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Abstract
PPARβ/δ (peroxisome-proliferator-activated receptor β/δ) is one of three PPARs in the nuclear
hormone receptor superfamily that are collectively involved in the control of lipid homoeostasis
among other functions. PPARβ/δ not only acts as a ligand-activated transcription factor, but also
affects signal transduction by interacting with other transcription factors such as NF-κB (nuclear
factor κB). Constitutive expression of PPARβ/δ in the gastrointestinal tract is very high compared
with other tissues and its potential physiological roles in this tissue include homoeostatic regulation
of intestinal cell proliferation/differentiation and modulation of inflammation associated with
inflammatory bowel disease and colon cancer. Analysis of mouse epithelial cells in the intestine and
colon has clearly demonstrated that ligand activation of PPARβ/δ induces terminal differentiation.
The PPARβ/δ target genes mediating this effect are currently unknown. Emerging evidence suggests
that PPARβ/δ can suppress inflammatory bowel disease through PPARβ/δ-dependent and ligand-
independent down-regulation of inflammatory signalling. However, the role of PPARβ/δ in colon
carcinogenesis remains controversial, as conflicting evidence suggests that ligand activation of
PPARβ/δ can either potentiate or attenuate this disease. In the present review, we summarize the role
of PPARβ/δ in gastrointestinal physiology and disease with an emphasis on findings in experimental
models using both high-affinity ligands and null-mouse models.
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Introduction
The seminal work identifying PPARα (peroxisome-proliferator-activated receptor α) in 1990
[1] led to the subsequent identification of a family of three related receptors in the nuclear
receptor superfamily that can modulate biological function by acting as transcription factors
or through protein-protein interactions. PPARα, PPARβ/δ and PPARγ are each encoded by
separate genes and exhibit different tissue distribution patterns. The functions of PPARα and
PPARγ are well characterized as central regulators of lipid and glucose homoeostasis. Although
considerably less is known about the biological roles of PPARβ/δ, ligand activation of
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PPARβ/δ can effectively increase fatty acid catabolism in skeletal muscle and modulate insulin
sensitivity, which makes this receptor a promising drug target for treatment and prevention of
metabolic syndrome (reviewed in [2]). Additionally, there is evidence that PPARβ/δ can also
modulate gastrointestinal function and disease. There are a number of different compounds
that have been shown to activate PPARβ/δ, ranging from essential dietary fatty acids,
endogenous prostaglandins and synthetic pharmaceuticals currently in use or under
development (Table 1). The specificity of these compounds is dependent not only on the
relative affinity for the receptor, but also receptor expression and subsequent transcriptional/
molecular activity. The mechanisms underlying the biological effects induced by activation of
PPARβ/δ are mediated through a number of potential pathways.

There are at least three primary mechanisms by which PPARβ/δ can regulate biological
functions (Figure 1). PPARβ/δ is thought to exist in the cell in a complex containing the
receptor, auxiliary proteins and co-repressors. The histone deacetylase activity of the co-
repressors maintains the tightly bound chromatin structure preventing transcription. In
response to ligand binding, PPARβ/δ undergoes a conformational change, leading to release
of auxiliary proteins and co-repressors and recruitment of co-activators that contain histone
acetylase activity. Acetylation of histones by co-activators bound to the ligand-PPARβ/δ
complex leads to nucleosome remodelling, allowing for recruitment of RNA polymerase II
causing target gene transcription. In addition to this direct ligand-dependent transcriptional up-
regulation of target genes that modulates biological processes such as terminal differentiation
(Figure 1A), PPARβ/δ can interfere with NF-κB (nuclear factor κB) signalling (Figure 1B)
[3–5], leading to anti-inflammatory activities associated with PPARβ/δ and its ligands [3–
23]. The anti-inflammatory activities of PPARβ/δ may be mediated in part by interactions with
STAT3 (signal transducer and activator of transcription 3) and ERK5 (extracellular-signal-
regulated kinase 5) [24,25]. It is worth noting that the inhibition of STAT3 signalling due to
interacting with PPARβ/δ [24] may also be important in carcinogenesis, as STAT3 is often
overexpressed in many cancers, including colon cancer, and is associated with increasing anti-
apoptotic signalling and increased c-myc expression [26]. As there is evidence that PPARα
can interfere with AP1 (activator protein 1) signalling [27,28], it remains a possibility that
PPARβ/δ could also function in concert with AP1 signalling. Thus PPARβ/δ can modulate
inflammatory signalling and possibly cell growth by directly interfering with a number of
transcription factors (Figure 1B). It was also shown that PPARβ/δ can repress the expression
of some genes by associating with co-repressors [29] (Figure 1C). Cell lines with stable
overexpression of PPARβ/δ have diminished induction of PPARα and PPARγ target genes in
response to ligand activation of these receptors [29]; however, this effect may be cell-specific.
