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Abstract
Activin was discovered in the 1980’s as a gonadal protein that stimulated FSH release from pituitary
gonadotropes and was thought of as a reproductive hormone. In the ensuing decades many additional
activities of activin were described and it was found to be produced in a wide variety of cell types at
nearly all stages of development. Its signaling and actions are regulated intracellularly as well as by
extracellular antagonists. Over the past 5 years a number of important advances have been made that
clarify our understanding of the structural basis for signaling and regulation, as well as the biological
roles of activin in stem cells, embryonic development, and in adults. These include the crystallization
of activin in complex with the activin type II receptor ActRIIB, or with the binding proteins follistatin
and follistatin-like 3 (FSTL3), and identification of the activin roles in gonadal sex development,
follicle development and luteolysis, in β-cell proliferation and function in the islet, in stem cell self-
renewal and differentiation into different cell types, and in immune cells. These advances are
reviewed to provide perspective for future studies.

Inhibin and activin were purified from gonadal fluids based on their ability to inhibit or
stimulate (respectively) release of FSH from cultured pituitary gonadotropes. Following
purification and molecular characterization, these hormones were identified as members of the
TGFβ superfamily, which now includes more than 40 ligands including TGFβ, inhibin,
myostatin and bone morphogenetic proteins (BMPs)(Vale et al. 1988). Activin receptors were
discovered later by functional cloning, revealing a type II receptor with serine/threonine kinase
activity as the binding moiety (Mathews & Vale 1993), which was later found to phosphorylate
a type I receptor after ligand (Tsuchida et al. 2008). These discoveries, along with the
identification and characterization of extracellular activin antagonists such as follistatin (FST)
and follistatin like 3 (FSTL3) (Welt et al. 2002), spurred a torrent of research activity into
activin’s biological roles in a wide spectrum of tissues and systems ranging from fate
determination in embryos to homeostatic mechanism in adults (reviewed in (Mather et al.
1992; Mather et al. 1997; DePaolo 1997; Welt et al. 2002)). One of the continuing challenges
in this field has been to decipher the in vivo activities of ligands that act primarily through
autocrine and paracrine mechanisms where the value of the more classical endocrinological
ablation and replacement paradigms is limited. Moreover, the requirement for activin during
development has restricted utilization of global knockout technology to address this issue. The
more recent advent of conditional knockout technology, regulatable expression systems, and

Correspondence: Alan Schneyer, Ph.D., Pioneer Valley Life Science Institute, 3601 Main St, Springfield, MA 01107, E-mail:
Alan.schneyer@bhs.org.
Declaration of Interest: Authors have no conflicts to declare.

NIH Public Access
Author Manuscript
J Endocrinol. Author manuscript; available in PMC 2010 July 1.

Published in final edited form as:
J Endocrinol. 2009 July ; 202(1): 1–12. doi:10.1677/JOE-08-0549.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



siRNA suppression technology is opening the door for more detailed investigations of activin’s
tissue-specific roles in adults.

The basics of activin signaling have been known for some time, although emerging details of
cross-talk with other signaling pathways and an increasingly complex web of intracellular
regulators adds new wrinkles at a regular pace (reviewed in (Tsuchida et al. 2008). This review
will first focus on recent advances in our understanding of the structural basis for activin’s
interactions with its receptors and antagonists along with new information about how activin
signaling and biosynthesis are regulated, after which we will summarize advances in our
understanding of activin’s biological roles, primarily in adults, published since our last
comprehensive review (Welt et al. 2002). The role of activin in endocrine cancer, while
important, was too vast to be included in this review.

A. Advances in activin structure-function relationships
1. Activin-receptor crystal structures

The canonical activin signaling pathway involves an activin dimer binding to one of two type
II receptors (ActRIIA or ActRIIB) in complex with activin’s type I receptor ActRIB ( a. k. a,
activin receptor-like kinase 4, Alk4), which ultimately leads to phosphorylation of the type I
receptor. This receptor then phosphorylates the second messenger molecules Smad2 and
Smad3 that, once activated, complex with a common Smad, Smad4. This complex then
translocates to the nucleus where it activates gene transcription. Smad7 was identified as an
inhibitory Smad that blocks phosphorylation of Smads 2 and 3, thereby providing a short loop
negative feedback regulation for this signaling pathway (reviewed in (Tsuchida et al. 2008)).
Another level of regulation occurs extracellularly through soluble antagonists like follistatin
and FSTL3 (Schneyer et al. 2001) or membrane bound modifiers like BAMBI (BMP and
activin receptor membrane bound inhibitor) and Cripto (a GPI-anchored membrane protein,
which inhibits activin signaling by forming an “inert” complex with activin and ActRIIA)
(Kelber et al. 2008; Onichtchouk et al. 1999). Despite focused efforts, crystallization of activin
alone was unsuccessful, suggesting that there may be considerable flexibility in how the two
disulfide-linked subunits of activin are aligned. This was confirmed when activin A was
crystallized in complex with ActRIIB extracellular domain (Thompson et al. 2003). In this
structure, ActRIIB binds to the outer edges of the so-called finger regions on the activin dimer.
Interestingly, the activin dimer in this model was tightly folded into a compact conformation
unlike the extended configuration of other TGFβ family members previously crystallized
(Hinck et al. 1996; Griffith et al. 1996). Activin’s flexibility and compact conformation was
confirmed in a more highly resolved crystal structure with ActRIIB and suggested that this
movement allowed binding sites for the type I receptor to be exposed once the type II receptor
sites were occupied, thereby suggesting a mechanism for how the hexameric complex
consisting of the activin dimer with two type II and two type I receptors is organized and
activated (Greenwald et al. 2004). Support for this model comes from the remarkable
achievement of crystallization of the ternary signaling complex comprised of a related ligand
(BMP-2) and both receptor subtypes (Allendorph et al. 2006). These results showed that the
ligand is the central coordinator of the complex with an absence of direct contacts between the
receptors themselves (Allendorph et al. 2006). Moreover, they show that receptor specificity
depends on specific unique residues arranged around a conserved hydrophobic core on type I
receptors (Allendorph et al. 2006).

