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ABSTRACT

Motivation: Genomic instability in cancer leads to abnormal genome

copy number alterations (CNA) that are associated with the

development and behavior of tumors. Advances in microarray

technology have allowed for greater resolution in detection of DNA

copy number changes (amplifications or deletions) across the

genome. However, the increase in number of measured signals

and accompanying noise from the array probes present a challenge

in accurate and fast identification of breakpoints that define CNA.

This article proposes a novel detection technique that exploits the

use of piece wise constant (PWC) vectors to represent genome copy

number and sparse Bayesian learning (SBL) to detect CNA

breakpoints.

Methods: First, a compact linear algebra representation for the

genome copy number is developed from normalized probe

intensities. Second, SBL is applied and optimized to infer locations

where copy number changes occur. Third, a backward elimination

(BE) procedure is used to rank the inferred breakpoints; and a cut-off

point can be efficiently adjusted in this procedure to control for the

false discovery rate (FDR).

Results: The performance of our algorithm is evaluated using

simulated and real genome datasets and compared to other existing

techniques. Our approach achieves the highest accuracy and lowest

FDR while improving computational speed by several orders of

magnitude. The proposed algorithm has been developed into a free

standing software application (GADA, Genome Alteration Detection

Algorithm).

Availability: http://biron.usc.edu/~piquereg/GADA

Contact: jpei@chop.swmed.edu and rpique@ieee.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Copy number alterations (CNA) involving deletion or replica-

tion of entire chromosomes or chromosomal regions are known

to occur in numerous genetic disorders (i.e. Down’s syndrome,

Klinefelter’s syndrome), while replications of multiple chromo-

somes leading to states of hyperploidy are well known in cancer

biology (Albertson et al., 2003). Similarly, regional CNA have

been demonstrated in tumors, and linked to leading them to

develop aggressive behavior. Examples include loss of RB

tumor suppressor in retinoblastoma or MYCN proto-oncogene

amplification in neuroblastoma. Recently, large numbers of

polymorphic CNA have also been described in the human

genome (Redon et al., 2006). Array-based technologies use

genetic material as sensors or probes to estimate copy number

for the intended genomic regions. The resolution for detection

of CNA depends on the number and type of probes placed on

these arrays. Comparative genomic hybridization (CGH,

Kallioniemi et al. 1992) is one of the earlier array platforms

that uses large insert DNA fragments (kilobases) as probes in

measuring DNA copy number. These probes, numbering

typically in thousands, allow co-hybridization to take place

between a fluorescently tagged genome of interest and a normal

reference genome. The relative intensity at a given probe is

directly proportional to the copy number for that region. More

recently, platforms using short oligonucleotide probes (�60

bases), which allow placement of hundreds of thousands of

probes on an array, have become more widely used (Pollack

et al., 1999) The majority of these arrays use oligonucleotides

that also probe for regions with genotype polymorphisms thus

providing both copy number and genotype information (Huang

et al., 2004; Peiffer et al., 2006). The increase in the probe

density poses computational challenges to accurately and

efficiently assess DNA copy number and identify altered

regions.

Several algorithms have been proposed to detect CNA (Broet

and Richardson, 2006; Fridlyand et al., 2004; Huang et al.,

2004; Huang et al., 2005; Hsu et al., 2005; Lipson et al., 2006;

Marioni et al., 2006; Nannya et al., 2005; Olshen et al., 2004;

Picard et al., 2005; Pollack et al., 1999; Zhao et al., 2004). Most

of these algorithms rely on a fundamental characteristic,

namely, that a genome is composed of relatively long segments,

DNA sequences, that have a constant number of copies present.

The genomic segments can be represented by m probes mapping*To whom correspondence should be addressed.
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to a specific position on the genome having cm copies. The copy

numbers cm can be ordered and arranged as vectors c that have

two key characteristics; (i) they are piecewise constant (PWC )

with very small number of breakpoints relative to the number

of probes; and, (ii) they have discrete values (DIS) (i.e. copy

numbers can only be 0, 1, 2, 3, . . .). However, these properties

cannot be directly observed in the log-intensities ym measured

with microarrays, due to contamination by biological and

technical noise; thus a widely used model is:

ym ¼ xm þ �m ð1Þ

where xm represents the average log intensity, and �m is an

additive zero-mean white random process (Fig. 1).
Most techniques exploit the assumption that xm ! log2(cm)

and that properties PWC and DIS, as introduced above, are

met. For example, one of the first and simplest techniques to

exploit PWC consisted of applying a smoothing filter followed

by a threshold (Huang et al., 2004; Pollack et al., 1999). This

has been improved upon by more specialized techniques such as

wavelets (Hsu et al., 2005), segmentation (Lipson et al., 2006;

Olshen et al., 2004; Picard et al., 2005) or penalized least-

squares (Huang et al., 2005). Additionally, hidden Markov

models (HMM) (Fridlyand et al., 2004; Marioni et al., 2006;

Nannya et al., 2005; Zhao et al., 2004) and Bayesian methods

(Broet and Richardson, 2006) exploit both PWC and DIS by

assuming that each observation ym comes from a probe in a

particular hidden copy number state cm to be inferred.

Exploiting DIS can be difficult in the case of specimens

containing a heterogeneous population of cells with respect to

DNA copy numbers, which typically occurs in the case of

tumor samples, where xm¼log2( �cm) would correspond to the

average copy number in the mixture.