For example, PPARα target gene expression is not increased in PPARβ/δ-null mouse liver,
white adipose tissue or small intestine, and ligand activation of PPARα in the absence of
PPARβ/δ expression does not lead to enhanced expression of PPARα target genes in these
tissues [30]. In contrast, ligand activation of PPARγ in the colon in the absence of PPARβ/δ
expression does not cause enhanced expression of PPARγ target genes, yet ligand activation
of PPARα in the colon in the absence of PPARβ/δ expression leads to enhanced expression of
PPARα target genes [31]. Thus there is in vivo evidence that PPARβ/δ can repress the
transcription of PPARα target genes in the colon, but this does not appear to occur in the liver,
adipose tissue or small intestine. Additionally, the idea that PPARβ/δ represses PPARγ target
gene expression in the colon is not supported by these findings and is also inconsistent with
relative expression patterns. PPARβ/δ is expressed at significantly higher levels in the colon
as compared with PPARγ (described below), and it is well known that ligand activation of
PPARγ in the colon can attenuate diseases of this tissue. Taken together, there are a number
of important pathways that can be modulated by PPARβ/δ, and all of these are likely to have
some function in gastrointestinal physiology and disease, as PPARβ/δ is expressed at relatively
high levels in both the small and large intestine.
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PPARβ/δ Expression in the Gastrointestinal Tract
There are a number of reports describing the expression of PPARβ/δ in the gastrointestinal
tract (Table 2), with the majority of them examining the mRNA encoding the receptor. When
compared with the other PPARs, expression of PPARβ/δ mRNA is considerably higher in both
the small and large intestine in rats [32]. When compared with most major tissues, such as the
liver, adipose tissue, kidney and muscle, the expression of PPARβ/δ mRNA is markedly
elevated in the gastrointestinal tract [32]. The cis elements in the promoter responsible for this
high level of expression have not been delineated, but a strong enhancer sequence in the
PPARβ/δ promoter has been described [33]. In humans, there is a developmental increase in
the expression of PPARβ/δ in the small and large intestine, with the adult colon expressing
more protein compared with neonates [34]. Furthermore, expression of PPARβ/δ in the
neonatal human intestine has a cytoplasmic localization early on and a more nuclear
localization in the later fetal stages and, in particular, in the adult [34]. Note that the reliability
of this work depends in large part on the quality of the antibody used, as it is very difficult to
detect the expression of low-abundance nuclear receptors in the absence of a highly specific
antibody. Hepatic expression of PPARα is increased upon fasting [35,36], probably due to the
requirement of this receptor in activating the expression of enzymes involved in fatty acid
catabolism. In contrast, no significant variation in PPARβ/δ expression in the small or large
intestine is observed after feeding or fasting, suggesting that the high level of PPARβ/δ
expression is independent of the energy status of the cell [32]. Although the gastrointestinal
tract is composed of both similar and unique cells, including enterocytes, goblet cells, Paneth
cells and stem cells, an extensive analysis of PPARβ/δ expression in the different cell types
has not been performed to date. However, it is known that many cryptic cells of the colon
express PPARβ/δ protein [37]. The expression of PPARβ/δ may also be markedly changed
during cancer progression, an issue that will be addressed in greater detail in a later section.