2. Activin Antagonist crystal structures
Follistatin, originally identified and isolated from both bovine and porcine follicular fluids on
the basis of its inhibition of pituitary FSH secretion, is a monomeric glycosylated polypeptide
chain that binds activin with high affinity and neutralizes most but not all of its biological
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actions. FSTL3 was cloned from a B cell leukemia line and it was originally named FLRG
(FST-related gene) based upon primary sequence homology to follistatin. Subsequently,
FSTL3 was also found to be a high affinity activin binding protein (reviewed in (6)).

As detailed previously, point mutagenesis and domain swapping studies were used to determine
portions of the FST molecule that were critical for its neutralization of activin activity (Welt
et al. 2002). FST is comprised largely of three successive 73–77 residue, 10-cysteine follistatin
domains (FSDs), preceded by a 63-residue N-terminal domain (Welt et al. 2002). Residues on
FSD2 and on the N-domain were found to be critical for activin binding (Sidis et al. 2005;
Keutmann et al. 2004; Sidis et al. 2001). Moreover, the N-domain, followed by at least 2 other
FSDs were required for activin binding and neutralization (Keutmann et al. 2004).

Rearrangement or substitution among the FSDs impaired or abolished activin binding,
indicating that the number and order of FST domains were important for full activity
(Keutmann et al. 2004). While these observations were instructive and consistent with binding
to proposed receptor binding surfaces on activin, it was not until FST was crystallized with
activin A that the significance of these observations were fully appreciated (Thompson et al.
2005). Two FST molecules envelop the activin dimer, covering a large percentage of the surface
and completely blocking both type I and type II receptor binding sites (Thompson et al.
2005). Moreover, it appeared that the C-terminus of one FST molecule contacted the N-
terminus of the other FST molecule as if to lock them in place (Thompson et al. 2005),
suggesting a possible mechanism to account for the nearly irreversible kinetics identified much
earlier (Schneyer et al. 1996; Schneyer et al. 1994). The FST-Activin structure also confirmed
the importance of FSD2 in contacting a large portion of the activin surface, thereby contributing
substantially to the overall affinity of the interaction (Thompson et al. 2005; Keutmann et al.
2004).

More recently, FSTL3, which has one FSD fewer than FST, has been crystallized in complex
with activin A revealing a similar overall structure with two FSTL3 molecules surrounding the
activin dimer (Stamler et al. 2008). However, in this case, the N-domain of FSTL3 contacts
activin more extensively than in FST, enhancing its importance to activin binding and perhaps
even compensating for the absence of a third FSD in FSTL3 (Stamler et al. 2008). The N-
domain contacts may also influence ligand binding specificity (Stamler et al. 2008), thereby
accounting for the previously determined difference in BMP binding between FST and FSTL3
(Sidis et al. 2006).

Myostatin is also a member of the TGFβ superfamily closely related to activin, and follistatin
can bind myostatin with relatively high affinity, although not as high as activin itself (Sidis et
al. 2006). Through site directed mutagenesis, it was found that mutations in FSD2, or
replacement of FSD2 with FSD1 reduced activin binding but maintained myostatin binding
activity whereas mutations in FSD1 or replacement of FSD1 with another copy of FSD2
diminished myostatin binding but not activin binding (Schneyer et al. 2008). Thus, it was
possible to create a myostatin-selective analog of FST that may be useful for designing new
treatments for muscle wasting disorders (Schneyer et al. 2008).