Among all the previous methods, circular binary segmenta-

tion (CBS) by Olshen et al. 2004 was found one of the most

accurate methods for CNA detection by two independent

comparative studies (Lai et al., 2005; Willenbrock and

Fridlyand, 2005) but was also one of the slowest. These studies

used synthetic datasets where the CNA occur at known posi-

tions, the probes are uniformly spaced, and the hybridization

noise is generated according to a white Gaussian distribution.

More recently, new approaches (Engler et al., 2006; Rueda and

Diaz-Uriarte, 2007; Shah et al., 2006) have extended previously

proposed methods in order to target specific scenarios not

considered by the CBS approach, e.g. presence of outliers

(Shah et al., 2006), non-uniform probe spacing (Rueda and

Diaz-Uriarte, 2007) and chromosomes with a reduced number of

probes and non-uniform variance (Engler et al., 2006). In this

article we focus on the default conditions and metrics proposed

by Willenbrock and Fridlyand (2005) under which our results

show that these new algorithms do not give better accuracy than

that of CBS. The performance of these algorithms under

different conditions that may arise on specific microarray

platforms should be investigated in future work. Recently,

the computational performance of CBS algorithm has signifi-

cantly improved with a new approximate version (Venkatraman

and Olshen, 2007) with no significant loss of performance.

However, the run-times of this new version and the other new

algorithms are still very high, especially when applied to the new

high density array platforms.

In this article, we propose a novel modeling of genomic data

using PWC vectors that can be efficiently exploited to build

algorithms for CNA detection with a very significant gain in

computational speed. We also propose a new approach that

we called GADA (Genome Alteration Detection Algorithm)

for CNA detection from array data that combines the sparse

Bayesian learning (SBL) technique introduced by Tipping

(2001) and a backward elimination (BE) procedure that

can efficiently adjust the accuracy trade-off between sensitivity

and the FDR.
We evaluated our algorithm using the simulated array-CGH

dataset proposed by Willenbrock and Fridlyand (2005), where

the underlying positions of copy number changes are known

and can be used as a benchmark to compare algorithms

accuracies. We also evaluated the performance of three

algorithms (Engler et al., 2006; Rueda and Diaz-Uriarte,

2007; Shah et al., 2006) that appeared after the Willenbrock

and Fridlyand (2005) comparative study, and the newer CBS

implementation (Venkatraman and Olshen, 2007). Using that

benchmark dataset our GADA approach obtained one of the

best accuracies, and the best performance in terms of

computational speed, followed by CBS. Additionally we

compared the results of our algorithm and CBS on data

generated from several array types from two commercial

manufacturers (Affymetrix and Illumina) using DNA from

four different neuroblastoma cell lines. Our results indicate that

our algorithm can analyze data efficiently from high density

platforms and provide an accuracy similar or better than that of

state of the art algorithms, but with reduced computation costs.

On the new large array platforms, our algorithm is two orders

of magnitude faster than CBS (Olshen et al., 2004).

2 MATERIALS AND METHODS

For all analyses, we employed a 2.8Ghz Pentium Processor. The SBL

algorithm has been implemented in C and is called from Matlab version

7.0 (Mathworks, Natick, MA). The SBL algorithm is also implemented

as a software package named GADA available at (http://biron.usc.edu/

�piquereg/GADA). For comparison analysis, we used the latest
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Fig. 1. Graphical representation of the observation model 1 using a

chromosome section with two alterations as an example (simulated

data). The underlying mean hybridization intensity xm is piece wise

constant (PWC) with breakpoints I ¼ i1; i2; i3; i4f g that mark the

starting probe of each segment, and amplitudes a¼ (a0,a1,a2,a3,a4) that

depend on the underlying number of copies (DIS). The observed probe

hybridization intensities ym do not follow this expected behavior due to

degradation by hybridization noise �m.
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implementation of CBS (Venkatraman and Olshen, 2007) developed in

Fortran (available in R from the Bioconductor package DNAcopy).

2.1 Neuroblastoma genomic data from array platforms

Four neuroblastoma cell lines, two with known MYCN oncogene

amplification (SK-N-BE2, SMS-KAN) and two lacking MYCN

amplification (LAN-6, CHLA-20) were grown in RPMI medium with

10% FCS to confluence prior to extraction of DNA using STAT60

(Tel-Test, Inc.). The same stock of DNA was used to perform whole

genome analysis for CNA using Affymetrix SNP arrays 50K Xba, 250K

Sty, and 250K Nsp and Illumina GoldenGate 550K SNP array based

on their respective protocols. The raw data obtained from the

Affymetrix platform arrays were normalized using routines employed

in Copy Number Analysis Tool version 3.0 in which log2ratios of the

intensity of the probes were calculated after fitting a regression model

generated from a normal set of diploid samples. The Illumina platform

data were normalized and summarized using the BeadStudio Genotype

analysis software and the log-R-ratio data were exported for further

analyses. Data from 60 NCI cell lines generated using Affymetrix 50K

Hind and 50K Xba (Garraway et al., 2005) were also used to assess the

computational speed of the algorithm (GEO accession: GSE2520).

2.2 Simulated CGH data

The datasets used to compare the algorithms’ rates of accuracy

(sensitivity and FDR) are those proposed by Willenbrock and

Fridlyand (2005). To further assess these metrics in CNA occurring in

genomes with differing complexities, we generated six additional

simulated datasets containing 200 genomes each with 20 chromosomes.