Given the relatively high expression of PPARβ/δ in the small and large intestine, it is clear that
this nuclear receptor must have an important role in the gastrointestinal tract in both maintaining
normal homoeostasis and in disease.

Roles of PPARβ/δ in The Gastrointestinal Tract
A significant role for PPARβ/δ in regulating intestinal cell differentiation has recently been
described by two independent laboratories [31,38]. In the absence of PPARβ/δ expression in
the small intestine, the number of Paneth cells is significantly decreased [38]. Ligand activation
of PPARβ/δ causes an increase in the number of duodenal Paneth cells coincident with an
increase in markers of Paneth cell differentiation [38]. Induction of Paneth cell differentiation
in the small intestine is mediated by PPARβ/δ-dependent down-regulation of hedgehog
signalling [38]. As these effects are not found in similarly treated PPARβ/δ-null mice, this
demonstrates that PPARβ/δ is required to mediate the differentiation of intestinal Paneth cells.
In another study, ligand activation of PPARβ/δ also induced terminal differentiation of colonic
epithelial cells [31]. Administration of a potent PPARβ/δ ligand increased the expression of
genes associated with terminal differentiation of colon epithelium and an increase in the relative
state of differentiation of colonic epithelial cells [31]. It is of interest to note that one of the
mRNA markers, cathepsin E, is also associated with the induction of M cell differentiation,
which functions to process antigens in the colon epithelium. Collectively, these two reports
demonstrate that PPARβ/δ has an important role in terminal differentiation of both the small
and large intestine. This is consistent with a larger body of evidence from multiple laboratories
showing an association between PPARβ/δ and PPARβ/δ ligands and terminal differentiation
in epithelial cells [13,21,31,38–43]. This has led to a working hypothesis that constitutive
expression and activation of PPARβ/δ is maintained at a high level in the intestinal epithelium
to mediate differentiation of cell populations that are turning over at a relatively high rate
(Figure 2).
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Role of PPARβ/δ in Inflammatory Bowel Disease
Inflammatory bowel disease refers collectively to both Crohn's disease and ulcerative colitis
and is characterized by the overexpression of inflammatory signalling molecules, including
TNFα (tumour necrosis factor κ), NF-κB and IL (interleukin) 1β. PPARβ/δ is known to have
strong anti-inflammatory activities (Figure 1B), which may be due, in part, to interference with
NF-κB signalling. Coupled with the fact that PPARβ/δ is expressed at high levels in the
intestinal epithelium, the rationale for examining the potential role of PPARβ/δ in these
diseases is compelling. Consistent with the idea that PPARβ/δ may inhibit inflammatory bowel
disease, dietary administration of CLA (conjugated linoleic acid) increases the intestinal
expression of PPARβ/δ target genes and was shown to protect against experimentally induced
colitis [7], which is in agreement with a study showing that CLA isomers can activate
PPARβ/δ [44]. However, although that study [7] suggested a possible role for PPARβ/δ in
ameliorating inflammatory bowel disease because of the association between the up-regulation
of PPARβ/δ target genes and CLA-induced inhibition of experimentally induced colitis, this
effect of CLA was probably more dependent on PPARγ as suggested. That activation of
PPARβ/δ does not influence inflammatory bowel disease is also supported by a more recent
finding reporting that, in the absence of PPARβ/δ expression, experimentally induced colitis
is significantly exacerbated, as revealed by enhanced clinical symptoms, increased expression
of inflammatory signalling molecules (e.g. IL6 and TNFα) and histopathological analysis
[11]. Although this observation suggests that ligand activation may prevent experimentally
induced colitis, surprisingly administration of a highly specific PPARβ/δ ligand (GW0742; 5