3. Regulation of activin activity by antagonists
Although it has been known for years that FST is produced as three isoforms resulting from
alternative splicing and post-translational proteolytic processing (Sugino et al. 1997), the
relative activities of these different isoforms remained to be fully elucidated. As reviewed
previously (Welt et al. 2002), the shorter FST288 isoform has a higher affinity for heparin-
sulfated proteoglycans located on the cell surface allowing FST288 to be concentrated at the
outer surface of the plasma membrane and potentially prevent action of autocrine acting activin
in addition to activin arriving from other cells or tissues (i.e., paracrine or endocrine acting
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activin). On the other hand, the longest isoform, FST315, was localized primarily in the
circulation (Schneyer et al. 2004), consistent with its reduced affinity for heparin in the
unliganded state. The intermediate isoform, FST303, was found primarily in gonadal extracts
and fluids and thought to be derived by proteolytic processing of the C-terminal acidic tail
(Sugino et al. 1997). FSTL3, which shares a number of structural features with FST, does not
contain a heparin binding sequence and thus, does not bind cell-surface proteoglycans under
normal conditions (Sidis et al. 2002). These biochemical distinctions suggested that the
different FST isoforms and FSTL3 had distinct biological actions in vivo (Sidis et al. 2002;
Schneyer et al. 2001; Tortoriello et al. 2001). This hypothesis was tested by producing
recombinant FST isoforms and assessing their binding kinetics for different TGFβ ligands as
well as their ability to inhibit biological activity when added as proteins (simulating paracrine/
endocrine actions) or when transfected into cells (simulating autocrine actions). Activin
binding kinetics were comparable between the FST isoforms and FSTL3 but cell-surface
binding differed markedly (Sidis et al. 2006) as expected from previous studies. Interestingly,
inhibition of endogenous (e.g., autocrine) activin activity correlated closely with surface
binding activity, whereas inhibition of exogenous (paracrine or endocrine) activin was not
significantly different among the FST isoforms, consistent with their similar binding affinities
(Sidis et al. 2006). Expression of FST315 as a membrane-anchored protein transformed it from
a soluble with weak antagonism to autocrine activin into an isoform that inhibited autocrine
activin activity equal to that of the FST288 isoform (Sidis et al. 2006), supporting the concept
that membrane localization via the heparin binding sequence significantly increases inhibition
of autocrine-acting activin. In addition, myostatin and BMP 6 and 7 were inhibited by the FST
isoforms, albeit to a lesser degree than that of activin, and this inhibition also correlated with
their cell-surface binding (Sidis et al. 2006). These results support the hypothesis that
differential cell-surface binding is the primary determinant of FST isoform biological activity
and that these isoforms may have distinct bioactivities in vivo.

In support of this latter hypothesis, human FST 315 or FST288 cDNAs were expressed
transgenically under control of the human promoter and crossed into the FST null mouse line
(Lin et al. 2008), which had been previously demonstrated to be neonatally lethal (Matzuk et
al. 1995c). While the FST288 expressing TG mice did not rescue this lethality, the FST315
expressing construct allowed mice to survive to adulthood with partial reversal of the skeletal
abnormalities seen in FST-null mice (Lin et al. 2008). However, these mice exhibited neonatal
growth retardation, impaired tail growth and female infertility that may have resulted from
failure of corpus luteum formation and a decline in ovarian follicle population (Lin et al.
2008). These results suggest that the FST288 isoform may be required for normal
vascularization and ovarian function whereas the FST315 isoform is sufficient for other
regulatory actions that when absent, result in neonatal death (Lin et al. 2008), consistent with
isoform-specific actions of FST in vivo. More detailed analysis awaits production of mice
capable of producing individual FST isoforms from the endogenous FST locus.

Biochemical differences among the FST isoforms and FSTL3 also govern their biosynthesis
and secretion. Using 35S pulse-chase labeling, FST315 was found to be synthesized and
secreted the fastest while FST288 was secreted more slowly, with some FST288 remaining
within the cell after extended incubation (Saito et al. 2005). FSTL3 was the slowest to be
secreted with newly synthesized proteins being both secreted and transported to the nucleus
(Saito et al. 2005). Interestingly, this nuclear FSTL3 was glycosylated but not to the same
degree as secreted FSTL3, suggesting it may be derived from an ER-resident pool that is
transported directly to the nucleus without first being secreted (Saito et al. 2005). These results
indicate that both FST and FSTL3 may have both intracellular and extracellular roles that are
governed to some degree by heparin-binding affinity (Saito et al. 2005).
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4. Regulation of activin synthesis
Inhibin and activin share a common β-subunit with activin constituting a dimer of two β-
subunits whereas inhibin contains a related α-subunit linked to the β-subunit (Vale et al.
1988). Thus, regulation of α-subunit biosynthesis and dimerization with the β-subunit can alter
activin biosynthesis in cells that synthesize both subunits such as ovarian granulosa cells. The
mature portion of the α-subunit is glycosylated and elimination of the carbohydrate chain at
asp 268 inhibited inhibin secretion without altering activin secretion, while mutations of the
β-subunit that induced its glycosylation also favored inhibin production (Antenos et al.
2007). These observations indicate that the degree of glycosylation determines the relative
proportion of inhibin and activin produced in such cells (Antenos et al. 2007). Activin also
stimulated production of both α-and β-subunit mRNA and protein, as well as the required
proteolytic processing that removed mature hormone from the precursor portions of the subunit
(Antenos et al. 2008). Interestingly, activin also stimulates furin biosynthesis through a
smad2/3-dependent process, suggesting the presence of a short feedback loop to enhance
secretion of mature activin and inhibin (Antenos et al. 2008).

B. Advances in biological actions of activin in adults and embryonic stem
cells
1. Activin and reproduction

Biological roles for activin have been proposed in a number of reproductive organs including
the gonads, uterus and pituitary, where it regulates processes such as folliculogenesis,
spermatogenesis, and pregnancy (reviewed in (Welt et al. 2002)). Over the past several years,
significant progress has been made in delineating the roles and mechanisms of activins in
embryonic ovary development, follicle development, luteolysis and testis development, as well
as in regulation of FSHβ gene transcription.