All datasets were generated in Matlab forming chromosomes of

length 200 probes and sampling the CNA from the same empirical

distribution used by Willenbrock and Fridlyand (2005), but were

categorized by the number and length of CNA. These categories

include: (1) no breakpoints, (2) only one breakpoint at any position

uniformly distributed, (3-6) are generated as in Willenbrock and

Fridlyand (2005) but categorized by the number of breakpoints and the

length of the altered segments. Chromosomes with few (many)

breakpoints have [2–4] ([5–10]) breakpoints. Large (small) alterations

are generated by sampling the altered segments with lengths within the

range [10–150] ([1–9]).

Table 1 shows definitions of the accuracy metrics used in the

analyses of simulated data. These include sensitivity (expected recall)

and FDR (1-expected precision) in locating copy number changes. A

breakpoint is claimed to have been detected correctly only if it is placed

within a distance of � probes from the true breakpoint. In evaluating

the performance of the algorithms, an algorithm was indicated to

perform better if (1) the algorithm’s FDR was smaller with same

sensitivity, or (2) if its sensitivity was higher with same FDR, or (3) if

both the FDR was lower and the sensitivity higher compared to the

other algorithm. All other cases were considered uninformative

(e.g. similar FDR and sensitivity or discordant FDR and sensitivity).

For each sample in a given simulated dataset, the performance (FDR

and sensitivity) of the algorithms was measured. The proportion of

times that an algorithm performed better was obtained using only the

informative cases. The two-sample test for binomial proportions (or

McNemar’s test) was used then to assess differences in the performance

of the algorithms.

Concordance between algorithms was measured as A \ Bj j= A[ Bj j

(Kosko, 2004); where A and B are the breakpoint sets returned by each

algorithm. Breakpoints belong to the intersection (i.e. are considered to

be the same), if they are separated by less than � ¼ 2 probes.

2.3 PWC vectors representation of Genomic data

Our first major contribution is the development of a compact

description for the copy number along the chromosome using PWC

vectors (green signal in Fig. 1). Using simple linear algebra, any PWC

vector x with K breakpoints I ¼ i1; . . . ; iKf g can be compactly

represented by a linear combination of K step vectors fi (each with a

single breakpoint i in I , see Fig. 2) plus a constant vector f0.

fiðmÞ ¼
�

ffiffiffiffiffiffiffi
M�i
iM

q
m � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i

MðM�i Þ

q
m4 i

8><
>:

ð2Þ

f0ðmÞ ¼
1ffiffiffiffiffi
M

p ð3Þ

Therefore, in matrix notation we can write this linear combination as:

x ¼ Fw ð4Þ

where the columns of F are the step functions (F¼[ f0, f1,. . ., fM�1]); and,

w is a sparse vector, i.e. there are only K þ 1 non-zero components.

Equivalently, we can remove the components of w that are zero and

write:

x ¼ FIwI ð5Þ

where FI ¼ ½f0; fi1 ; . . . ; fiK � and wI ¼ w0;wi1 ; . . . ;wiK

� �
. This representa-

tion has three very important properties that are rigorously proved in

Supplementary Section 1. First, the columns of F form a basis that can

be used to represent any arbitrary vector. Second, it has a nested

structure, and for each additional breakpoint i that the PWC vector

may contain, we only require an additional weight wi to be non-zero.

1 i M
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Fig. 2. Step vector fi with a breakpoint between probe i and i þ 1 as

defined in Equation (2). Notice that the step vectors have been

normalized to have unit norm,
PM

m¼1 fi mð Þð Þ
2
¼ 1, and average zero for

i40,
PM

m¼1 ð fiðmÞÞ ¼ 0:

Table 1. Possible outcomes for each candidate breakpoint position

Breakpoint Not detected Detected

Present FN TP

Not present TN FP

Performance metrics:
Sensitivity
or Recall

¼ E TP
FNþTP

h i
FDR or

1� Precision
¼ E FP

FPþTP

h i

A True Positive (TP) only occurs if the breakpoint that has been detected is

within a distance of � probes form a true breakpoint. If there are more than one

breakpoint detected within this vicinity, only the closest one is considered TP and

the remainders are False Positives (FP). The true breakpoint positions that are

not detected are False Negatives (FN). The regions without a breakpoint where

no breakpoints have been detected are True Negatives (TN). M is the number of

candidate breakpoints (i.e. number of probes ¼ TPþFPþTNþFN). The number

of breakpoints falling in each of these categories are random numbers obtained

on each simulated sample; thus expected values can be obtained for False

Discovery Rate (FDR ¼ 1� Precision) and Sensitivity (Recall) by taking the

average over all the simulated samples.
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Third, any arbitrary PWC vector with exactly K breakpoints can be

represented with K þ 1 non-zero components which is proved to be the

minimum possible amount; i.e. maximal sparseness.

To the best of our knowledge, we are the first to explicitly propose

this representation in the context of genome copy number variations

(Pique-Regi et al., 2007) and to exploit its properties to develop a highly

accurate and efficient detection technique that will be detailed in the

following sections.

2.4 Formulation of breakpoint detection problem

The compact representation developed in the previous section can be

used to facilitate estimating x from a degraded observation y generated

as in model (1):

y ¼ xþ � ¼ Fwþ �; ð6Þ

where x has been replaced by its representation in terms of the basis

vectors, Fw. Since the number of copy number changes is very small

compared to the number of probes, K�M, then x ¼ Fw has a sparse

representation in the F basis, while the noise � is not sparse in this

representation. Under this scenario, the problem is formulated as that

of finding x̂ ¼ Fŵ that is closest to the observed y subject to having only

K non-zero components of ŵ.

