical terms to introduce fre-
quency-based short-read clustering. The Hamming distance be-
tween two sequences of equal length, S and S9, is denoted by
Hamming(S,S9), which is the number of positions at which the
corresponding nucleotides differ. If errors in sequencing a parent

Figure 3. Frequency-based de novo clustering improves short-read alignment to unique positions.
Sequences are assigned to their parents if they fail in the nonsequencing error test (P < 0.01). (A) An
example of the longest path in the cluster with the largest number of reads in the small RNAs sample. (B)
Pink and red points indicate the cumulative frequencies of small RNAs ranked according to their fre-
quencies before and after clustering, respectively. Their ranks are shown in the x-axis. (C ) Percentages
of redundant (or nonredundant) reads (or clusters) of the small RNAs sample that are aligned to the
reference genome allowing for at most two mismatches. (D) Percentages of redundant (or non-
redundant) 59-end SAGE reads (or clusters) under the same conditions described in C.

Short-read clustering for error trimming
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sequence give rise to another sequence S, a parent candidate for S
should be a more abundant sequence with a small Hamming
distance to S. The most abundantly expressed sequence S0 with
one Hamming distance to S is the most probable parent candidate;
namely,

FrequencyðS0Þ = maxfFrequencyðS9Þj
HammingðS;S9Þ = 1g;

where Frequency(S9) denotes the frequency of sequence S9. The
parent–child relationship is considered only for sequence pairs
(S,S9) with one Hamming distance because sequences of more than
one Hamming distance can usually be connected by a series of
single-Hamming–distance pairs. We then perform a statistical test
for the proportion of the parent–child
relationship between the two sequences
S and S0. When the frequency of the
parent candidate S0 is n, the expected
error rate at the base position pos where
the base in S0 is replaced by the base in S
(denoted as pattern R) with QV Q is

+ Nerrorðpos;Q;RÞ
�

n;

where the denominator is the sum of
expected numbers of errors in n reads in
S0. To measure the significance of the
null hypothesis (H0) that the original
sequence S arose from S0 by virtue of
sequencing errors, we perform a one-
proportion Z-test (see details in Supple-
mental material), and we use a one-tailed
test for a 99% confidence limit. If the
null hypothesis H0 is disproved, then S
is proved to be an actually expressed
sequence. Otherwise, the original se-
quence S is treated as an erroneous se-
quence and is therefore clustered as
a child of S0. After iterative detections of
parent–child relationships, the remain-
ing sequences (which have not been
clustered as children of any other se-
quence) are treated as representative
expressed sequences in their clusters.

The construction of an efficient al-
gorithm for frequency-based short-read
clustering is not trivial. Our overall clus-
tering flow with a total time complexity
of O(N) has the following steps, where N
represents the number of given short
reads:

(1) Scan the observed redundant short
reads, and compute the expected
errors for three miscalled patterns of
each base with a time complexity of
O(N) (Fig. 4A).

(2) Sort the redundant short reads in
lexicographical order using the radix-
sort algorithm. Scan the sorted list
to count the frequencies of the in-
dividual nonredundant sequences
and the sum of expected errors at
each base. Because the lengths of
short reads are bounded by a con-
stant ranging from 25 to 50 in cur-

rent next-generation sequencing, the radix-sort runs in
a linear time O(N) (Fig. 4B).

(3) Sort the nonredundant sequences according to their frequen-
cies in descending order using the radix-sort algorithm. Be-
cause the frequencies are limited by the total number of short
sequences, the worst-case time complexity of the radix-sort is
linear O(N) (Fig. 4C).

(4) Scan the list of nonredundant sequences sorted by their fre-
quencies, and build a hash table in which nonredundant
sequences are keys and are associated with their frequencies in
O(N)-time (Fig. 4D).

(5) Repeat the following three steps until the list of nonredundant
sequences is empty, as illustrated in Figure 4E:

Figure 4. Procedure for frequency-based and hash-based short-read clustering. The list of short reads
(blue) is a schematic view of millions of sequences. The columns (red) emphasize the sorting processes.
A red base in E represents a position in disagreement with S.

Qu et al.
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(a)Eliminate the bottom read of lowest abundance, S, from
the list of nonredundant reads sorted by their frequencies
in descending order.

(b)Select the most frequent read S0 such that:

FrequencyðS0Þ = maxfFrequencyðS9ÞjHammingðS;S9Þ = 1;

FrequencyðS9Þ > FrequencyðSÞg:

(c) If S fails in the nonsequencing error test, set the parent of
S to S0 (see Supplemental material).

The crux in the above steps is the efficient selection of S0. To this
end, we generate the set {S9|Hamming(S,S9) = 1} and check whether
each element in the set has the highest frequency by consulting
the hash table generated in the previous step in constant time.
Note that the size of the set is bounded by thrice the length of S,
which is limited as a short read, and therefore can be treated as
a constant. Therefore, the overall time complexity is linear in the
total number of nonredundant reads.

Theorem: The above algorithm generates trees such that the
frequency of any child node is lower than that of its parent node.

Proof: In Step 5, the selected child S and its parent candidate
S0 meet the condition:

FrequencyðS0Þ > FrequencyðSÞ;

because S is of the lowest frequency in the list of remaining non-
redundant sequences.

The worst-case time complexity is linear in the number of
short reads and is therefore optimal theoretically. Indeed, the al-
gorithm works efficiently in practice. In our test run, the elapsed
time to process the example of small RNAs in Steps 4 and 5, the
crucial part of the algorithm, was ;3 min using one AMD Opteron
processor (clock speed 3.0 GHz) with 128 GB of main memory.

An example of frequency-based cluster trees is shown in
Figure 1C. A sequence node is indicated by a gray bar in which
the contrast density is directly proportional to its frequency.
Sequences with more than one Hamming distance to the repre-
sentative sequence are clustered by their intermediary sequences.
Obviously, in a frequency-based cluster, the representative se-
quence is the root node with the highest frequency, and it is
considered to be a survivor of the de novo sequencing-error
trimming process.
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