1.a. Activin and Gonadal Sex Determination—Emerging evidence suggests that
follistatin and activins influence differentiation of the indifferent gonad as well as the early
stages of folliculogenesis. Embryonic XX, but not XY gonads express FST, with mRNA
becoming detectable in the E11.5 XX mouse gonad (Menke & Page 2002; Yao et al. 2004).
In support of a role for FST in regulating development of female gonads, FST null XX gonads
develop a coelomic vessel, the rudiment of the testis-specific vasculature structure that
organizes and patterns the developing testis, suggesting that follistatin possesses an anti-testis
function (Yao et al. 2004). In the mouse XX gonad on E12.5, βB but notβA subunit mRNA is
expressed, which is in contrast to the expression of both βB and βA subunit mRNA in XY
gonads. Interestingly, in FST and βB subunit double knockout embryos, vasculature
development in XX gonads was reversed from the FST null phenotype to wild type (i.e., female)
while local application of activin B induced ectopic formation of coelomic vessel in cultured
XX gonads, and βB knockout XY gonads exhibited defects in coelomic vessel formation (Yao
et al. 2004). These results suggest that activin B induces the formation of the coelomic vessel
in both XY and XX gonads, but this action is normally inhibited by follistatin in the XX gonad
(Yao et al. 2004; Yao et al. 2006a). Although the role of activin and follistatin in gonadal
differentiation has not been established in other species, Xia et al., found that FST
concentrations were higher in fetal blood and allantoic fluids from female fetuses compared
to male fetuses during early pregnancy in sheep (Xia et al. 2008b), suggesting that FST may
also have important roles in sexual development in non-rodent species.

1.b. Activin and Follicle Development—Initial follicle pool formation is critical for
normal fertility in adult female mammals. Studies on developing mouse and human ovaries
suggest that activins are involved in regulation of germ cell proliferation during the
developmental period leading up to primordial follicle formation, which occurs at 24 hr after
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birth in the mouse and 21 weeks of gestation in the human (Bristol-Gould et al. 2006; Martins
da Silva et al. 2004). In mouse ovaries from postnatal days 0 and 4, activin βA and βB subunits,
and activin receptors ActRIIA, ActRIIB and ALK4 are expressed in both somatic cells and
oocytes, suggesting that neonatal mouse ovaries produce activin and are activin-responsive
(Bristol-Gould et al. 2006). Administration of activin A to female pups from birth to day 4
increased germ cell and granulosa cell proliferation, as well as the number of primordial
follicles formed from the germ cell nests, without any effect on apoptosis in these cells (Bristol-
Gould et al. 2006). Activin subunits, βA and βB, the receptors ActRIIA and ActRIIB, and
downstream effectors Smad2/3 are also expressed in human fetal ovaries at 14–19 weeks of
gestation (Martins da Silva et al. 2004; Coutts et al. 2008). Interestingly, βA subunit mRNA
expression increased 2-fold from 14 to 19 weeks of gestation, and treatment of human ovaries
between 14 and 17 weeks of gestation with activin A dramatically increased oogonial
proliferation (Martins da Silva et al. 2004). These results suggest that activin signaling may
play an important role in determining the size of the primordial follicle pool in humans as well
as mice. Since this is the total endowment of follicles for the female’s lifetime, these results
also suggest that activin signaling may be important in premature ovarian failure where
functional follicles are prematurely exhausted (Anasti 1998).

Activins and follistatins were originally isolated from follicular fluids and these proteins are
predominantly expressed in granulosa cells. Multiple roles have been proposed for granulosa
cell activin including regulation of proliferation, differentiation and steroidogenesis (reviewed
in (Welt et al. 2002)). More recently discovered actions for activin include synergistic actions
of activin with FSH to promote G1/S transition and cell proliferation in rat primary granulosa
cells, a process accompanied by induction of CycD2 expression and phosphorylation of
retinoblastoma protein (Rb) (Ogawa et al. 2003; Park et al. 2005). In addition, induction of
CycD2 by activin/FSH involved activation of phosphatidylinositol 3- kinase (PI 3-kinase) and
Akt pathways (Park et al. 2005). Activin was also shown to increase the estrogen receptors
αand β (ERα and ERβ) in mouse granulosa cells both in vitro and in vivo suggesting that the
activin and estrogen signaling pathways intersect to regulate granulosa cell activity and follicle
development (Kipp et al. 2007).

Genetic elimination of activin βA resulted in mouse pups that died within 24 hours of birth
with craniofacial and other defects (Matzuk et al. 1995b) while activin βB deficient mice
survived to become fertile adults but offspring of βB-deficient females died perinatally, perhaps
from insufficient lactation (Vassalli et al. 1994). To explore the role of activin A in ovarian
follicle development, granulosa cell-specific conditional βA subunit knockout mice were
created, resulting in subfertility with enhanced corpus luteum (CL) survival and accumulation
within the ovary (Pangas et al. 2007). These results, in combination with the observation that
replacement of mature βA with mature βB results in subfertility (Brown et al. 2000), suggest
that both activins A and B have important roles within the ovary with activin A being
functionally dominant over activin B (Pangas et al. 2007).