ŵ : min
w

e Fw; yð Þ s.t. s wð Þ ¼ K: ð7Þ

Different measures of closeness e(.) and sparseness s(.) can be used.

For closeness, we will use the least squares error measure in this

article, since it is the most widely used for approximation and will

facilitate comparison among algorithms, although it may be sensitive to

outliers. For measuring sparseness we are especially interested in the l0
norm (i.e. the number of wm 6¼ 0), which best models the biological

property that K�M without imposing any restriction on the specific

values of wm.

Then, the optimization with these measures can be rewritten as

follows:

ŵ ¼ arg min
w

y� Fw
�� ��

2
þ� wk k0 ð8Þ

where the lp norm and the l0 pseudo-norm are defined as:

wk kp¼
XM
m¼1

wmj jp wk kp!0¼
XM
m¼1

I wm 6¼ 0ð Þ ð9Þ

and with �40 as a trade-off parameter between goodness of fit and

sparseness.

Finding a solution for the problem of (8) would require solving M
K

� �
least squares problems. This approach is intractable for chromosome

lengths M and number of discontinuities K that are typical for our

application. There exist several popular sub-optimal approaches

(Chen et al., 1998; Hastie et al., 2001; Mallat and Zhang, 1993; Seber

and Lee, 2003; Patil et al., 1993) that use a greedy search strategy or

that replace the l0 by an l1. However, as discussed in Supplementary

Section 2, the performance of these methods is severely limited by the

high collinearity (lack of orthogonality) between the columns of F

(Donoho et al., 2006), as compared to sparse Bayesian learning (see

next Section) for the specific application of CNA detection (Pique-Regi

et al., 2007).

2.5 Sparse Bayesian learning (SBL)

The optimization problem defined in Equation (8) can be formulated

from a Bayesian estimation point of view, as was done by Wipf and Rao

(2004), for the case where F is an arbitrary matrix, and solved using

SBL (Tipping, 2001), an empirical Bayes approach. Following Wipf and

Rao (2004), the problem in Equation (8) can be cast as a maximum a

posteriori (MAP) estimate:

ŵMAP ¼ argmax
w

p wjyð Þ

¼ argmax
w

p wjyð Þ p wð Þ

¼ argmin
w

� log p yjwð Þ � log p wð Þ ð10Þ

where the observation model p ( y|w) specifies the goodness of fit

measure e(.) and the prior distribution for the weights p (w) specifies the

sparseness measure s(.) in Equation (7).

In SBL (Tipping, 2001), the observation model is assumed normal

(leading to a mean square error as a measure of fit)

p yjwð Þ � N Fw; �2I
�

Þ ð11Þ

and the prior distribution for the weights is specified as a hierarchical

prior:

p wjað Þ ¼
YM�1

m¼1

N wmj0; �
�1
m

� �
; ð12Þ

where a is a vector of hyperparameters that are distributed according to

a gamma distribution:

p að Þ ¼
YM�1

m¼1

� �mja; bð Þ: ð13Þ

This prior has several useful features. First, given the hyperpara-

meters a, the conditional posterior weight distribution (14) is normal:

p wjy; a; �2
� �

¼ N wjl;Rð Þ ð14Þ

and following Tipping (2001), p(w|y) can be correctly approximated by

point estimates as pðwjy; â; �̂2Þ; thus, the MAP is given by the posterior

mean ŵ ¼ l, (replacing �, and a by their point estimates, i.e. an

empirical Bayes approach):

� ¼ ��2F 0Fþ diagðaÞ
� ��1

l ¼ ��2�F 0y ð15Þ

Second, by treating the weights w as hidden variables, the maximum

likelihood estimation for the hyperparameters a can be obtained by the

EM algorithm McLachlan and Krishnan (1997); for each step l until

convergence:

E Step : Ewjy;a lð Þ;�2 w2
m

� �
¼ �mm þ �2

m ð16Þ

M Step : �̂ lþ1ð Þ
m ¼

1þ 2a

�mm þ �2
m þ 2b

ð17Þ

Finally, although this hierarchical prior does not appear to encourage

sparseness, it has been demonstrated that indeed it has very good

sparseness properties (Tipping, 2001; Wipf and Rao, 2004). This

behavior can be unveiled by finding the marginal ‘effective’ prior, p(w),

which is is an i.i.d. t-distribution with 2a degrees of freedom and a scale

parameter of
ffiffiffiffiffiffiffiffi
a=b

p
(see Supplementary Section 3.1). When b ! 0 and a

is small, this distribution peaks very sharply at zero, and has very thick

flat tails that decay at (1þ2a) rate in log-scale:

log p wð Þ !
b!0

C að Þ þ 1þ 2að Þ
XM�1

m¼ 1

log wmj j ð18Þ

Thus, as shown in Figure 3, with this prior we obtain a sparseness

cost that more closely approximates the desired l0 norm. In other

words, this prior forces a very large number of weights to be zero

while the non-zero weights are free to take any value (in Figure 3

the sparseness penalty is almost constant for any r40), which

matches well our underlying biological knowledge for copy number

changes.
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Although, the model contains several hyperparameters, the a and �

parameters are estimated from the data while b is set to zero

(uninformative prior). Thus, sparseness is adjusted solely by the a

parameter (Section 2.6 and Supplementary Section 3.1)

2.6 Implementation of SBL to find copy number

alterations

To the best of our knowledge this is the first time that SBL has been

employed to find copy number alterations, and more specifically with

the PWC representation that we propose, where F has a very special

structure. One of our contributions (Pique-Regi et al., 2007) is the

observation that SBL can function well in our situation where

significant collinearity exists, unlike other standard methods in

Supplementary Section 2.

