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Calicheamicin (CLM) γ1
I (Fig. 1, 5) is a prominent member of the 10-membered enediyne

family.1 Like all enediynes, CLM-induced oxidative DNA strand scission is enabled by
cycloaromatization of the enediyne core to form a highly reactive diradical species.2 In CLM,
this reactive intermediate is positioned in the DNA minor groove via the aryltetrasaccharide
wherein the unique conformation of the CLM hydroxylamino glycosidic bond contributes to
both DNA specificity and affinity.3 The incredible potency of CLM has been harnessed for
clinical use (Mylotarg®),4 and CLM biosynthetic studies have unveiled a variety of unique
features. For example, the recent elucidation of gene clusters encoding both 9-membered and
10-membered enediynes revealed a unified, divergent polyketide paradigm for enediyne core
biosynthesis,5 likely originating from a common polyene precursor.6 Studies on CLM self-
resistance also revealed the first ‘self-sacrifice’ resistance mechanism,7 while CLM
glycosyltransferase-catalyzed ‘sugar exchange’ and ‘aglycon exchange’ reactions enabled the
production of >70 differentially glycosylated CLM variants.8 Despite the prevalence of deoxy-
and aminosugars in nature,9 only a few naturally-occuring N-oxidized aminosugars, such as
the one found in CLM, have been identified.10 Putative N-oxidase genes for rubranitrose,
kijanose, and the CLM/esperamicin hydroxylaminosugar biosynthesis have been put forth yet,
the enzymes involved in aminosugar N-oxidation remain elusive.5b,5d,10,11 Herein we
describe the first reported in vitro characterization of an aminosugar N-oxidase, CalE10,
responsible for CLM hydroxylaminosugar formation.

A comparison among the gene clusters encoding 10-membered enediynes5b-5d and
indolocarbazoles12 presented a genomic basis from which to propose the biosynthetic pathway
for hydroxyaminosugar precursor TDP-4-hydroxyamino-6-deoxy-α-D-glucose (Scheme 1,
4). Specifically, this comparative genomic analysis (Scheme S1) enabled the elimination from
consideration genes for the biosynthesis of the 10-membered enediyne core (common to 5,
14, and 16) and the CLM aminopentose (common to 5, 14, and 18, but not 19). Genes
anticipated to be involved in the biosynthesis of orsellinic acid13 and the terminal rhamnose
precursor9 were also excluded based upon well-established precedent for these pathways. The
remaining genes were anticipated to be integral to CLM thiosugar or hydroxylaminosugar
biosynthesis. In conjunction with the well-established routes to aminosugar biosynthesis,9 and
reminiscent of the P450 N-oxidase in β-lactam biosynthesis (NocL),14 this information led to
the proposed pathway highlighted in Scheme 1 wherein two P450s (CalO2 and CalE10) were
identified as aminosugar oxidase candidates.
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To test the ability of CalO2 and CalE10 to catalyze aminosugar N-oxidation, the corresponding
enzymes were overproduced in Streptomyces lividans as N-His6-fusions. While N-His6-CalO2
displayed a typical P450 Soret peak (418 nm),15 N-His6-CalE10 exhibited two distinct maxima
(418 nm and 386 nm) of equal intensity indicative of a heme iron mixed spin state. The reduced
CO bound spectra for both enzymes displayed a typical P450 Soret peak (450 nm) (Fig. 1A).
Subsequent in vitro assays employed a series of putative TDP-sugar substrates (Fig. 1B, 1, 3,
6-13; 10 mM),8,16 0.5 mg mL−1 P450 (CalO2 or CalE10) and a standard spinach ferredoxin/
reductase system.17 N-His6-CalE10-catalyzed transformation of 3 afforded two new products
(Fig. 1C) with mass and IR consistent with hydroxyaminosugar 4a (Scheme 1, major) and
nitrosugar 4b (minor), while aminosugar 8 with the same enzyme led to the corresponding
hydroxylamino derivative in trace amounts. Steady state kinetic analysis of the CalE10-
catalyzed oxidation of 3 revealed kinetic parameters (kcat = 0.04 ± 0.01 sec−1; Km = 7.6 ± 1.2
μM) similar to other natural product P450s.17 Consistent with the stringent aminosugar
regiospecificity observed, subsequent ligand-binding studies revealed a reverse type I
difference spectrum17e,18 with determined Kd values of 9.1 ± 1.1 μM, 17.3 ± 1.8 μM, 165 ±
27 μM, and >150 μM for 3, 8, 1, and 10, respectively, while TDP or 4-amino-4-deoxy-α-D-
Glc-1-phosphate led to no heme perturbation. No apparent sugar nucleotide binding or
oxidation was observed with CalO2, consistent with the ability of CalO2 to bind substituted
aromatic acids (as possible orsellinic acid surrogates).15

In summary, this study establishes, for the first time, CalE10 as the requisite CLM NDP-
aminosugar N-oxidase and confirms that oxidation occurs at the sugar nucleotide stage prior
to glycosyltransfer. Furthermore, substrate specificity studies revealed CalE10-catalyzed
oxidation to be regiospecific with limited over-oxidation in vitro. As the first characterization
of an aminosugar N-oxidase, this study also presents a foundation for the future study of other
N-oxidases involved in hydroxylamino-, nitroso-, and/or nitrosugar formation.
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Scheme 1.
Proposed biosynthesis of 4-hydroxyamino-6-deoxy-α-Dglucose common to CLM (5) and
esperamicin.
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Figure 1.
(a) Oxidized spectrum of CalE10 and difference spectra of reduced CO-bound species (inset).
(b) Putative sugar nucleotide substrates used in this study. (c) HPLC analyses of assays with
3 as the substrate: (i) no P450 (control); (ii) CalO2; (iii) CalE10. A trace amount of 1 remains
from chemoenzymatic synthesis of 3. See supporting information for experimental details.
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