Transgenic overexpression of FST in ovaries led to a blockade in follicular development before
antral follicle formation suggesting FST had important roles in ovarian physiology (Guo et
al. 1998), perhaps through regulation of activin action. Consistent with this observation,
granulosa cell-specific overexpression of FSTL3, the related activin antagonist, resulted in
fewer antral follicles in adult females (Xia et al. 2004), while deletion of FSTL3 resulted in
mild subfertility in females and increased testis size in males (Mukherjee et al. 2007). Since
global FST null mice died just after birth and are therefore not useful for analyzing adult FST
roles, Jorgez et al (Jorgez et al. 2003) created a conditional fst allele and used these mice to
delete FST production from ovarian follicles. This led to decreased antral follicle number in
3-month old mice, as well as decreased litter number and size (Jorgez et al. 2003), suggesting
that optimized signaling of activins, and/or other TGF-β family members bound by FST and
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FSTL3 (e.g. BMP6 and BMP7, see (Schneyer et al. 2008; Sidis et al. 2006)) are required to
maintain normal development from secondary to antral follicles (Jorgez et al. 2003). An
additional phenotype developed as the females matured with accelerated loss of follicles, early
ovarian senescence and elevated gonadotropins (Jorgez et al. 2003) similar to the human
infertility condition known as premature ovarian failure (Anasti 1998).

Several FST isoforms were recently identified in ovine (Xia et al. 2008a) and bovine gonads
(Glister et al. 2006) by Western blotting. The relative amounts of these FST isoforms varied
differentially during follicle maturation although the total FST concentration in both ovine and
bovine follicular fluids declined with follicle development, suggesting that regulation of activin
action by intrafollicular FST changes as follicles mature (Glister et al. 2006; Xia et al.
2008a). In fact, FST isoform distribution and biological role appears to depend on biochemical
features distinct within the FST isoforms themselves such as the ability to bind to heparin
sulfated proteoglycans on the surface of cells (Sidis et al. 2006). Thus, the longest isoform that
has little cell-surface binding ability is largely found in serum (Schneyer et al. 2004) while
follicular fluid appears to contain predominantly the intermediate sized isoform, FST303
(Sugino et al. 1993). This model is further supported by a mouse model where a human FST315
minigene was expressed transgenically under the direction of the human promoter and then
crossed with the FST null mouse model described above (Lin et al. 2008). These FST315/303-
expressing mice survived to adulthood but females were subfertile with reduced numbers of
primordial, primary and secondary follicles, and no antral follicles and corpus luteum (Lin et
al. 2008).

1.c. Activin and Luteolysis—Using cocultures of cells isolated from human corpus luteum
(CL), Meyers et al demonstrated that activin derived from luteinized granulosa cells increased
expression of matrix metalloproteinase-2 (MMP-2) by fibroblast-like cells, and that this
activity was inhibited by FST (Myers et al. 2008; Myers et al. 2007). MMPs are key proteolytic
enzymes involved in the degradation of the extracellular matrix, and MMP-2 is an important
luteolytic agent during the demise of CL (Myers et al. 2007), thereby suggesting that activin
may play an active role in regression of CL survival. This notion is supported by analyses of
ovary-specific deletion of activins in mice in which the ovaries displayed progressive
accumulation of CLs and the absence of CL regression (Pangas et al. 2007). Additional support
for this concept comes from the observation that FST mRNA expression is dramatically
reduced in regressing CLs compared to newly formed CLs in rats which created a low FST/
high activin environment (Erickson & Shimasaki 2003). On the other hand, FST release from
the ovary increased at luteolysis in sheep, which may be another mechanism to create a low
FST environment through FST secretion rather than keeping the FST in follicular fluid (Xia
et al. 2008b).

1.d. Activin and Testicular Function—Smaller testes and reduced fertility were observed
in mice when activin signaling was down regulated by inactivation of ActRIIA (Matzuk et
al. 1995a), or when FST (Guo et al. 1998) or FSTL3 (Xia et al. 2004) were transgenically
overexpressed. Moreover, in the FSTL3 transgenic mice, reduced testis weight was observed
as early as postnatal day 7 (Xia et al. 2004). The mechanism whereby activin might control
testis size was suggested in early studies showing that activin can directly promote Sertoli cell
proliferation in culture (Mather et al. 1990), and supported by more recent observations that
the primary source for activin-A in the testis was peritubular myoid (PTM) cells which acts in
a paracrine fashion to promote Sertoli cell proliferation only when the Sertoli cells were
obtained between neonatal days 3–9 (Buzzard et al. 2003). Taken together, these results support
the concept that disrupted activin signaling may limit Sertoli cell proliferation in a critical
developmental window which persists as reduced testis weight in adults because the number
of Sertoli cells established during this proliferative phase in neonates constitutes an upper limit
to spermatogenic output in adults (Sharpe et al. 2003). In addition, activin signaling during
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early testicular development appears to determine ultimate testis size and function in adults,
and may be regulated by activin antagonists including FSTL3 (Xia et al. 2004) and FST (Guo
et al. 1998).