Additionally, SBL computational performance can be optimized for

our PWC representation by exploiting the nested structure property.

Direct computation of Equations (15) and (17) for an arbitrary F would

require O(M3) operations (Tipping, 2001; Wipf and Rao, 2004).

However, for our particular F in (2), HI ¼ G�1
I ¼ F 0

IFIð Þ
�1 is, for all

possible I , a symmetric tridiagonal matrix, with main diagonal

h0 jð Þ ¼
M� ij
� �

ij

M

ijþ1 � ij�1

� �
ijþ1 � ij
� �

ij � ij�1

� � ð19Þ

and upper/lower diagonal

h1 jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� ij
� �

ij M� ijþ1

� �
ijþ1

q

M ijþ1 � ij
� � ð20Þ

This structure can be used to efficiently compute �mm and lm for each

EM step (16) in O(M) steps (see 9–14 in Algorithm 1).

Additional computational savings are achieved through removal of

columns of F that correspond to the breakpoints whose weights w are

very likely to become zero (lines 15–19 in Algorithm 1). This approach

was used by Tipping (2001) for the general F case, but, when combined

with the tridiagonal structure exploited here, each EM step is solved

more rapidly; complexity is O Ij jð Þ, so that the speed increases as the

number of remaining breakpoints Ij j decreases.

In our implementation, �2 is estimated from the data. The parameter

�2 in the previous work (Tipping, 2001; Wipf and Rao, 2004) is usually

jointly estimated by the EM algorithm. However, since each chromo-

some in the genome is analyzed independently, and �2 is assumed to be

the same for all chromosomes, it is more robust to estimate �2 for the

entire genome before applying the EM algorithm in each chromosome.

In this article, �2 is estimated as

�̂2 ¼
1

2M

XM
m¼1

ym � ym�1ð Þ
2

ð21Þ

in which the difference ym � ym � 1 removes the baseline PWC

component and is distributed as Nð0; 2�2Þ except for the breakpoints,

which can be removed in the sum by replacing the mean by a trimmed

mean. Similar estimates have also been widely employed in signal

denoising approaches (Dragotti and Vetterli, 2002).

Finally, the EM algorithm is guaranteed to improve the solution after

each step and will always converge (Wipf and Rao, 2004), but it may

converge to a local minimum instead of the global minimum. However,

these local minima are indeed always sparse (see Theorem 2 in Wipf and

Rao 2004). The degree of sparseness in the SBL algorithm is controlled

by the parameter a, as can be seen from Equation (18) and

Supplementary Figure 8, whereby an increase in a causes a sharper

peak at zero with faster tail decay and leads to a sparser solution. The

a parameter also controls the convergence rate of the EM algorithm,

with larger a leading to faster convergence. However, larger values of a

are not always desirable and lead to suboptimal placement of

breakpoints because of rapid convergence of the EM algorithm to a

local minimum. The EM local minimum problem can be corrected by

checking the statistical evidence for each breakpoint after obtaining a

set of breakpoints at an appropriate a level. The statistical significance

test can be performed by a backward elimination procedure described

next section, which also allows more flexibility in setting the final

desired degree of sparseness.

2.7 Breakpoint ranking by Backward elimination

Not all breakpoints found by SBL have the same statistical significance

since noise may make areas without any underlying alteration appear

similar to those areas corresponding to actual alterations. Some

breakpoints mark the separation between two long segments (i.e. such
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Fig. 3. SBL and l1 sparseness metrics compared to the desired l0 norm

(dotted line). Each curve represents the sparseness metric for an

arbitrary vector w with only K ¼ 1, . . . , 5 non-zero coefficients at any

position. All the non-zero weights are given the same magnitude r for

different values of r on the x axis Ideally, we would like the sparseness

metric to be inversely proportional to the the l0 norm, which will be

equal to the number of non-zero components (K) regardless of the value

of the components themselves (i.e. r). Note that the SBL metric

approximates better the l0 norm, while l1 norm deviates significantly

from this ideal behavior.
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that each segment includes many probes) and are such that the

difference between the estimated amplitudes of the two segments is

large. Such breakpoints are more likely to correspond to true

underlying changes in copy number, and therefore will have a higher

statistical score tj ¼ ŵj

�� ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2h0 jð Þ

p
(see Supplementary Section 4). This

score depends on the two contiguous breakpoints, and thus significance

scores will change every time a breakpoint is removed (i.e. two segments

are merged).

Instead of testing all the possible breakpoint combinations

(i.e. segmentations), we have adopted a sub-optimal backward

elimination (BE) strategy, in which we recursively eliminate the

breakpoint with lowest statistical evidence tj. Although the procedure

is suboptimal, since we may eliminate breakpoints that would be more

significant in a later stage, it is generally seen as much less sensitive than

forward selection (Kohavi and John, 1997). The BE procedure can be

stopped when all the remaining breakpoints have tj higher than a

specified T, the BE critical value. Moreover, with IK being the

breakpoint set obtained from SBL, the procedure creates a sequence of

nested subsets I 1 � I2 . . . � IK, which are obtained backwards, and

such that successive subsets differ only in one discontinuity: this directly

provides a breakpoint ranking. This ranking r is obtained efficiently by

Algorithm 2 in Oð Ij jÞ, where we exploit the fact that removing one

discontinuity at a time only affects the two neighboring breakpoints

(lines 9 and 12).

Therefore, with the ranking of breakpoints r, we can adjust the final

breakpoint list to any critical value of T with no additional

computational cost. This provides great flexibility in adjusting the

final breakpoint set. The expected false discovery rate (FDR) is

monotonically decreasing with T, thus we can obtain a list of

breakpoints with lower FDR by increasing threshold T (see

Supplementary Section 4.1).

2.8 GADA approach to CNA detection

The final proposed method to detect CNA, which we call GADA, is a

two step approach. First, we apply SBL, which will provide a set of

breakpoints with a specified initial level of sparseness controlled by the

prior hyperparameter a. Then, the second step ranks the breakpoints

provided by SBL by using a BE procedure, where the critical value T is

used to establish the final degree of desired sparseness. The combina-

tion of these two approaches provides greater accuracy and flexibility.

First, it provides greater accuracy because each step minimizes the

impact of the assumptions made by the other. SBL provides a better

search strategy because effective removal of breakpoints is accom-

plished in several EM iterations. However, the breakpoint set detected

by SBL may still include some spurious breakpoints (see Section 2.6).

These ‘false’ breakpoints are then removed using the BE procedure

(Section 2.7). The BE approach is greedy and fast, and it benefits

from starting from a smaller set of breakpoints provided by the SBL,

since fewer errors will accumulate with a smaller set (Supplementary

Section 4).

Second, it provides greater flexibility in adjusting the final breakpoint

set. Both a and T can adjust sparseness in an equivalent way. We have

shown that breakpoints obtained with higher sparseness settings in SBL

(i.e. larger a values) tend to be subsets of those obtained with lower

sparseness settings when evaluated using the same T value in BE

(Supplementary Section 6.1). Moreover, adjusting T can be done at

no additional computational cost. Thus, SBL will be used with a small

a, that gives a high initial sensitivity, and BE adjusts the final level

of FDR.

The foreseeable usage by a practitioner of the GADA approach in

detecting CNA would start analyzing a large collection of microarray

samples with a small initial a. This a can be obtained by analyzing a

small subset of samples and/or chromosomes. However, we have found

by analyzing simulated and real datasets on platforms ranging from

50K to 550K probes that a ¼ 0.2 is small enough to give the necessary

initial level of sensitivity (see Supplementary Section 6). Following

analysis of samples with SBL, the user can adjust T to obtain the final

breakpoint set. A significance value a ¼ P (|t| 4 T|w ¼ 0) can be

computed if the array noise is considered normal (t � N(0,1)), or

estimated using a resampling procedure. Any of the procedures that are

typically used to control for FDR are not recommended for adjusting T

because they do not take into account the dependence structure among

the breakpoints. However, if replicate samples are available, the FDR

can be estimated at a given T.

Finally, the SBL and BE procedures provide a segmentation, i.e. the

representation of the data in a set of segments defined by their

amplitudes and breakpoint positions. As in other segmentation

procedures like DNAcopy (Olshen et al., 2004) and CGHseg (Picard

et al., 2005) an additional step is required to classify the different

segments amplitudes into a copy number (0, 1, 2, 3, 4, . . .) or alteration

status (Non-Altered, Gain and Loss). There already exist several

thresholding approaches (Huang et al., 2004; Pollack et al., 1999) and

the MergeLevels approach (Willenbrock and Fridlyand, 2005) that can

be used to accomplish this task (see Supplementary Section 5)

3 EXPERIMENTAL RESULTS

3.1 Performance comparisons in simulation dataset

We evaluated the performance of the proposed algorithm and

compared the results with other published algorithms that are

publicly available; including CBS (Olshen et al., 2004;

Venkatraman and Olshen, 2007), SWARRAY (Komura

et al., 2006), HMM (Fridlyand et al., 2004), RHMM (Shah

et al., 2006), PL (Engler et al., 2006), RJaCGH (Rueda and

Diaz-Uriarte, 2007) and GLAD (Hupe et al., 2004). We

employed a simulated array-CGH dataset introduced by

Willenbrock and Fridlyand (2005) with known CNA positions,

where the accuracy in detecting breakpoints was measured in

terms of sensitivity (expected recall) and FDR (1- expected

precision) as defined in Section 2.2.
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The performance in terms of accuracy for all the analyzed

algorithms (using the default parameters) is reported in

Figure 4. Three of the methods, CBS, HMM and GLAD

were previously analyzed by Willenbrock and Fridlyand (2005)

and results are identical to those reported previously. The faster

new CBS (Venkatraman and Olshen, 2007) was also evaluated

with results matching those from the previous implementation

(Olshen et al., 2004). For RJaCGH, due to the long

computational running time of the algorithm (41 day), the

segmentation results were obtained directly from the authors

and then evaluated with the metrics employed in this article.