1.e. Activin Actions in the Pituitary—Activin was originally purified on the basis of its
ability to stimulate FSH release from pituitary gonadotropes (Vale et al. 1988) and it was
subsequently shown that activin is a critical regulator of FSHβ biosynthesis (Weiss et al.
1992). More recent studies have shown that Smad3 is the principal regulator of activin-induced
FSHβ subunit transcription, while Smad2 may be more involved in regulation of basal FSHβ
transcription in murine immortalized LβT2 gonadotrope cells (Suszko et al. 2003; Bernard
2004; Lamba et al. 2006; Bernard 2004; Suszko et al. 2008; Suszko et al. 2005; Gregory &
Kaiser 2004). This functional difference between Smad2 and Smad3 appears to be attributed
to the second of the two loops in the Smad2 MH1 domain, which is thought to bury a β-hairpin
loop structure thereby preventing Smad2 from directly binding its cognate DNA (Suszko et
al. 2005). In addition, activin stimulation of FSHβ gene transcription involves Smad3 partners,
including Pitx2c (a pituitary-specific transcription factor) (Suszko et al. 2008) and TALE
homeodomain proteins Pbx1 and Prep1 (Bailey et al. 2004).

FSH biosynthesis is also regulated at transcriptional level by gonadal steroids, glucocorticoids
and GnRH, and these actions are modulated by activin signaling. For example, androgen and
activin synergistically stimulate FSHβ transcription, and the stimulation by androgen or activin
alone is dependent on the presence of an intact Smad binding element (SBE) or androgen
response element (ARE) (respectively) within the FSHβ promoter (Spady et al. 2004; Thackray
& Mellon 2008). Glucocorticoids and activin also synergistically activate FSHβ transcription
and this synergy occurs at the level of the FSHβ promoter (McGillivray et al. 2007). The role
of GnRH in regulation of activin induced FSHβ transcription is more complex, because chronic
administration (20–24 h) inhibits activin action (Shafiee-Kermani et al. 2007), whereas acute
(4–6 h) GnRH synergistically enhances it (Gregory et al. 2004) and the interaction can also be
species specific, making interpretation of heterologous reporter experiments challenging
(Wang et al. 2008b; Lamba et al. 2008).

Activin also modulates transcription of LHβ subunit and GnRH receptor mRNA (Coss et al.
2005; Cherrington et al. 2005) as well as a number of other genes in LβT2 cells including
inhbb, inha, gdf9 and the 17β-HSD gene (Zhang et al. 2006). Activin also regulates the number
of GnRH receptors and hence, response to GnRH (Gregory & Kaiser 2004). Thus, in addition
to direct regulation of FSHβ biosynthesis, activin has important actions in modulating LHβ
biosynthesis and release through regulation of GnRH action, together supporting a major role
for activin in modulating neuroendocrine reproductive control.

2. Activin and glucose metabolism
Roles for activins and related members of the TGFβ family in regulating pancreatic β-cell
number and/or function have been proposed for some time, and more recent results have refined
those concepts, although the precise ligands and their actions in the pancreas remain to be
definitively demonstrated. For example, activin can enhance glucose stimulated insulin
secretion in β-cells from rats and humans in culture (Florio et al. 2000; Totsuka et al. 1988;
Verspohl et al. 1993; Furukawa et al. 1995), and β-cell proliferation is enhanced with activin
treatment (Li et al. 2004; Brun et al. 2004). In addition, all components of the activin/TGFβ
signaling pathway have been identified in β-cells, including the ligands themselves, receptors,
second messengers, and antagonists (Ogawa et al. 1993; Wada et al. 1996; Yamaoka et al.
1998). However, from these studies alone it was not possible to determine if activin or related
ligands had physiological roles regulating β-cell proliferation or function in vivo.
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Yamaoka et al (Yamaoka et al. 1998) demonstrated that transgenic overexpression of a
dominant negative type II activin receptor in islets resulted in islet hypoplasia, reduced insulin
content and impaired glucose tolerance, although the ratios of α- and β-cells was not altered.
Although this study implicated activin in regulating β-cell proliferation, maturation, and
possibly function, it was not possible in this model to differentiate between developmental
effects and regulation ofβ-cells in adults. To circumvent this limitation, Smart et al (Smart et
al. 2006) used a conditional transgenic strategy to overexpress Smad7 in β-cells. Smad7 is
known as an inhibitory Smad which, unlike the signaling Smads, inhibits signaling in the
activin/TGFβ pathway (Bhushan et al. 1998). Expression of Smad7 was inhibited in embryonic
and neonatal mice by treating with doxycycline (Dox) and then induced in adult mice by
removal of Dox, resulting in inhibition of the Smad2/Smad3 signaling pathway of activin and
TGFβ (Smart et al. 2006). In these mice, β-cell gene expression, insulin content, serum insulin
and glucose tolerance were all reduced compared to controls, and these effects were reversible
with Dox administration (Smart et al. 2006). Thus, activin and/or related ligands have important
roles in regulating β-cell number and function in rodents.

Further support for a role for activin in regulating β-cell proliferation and function was reported
by Mukherjee et al (Mukherjee et al. 2007) when they created a global FSTL3 null mouse.
Among other metabolic alterations, islets were nearly twice as large and contained mostly β-
cells, insulin levels were slightly increased, and both glucose tolerance and insulin sensitivity,
as assessed by glucose and insulin tolerance tests respectively, were enhanced. These
observations suggest that removal of a natural activin antagonist resulted in increased activin
bioactivity and increased β-cell mass and function (Mukherjee et al. 2007).