GADA, CBS, RJaCGH and RHMM are the most accurate

algorithms either in terms of sensitivity or FDR; while the

remaining algorithms clearly show poorer accuracy in both

metrics. Among these top four algorithms, considering the

times required to analyze the entire dataset, GADA (48 s) is

fastest, followed by CBS (625 s), RHMM (41min) and

RJaCGH (41 day).
In Figure 5, the parameters that control the trade-off

between sensitivity and FDR are adjusted in GADA and

CBS to generate the precision versus recall operation curves

(PROC). The single operating points generated by RJaCGH

and RHMM algorithms (using their default parameters) are

also shown for comparison. The results show no significant

differences in performance among these four algorithms. The

GADA results presented in this section are also not sensitive to

different choices of the a parameter. Supplementary Figure 10

shows that essentially the same results as in Figure 5 are

obtained for a range of a parameters. As discussed in Section

2.8, GADA is a two step procedure controlled by two

parameters a and T. Setting a higher a simply makes the

PROC curve shorter (i.e. it start further to the left and to the

bottom) since all the breakpoints that would be removed by BE

are instead eliminated in the SBL step. It should also be noted

that RJaCGH, RHMM and PL, are reported to have a better

accuracy than CBS in situations different than the ones

evaluated by the employed dataset, which may include: non-

uniform probe spacing, chromosomes with a reduced number

of probes, non-uniform variance, and presence of outliers.

Future research should study the impact of these situations on

GADA performance, as well possible extensions to GADA in

order to handle them.

In what follows we focus on comparing GADA to CBS, the

baseline algorithm that most of the recent approaches use for

comparison. The newer algorithms are not included in this

analysis as they do not show significant improvements over

CBS using the standard evaluation methods designed by

Willenbrock and Fridlyand (2005) and have considerably

slower running-times.

The simulated dataset used by Willenbrock and Fridlyand

(2005) represents a mixture of simulated genomes with respect

to the number of breakpoints and size of the CNA. We

observed that the majority of the simulated genomes have

few breakpoints with large altered regions (data not shown).

To further assess the performance of GADA and CBS on

genomes with complex patterns of CNA, typical of those

observed in tumors, we generated six additional simulated

datasets. These datasets contained varying complexity of CNA

and were derived using the same procedure proposed by

Willenbrock and Fridlyand (2005) (see Section 2 for details).

The datasets included both ‘quiet’ genomes (0–1 breakpoint)

and complex genomes involving few or multiple breakpoints

resulting in small or large CNA regions. The performances

of GADA and CBS on these six datasets are provided in

Table 2. Both algorithms work well for finding a small

number of discontinuities within large segments, but there is

significant evidence of advantage of GADA over CBS for the

more complex cases. However, the magnitude of the overall

differences in sensitivity and FDR between GADA and CBS

are relatively small (53%); and the main advantage of our

approach is in its flexibility and computational speed when

analyzing large density arrays.
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3.2 Computational speed in commercial

microarray platforms

We recorded the time required to analyze by GADA and CBS

copy number data generated on Affymetrix or Illumina

platforms from neuroblastoma cell lines or NCI cell lines.
Results are summarized in Table 3. The GADA algorithm was

on average 100 times faster than the latest implementation of
CBS. The GADA algorithm provides an additional advantage

by identifying all breakpoints corresponding to all the

operating points of the PROC curve within the time frames
shown in Table 3. This allows real-time control of the final

adjustment of the representation of CNA regions correspond-

ing to different choices of the critical value T with no additional
computational time; while in the current implementation of

CBS, the entire procedure needs to be repeated to obtain set of

breakpoints at a different value of the a parameter.
The computational complexity of SBL has been greatly

optimized by exploiting the properties of the PWC representa-

tion as described in Methods Section 2.6. The EM algorithm

converges very fast, and each EM step is solved in a linear
number of operations O(M), resulting in an overall running

time that, as confirmed in Table 3, increases linearly with the

array sizeM. In contrast, the computational complexity of CBS
is composed of two parts; the circular binary segmentation

optimization O(M2); and, the hybrid permutation test

(Venkatraman and Olshen, 2007) that decides whether or not
to proceed with the recursive segmentation O(MP) (P is the

number of permutations). The hybrid permutation test in CBS
has improved the previous implementation (Olshen et al., 2004)

which required O(M2 P); however, the overall complexity is still

limited by the circular segmentation O(M2).

3.3 Comparison of neuroblastoma CNA detection

using different array platforms

The DNA from two neuroblastoma cell lines with (SK-N-BE2,

SMS-KAN) and without (CHLA-20, LAN-6) MYCN

oncogene amplification were analyzed for DNA copy number

alterations. Three Affymetrix genotyping arrays (50K Xba,

250K Nsp, 250K Sty) and Illumina’s humanhap550 genotyping

beadchip were used to generate the copy number data. A total

of 105 breakpoints were identified for at least two of the

platforms using the SBL algorithm and were used for further

analysis (Supplementary Tables 6 and 7). Figure 6 shows

graphical output of the algorithm on representative chromo-

somes where significant CNA are known to be associated with

neuroblastoma.

Of the 105 breakpoints identified, 68 (65%) were identified

on all platforms using GADA (Supplementary Table 6). The

lowest density platform Xba, detected 78 (75%) of the 105

breakpoints, while the highest density platforms detected all

(100%) the breakpoints. The detected alterations include the

correct identification of the MYCN oncogene in the two cell

lines with known MYCN amplification status and other

common alterations found in neuroblastoma genome: loss of

proximal region of 1p, gain of 17q, loss of distal region of 11q.

Although the SK-N-BE2 showed copy number of two

for chromosome 1p (Fig. 6), genotype information revealed

loss of heterozygosity (LOH) in this region (i.e. uniparental

Table 3. Average analysis time (seconds) for Affymetrix and Illumina

microarrays

50K 100K 250K 500K Illumina

GADA 1.5 2.98 7.10 15.95 20.49

CBS 197.7 444.90 597.72 1262.40 2665.00

Average time required to analyze the data in seconds per chip (only the time spent

by the detection algorithm is counted). The 100K and the 500K columns

correspond to the analysis of the combination of the two 50K (Hind/Xba) and

two 250K (Nsp/Sty) chips, respectively.