Although in vitro biological studies usually find nearly identical actions of activin A and B
(Welt et al. 2002), activin B was shown to also use Alk7 as an alternative type I receptor
(Tsuchida et al. 2004), suggesting activins A and B might have distinct actions in vivo. This
concept is supported by the different phenotypes observed with activin A and B knockout mice
(Matzuk et al. 1995b). In addition, Bertolino et al (Bertolino et al. 2008) found that Alk7 (and
presumably, its ligand activin B) is a negative regulator of β-cell function, a finding in
opposition to the reported stimulatory actions of activin A described above. Alk7 KO mice
developed progressive hyperinsulinemia, reduced insulin sensitivity and impaired glucose
tolerance. It appears that activin B acts by reducing glucose-stimulated calcium influx
(Bertolino et al. 2008). Moreover, activin B KO mice have hyperinsulinemia consistent with
activin B negatively regulating insulin production and secretion in β-cells (Bertolino et al.
2008).

Experimental reduction of β-cell mass has been shown to induce proliferation of ductal tissues
within remaining pancreas and differentiation of insulin-producing cells to compensate for lost
islets in a process known as neogenesis (Bonner-Weir 1994). More recently, it was found that
activin expression is increased in ductal tissues and co-localized with the cytokeratin maker
for ductal cells after reduction of β-cell mass with streptozotocin or partial pancreatectomy
(Zhang et al. 2002). Activin was also found to increase proliferation of rat ductal cells in
vitro, as well as to induce their differentiation into insulin producing cells expressing PDX-1,
Ngn-3, and other genetic markers of β-cells (Park et al. 2007). Glucose-stimulated insulin
secretion was also enhanced in these cells, and when transplanted, were able to reverse
streptozotocin-induced diabetes in rats (Park et al. 2007). These observations suggest that
activin may also influence replication and differentiation of islet cell progenitors located in
ductal epithelium.

While activin’s role in regulating β-cell proliferation and function appears to be important for
maintaining normal glucose metabolism in adults, its role with other islet cell types remains
relatively unexplored. However, activin was shown to decrease glucagon gene expression in
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αcell lines and in human islets in culture and inhibit proliferation of α-cell lines in culture
through inhibiting synthesis of Arx (Mαμιν & Πηιλιππε2006). These results suggest that activin
A may have opposite roles in regulating α- and β-cells in adults in ways that enhance glucose
uptake and decrease its synthesis, actions favorable to relieving symptoms of diabetes.

3. Activin and Stem Cell Differentiation
Embryonic stem cells, both mouse and human, were first cultured on mouse feeder cell layers
to maintain pluripotency during expansion. The need for completely defined culture conditions
for use in human embryonic stem cell (hESC) therapies drove efforts to identify culture medium
components that facilitated hESC proliferation while maintaining pluripotency. Activin and
other TGFβ family members signaling through Smads 2 and 3 were found to maintain hESC
pluripotency and self-renewal (Beattie et al. 2005; James et al. 2005; Vallier et al. 2005) and
that blocking activin signaling resulted in hESC differentiation (Vallier et al. 2005; Wu et
al. 2008). Moreover, activin often interacts with other growth factors like fibroblast growth
factor (FGF) to maintain pluripotency (Vallier et al. 2005; Xiao et al. 2006). The mechanism
for these activities appears to involve inhibition of bone morphogenetic protein (BMP)
signaling by the interaction of activin and FGF pathways (Willems & Leyns 2008), thereby
sustaining expression of such stem cell genes as Nanog, Oct4 and Sox2 through Smad binding
to the Nanog promoter (Xu et al. 2008). It was additionally reported that this activin and nodal
mechanism seems to be universal among mammals since it maintains pluripotency of epiblast
stem cells from mice and rats, demonstrating that previously observed differences between
mouse and human ESCs could be overcome and that both could be maintained in the pluripotent
state with activin or nodal treatment (Ogawa et al. 2007; Brons et al. 2007).

Upon removal or inhibition of activin signaling, hESC differentiation ensues, either in
embryoid bodies or as monolayers. Another goal of ESC research is to direct hESC
differentiation into distinct pathways. Recapitulating normal embryonic development where
activin is important in endoderm/mesoderm formation and patterning (Kumar et al. 2003;
Tremblay et al. 2000), reapplication of activin induces hESCs to form endoderm (Yao et al.
2006b; Sumi et al. 2008; Funa et al. 2008) and even differentiate into distinct cell types such
as insulin producing β-cells (Jiang et al. 2007; Shi et al. 2005; Jafary et al. 2008; Phillips et
al. 2007; Frandsen et al. 2007), hepatocytes (Hay et al. 2008), parathyroid-like tissue (Bingham
et al. 2008), neuroectoderm (Smith et al. 2008), blood cells (Nostro et al. 2008; Pearson et
al. 2008), and cardiomyocytes (Kitamura et al. 2007), perhaps through modulation of other
important developmental signaling systems such as sonic hedgehog (Mfopou & Bouwens
2008; Mfopou et al. 2007). Thus, activin has critical activities in regulating hESC pluripotency,
and then differentiation into endoderm and its tissue derivatives that appears to be useful for
directly ESC differentiation in vitro.