Table 2. Sensitivity and FDR dependence on the number of breakpoints and segment length

Num. of

breaks

Segment

length

FDR % Sensitivity % P -value

GADA CBS (5,4) GADA CBS (4,5)

0 — 0.00 0.00 (19,54) — — — —

1 Any 5.00 5.00 (76,62) 95.00 95.00 (43,41) (74,52) 0.025

Few Large 4.04 5.61 (91,70) 95.96 97.83 (24,95) (60,69) 0.21

Few Small 3.85 3.48 (84,77) 80.39 77.78 (129,30) (94,34) 6E�8

Many Large 2.97 5.56 (162,30) 95.28 96.23 (50,92) (100,30) 4E�10

Many Small 2.15 2.84 (119,62) 77.23 76.07 (155,38) (114,20) 2E�16

All experiments consist of 200 samples with 20 chromosomes containing 200 probes. Each row represents a set of samples with different genomic complexity as described

in the Methods section. For all the cases, the GADA algorithm is set to T ¼ 4.0, and CBS to a ¼ 0.01, since this provides comparable performance points in the PROC

curves, and allows comparison to other cases. The median sensitivity and False Discovery Rate % in breakpoint detection within two probes � ¼ 2 are evaluated. The

FDR and sensitivity of GADA and CBS are also compared for each sample in a given dataset and the number of times where FDR and sensitivity are smaller or larger

(5,4) between the two algorithms are reported. The rightmost column counts the number of times one algorithm (GADA,CBS) is performing better than the other both

in terms of FDR or Sensitivity and a p-value is computed as described in the Section 2.2. Results indicate that GADA has a lower FDR when the number of breakpoints

is large, and a higher sensitivity for small segments. The results are consistent for other choices of � ¼ 0,1,3 (data not shown).
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disomy - data not shown) with gain of 1q not reflecting any

significant change in the rate of heterozygosity. There was also

no gain of 17q in this cell line but there was loss of 17p and

LOH for this region. Finally, we compared GADA and CBS

detection performance in this real dataset. The concordance

rate between GADA and CBS for breakpoints that were

detected by at least two platforms was 93% (Array specific

concordances: Xba 97%, Nsp 90%, Sty 98%, Nsp+Sty 90%,

Illumina 95%). There was also no significant difference

between CBS and GADA in the distribution of distances for

concordant breakpoints identified across the array platforms

(Supplementary Table 8).

4 CONCLUSIONS

In this article we have introduced a new representation for

genome copy number data and methodologies to detect CNA.

The proposed PWC representation provides very useful

properties such as sparseness, embeddedness and computa-

tional efficiency. This representation was exploited using a

novel combination of two algorithms. The first one is based on

SBL, and the second one is a stepwise BE procedure.

Combination of these approaches result in an accurate and
fast methodology, which we call GADA, to detect CNA. To the

best of our knowledge, this is the first report that applies SBL
to detect copy number changes or to estimate PWC representa-

tions in any application.
In simulated datasets, the GADA approach obtained the best

performance in accurately detecting CNA when compared to

other approaches. We have also demonstrated its applicability
to two different commercial microarray platforms (Affymetrix

and Illumina). The fast computational speeds obtained in
analyzing these large arrays should allow further development

of our algorithm in analyzing large cohorts of samples.
Although inclusion of allele specific copy number data has

not been addressed in this work, the Bayesian framework in our
algorithm could be extended to include the genotype data to

improve placement of breakpoint positions. The genotype data
and population heterozygosity frequencies could be used to

jointly estimate loss of heterozygosity and allele specific copy
number alterations. The advantage of such an approach is

evident in our analyzed data of tumor cell lines with copy
neutral LOH of chromosome 1p.

The performance of the proposed GADA approach has
been studied and evaluated assuming that hybridization noise

is additive white Gaussian (Willenbrock and Fridlyand, 2005).
However, real microarray probe hybridization intensities

may be affected by a wide range of platform specific effects
like regional trends, non-uniform variance and outliers.

Normalization of the microarray probe intensities can correct
or minimize the impact of some of these effects in a pre-

processing step to ensure that the data follows closely the
model. Additionally, there exist several statistical tests

(e.g. White test, Breusch-Pagan test or Kolmogorov-Smirnov)
that could be performed on the residuals of the resulting

segmentations to check for presence of the effects ignored by
the model. Future research should evaluate the impact on the

accuracy of GADA based on these different possible departures
from the assumed model, and consider how these departures

could be included in the Bayesian approach that has been
described in this article.

The statistical and signal processing approaches introduced
in this article are implemented in the GADA software for

identification of CNA in tumor samples.
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Fig. 6. Inferred copy numbers from neuroblastoma cell-lines SK-N-

BE2, SMS-KAN, LAN-6 and CHLA-20. Cell-lines were analyzed using

Affymetrix’s genotyping arrays 50K Xba, 250K Nsp and 250K Sty and

Illumina’s humanhap550 genotyping beadchip. The output of our

software GADA(SBL) used the critical value of T ¼ 4.8 and is

compared to DNAcopy (CBS) with a ¼ 0.01. T was adjusted to the

point where an increase on T removed concordant CNA between

samples and platforms, and a decrease on T did not provide additional

concordant CNA regions. Blue color tones indicate loss of genetic

material, and red color tones amplification.
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