4. Activin and Immune Response
The importance of TGF-β family members in immune system function was first demonstrated
by the targeted disruption of TGFβ1 in mice, which resulted in a severe multifocal inflammation
(Shull et al. 1992). Subsequent studies revealed that activins (reviewed in (Jones et al.
2004b)) and BMPs (Gould et al. 2002; Lee et al. 2003; Hagen et al. 2007) are also important
regulators of inflammatory responses in various cell types and organs.

Activin expression has been detected in many immune cells including monocytes (Eramaa et
al. 1992; Abe et al. 2002), macrophages (Ebert et al. 2007), dendritic cells (Robson et al.
2008), T and B lymphocytes (Ogawa et al. 2008; Ogawa et al. 2006), and mast cells (Funaba
et al. 2003; Cho et al. 2003), and its expression increases when these cells are activated by
immune stimuli and toll-like receptor agonists. For example, microglial cells (quiescent CNS
resident macrophage-like cells) and peritoneal macrophages released activin A and its binding
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protein FST after treatment with TLR2 agonist Pam3Cys, TLR4 agonist LPS, or TLR9 ligand
CpG (Cytosin-guanosin oligodesoxynucleotide 1668) (Ebert et al. 2007; Michel et al.
2003b). Blood dendritic cells and monocyte-derived dendritic cells express activin mRNA,
and secretion of activin A protein was dramatically increased in the presence of E coli, or CD40
ligand (CD40L), or various TLR ligands (Robson et al. 2008). Secreted activin A then
negatively regulated production of cytokines (IL-6, IL-12p70, TNF-α and IL-10) and
chemokines (IL-8, IP- 10 RANTES, and MCP-1) induced by the CD40L/CD40 pathway in an
autocrine/paracrine manner (Robson et al. 2008). These inhibitory functions of activin released
by dendritic cells may play an important role in preventing uncontrolled release of cytokine/
chemokine and recruitment of immune effectors within the local microenvironment (Robson
et al. 2008). Activin was also expressed in activated CD4+CD25*minus; T cells in the spleen
and promoted differentiation of macrophages into alternatively (M-2 phenotype) activated
macrophages (Ogawa et al. 2006). In addition, activin treatment inhibited IFN-γ- or LPS-
induced NO2 production, and suppressed LPS-induced pinocytosis and expression of TLR4 in
mouse macrophages (Ogawa et al. 2006; Zhang et al. 2005; Wang et al. 2008a). Through direct
action on resting B cells, activin A enhanced IgG and IgE production (Ogawa et al. 2008).
These results indicate that activin is produced by a variety of cell types in the immune system
and has regulatory actions on many of them, suggesting an intricate autocrine/paracrine system
whereby activin modulates certain immune responses.

In addition to upregulation of activin expression in activated immune cells, activin expression
is also stimulated by inflammatory mediators including LPS in endothelial cells (Wilson et
al. 2006) and Sertoli cells (Okuma et al. 2005; Riccioli et al. 2006; Jones et al. 2007).
Furthermore, increased activin A expression was also found in many other cell types in
inflamed or wounded tissues (Hubner et al. 1996; Ota et al. 2003; Fumagalli et al. 2007;
Kaitu’u-Lino et al. 2008). Thus, activin appears to play an important role both in immune
response and immune reactions during wound repair, as well as perhaps influencing wound
repair directly (Hubner et al. 1999). As a result of these immune system actions, elevated
systemic activin A concentrations were found in the serum of patients with septicemia or angina
(Michel et al. 2003a; Smith et al. 2004). In fact, a rapid increase in circulating activin A, peaking
within 1 hour, was observed after LPS administration to sheep or mice, a response which
preceded the systemic release of TNF-α, IL-6, IL-1β, and FST (Jones et al. 2007; Jones et
al. 2004a). Blockade of activin action with FST treatment altered the profiles of TNF-α, IL-6,
and IL-1β after LPS stimulation and enhanced survival from a lethal LPS dose, suggesting that
activin modulates the release of other key proinflammatory cytokines (Jones et al. 2007). These
results demonstrate that activin plays a crucial role in the inflammatory response and that
blocking its actions may have therapeutic potential in treatment modalities for acute
inflammatory disorders (Jones et al. 2007).

C. Summary
Over the past 5 years, substantial progress was made in elucidating the biological actions of
activin in adult animals, taking advantage of novel techniques that allow regulation of the
timing of genetic alterations in mice as models for human disease. The important actions so
far enumerated indicate that activin has many important homeostatic functions in adult humans
and is thus likely also to contribute to disease in those individuals where activin expression or
bioactivity is altered. While no associations with human disease have yet been identified for
activins A or B in genome wide association studies, FST and/or FSTL3 levels are altered, for
example, in heart disease (Lara-Pezzi et al. 2008), suggesting that such associations might be
uncovered in the near future as more individuals are genotyped. It is therefore likely that new
actions of activin, as well as its involvement in disease, will be identified with additional
research and that pharmaceuticals based on modulation of activin signaling having therapeutic
value may be discovered in the next few years.
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