mg/kg of body weight) did not ameliorate any of these effects [11]. However, it remains a
possibility that higher concentrations of the PPARβ/δ ligand could prove to be inhibitory in
this model system, since the concentration used in that study [11] was shown to specifically
activate PPARβ/δ in vivo and falls in the mid-concentration range of effective doses, thus
suggesting that PPARβ/δ can inhibit inflammation in the bowel through a ligand-independent
mechanism. The idea that the anti-inflammatory activities of PPARβ/δ and its ligands may be
of use for the treatment of inflammatory bowel disease is also supported by the recent findings
that chemically induced colitis is exacerbated in stearoyl-CoA desaturase-1-null mice, which
have decreased concentrations of oleic acid and linoleic acid [45]: two fatty acids that can
activate PPARβ/δ (Table 1). It is likely that PPARβ/δ-dependent modulation of experimentally
induced colitis is mediated through protein–protein interactions, such as interfering with NF-
κB signalling (Figure 1B). It is also possible that PPARβ/δ ligands could cause SUMOylation
of the receptor, similar to that observed with PPARγ, leading to repression of inflammatory
responses by interfering with clearance of co-repressor complexes (reviewed in [46]).
Alternatively, inhibition of Paneth cell differentiation in the intestine that occurs in the absence
of PPARβ/δ expression [47] could contribute to exacerbated experimentally induced colitis in
PPARβ/δ-null mice [11], due to decreased expression of antimicrobial peptides such as α-
defensins produced by Paneth cells, which serve to protect against intestinal inflammation
[47].

In contrast with these findings, administration of GW0742 (5 mg/kg of body weight) caused
enhanced colitis in a genetic model of colitis (IL10-null mice) [48]. The reason why mice
expressing IL10 in a chemically induced colitis model do not exhibit exacerbated colitis in
response to a PPARβ/δ ligand, whereas those lacking expression of IL10 do, remains to be
determined. It is tempting to speculate that this difference could be related to PPARβ/δ
inhibition of STAT3 signalling. As IL10 activation of STAT3 leads to an anti-inflammatory
response, but IL6 activation of STAT3 does not [49], it is possible that ligand activation of
PPARβ/δ interferes with the anti-inflammatory response associated with IL10 by interfering
with STAT3. This view deserves further consideration.
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Role of PPARβ/δ in Colon Cancer
By far the most controversial issue regarding PPARβ/δ in the intestine is the potential roles of
this receptor in colon cancer. Indeed, there are two opposing hypotheses, with one suggesting
that ligand activation of PPARβ/δ potentiates colon tumorigenesis through a variety of
mechanisms, whereas the other suggests that ligand activation of PPARβ/δ inhibits colon
tumorigenesis (Figure 3).

Less than ten years ago, a hypothetical mechanism (Figure 3A) was described linking the
expression and function of PPARβ/δ to colon carcinogenesis [50]. In this model, PPARβ/δ is
a downstream target of the APC (adenomatous polyposis coli)/β-catenin/Tcf4 (T-cell
transcription factor 4) pathway, similar to the oncogene c-myc [51]. Reduced function of APC
due to familial or somatic mutations leads to increased activity of β-catenin and Tcf4
transcriptional activity, which causes an up-regulation of target genes such as c-myc and
reportedly PPARβ/δ [50]. The increased presence of PPARβ/δ could then potentially be
activated by endogenous ligands such as COX (cyclo-oxygenase)-derived prostacyclin [52].
It was proposed further that ligand-activated PPARβ/δ would then drive the expression of target
genes, which still remain to be identified, and potentiate cell growth. In support of this model,
PPARβ/δ-null HCT116 cells have reduced tumorigenicity in a xenograft model [53]. Taken
together, an attractive model that presumably explained how COX2 inhibition prevents colon
cancer was developed (Figure 3A). In addition to this model, a couple of related models were
proposed suggesting that higher expression of PPARβ/δ in colon cancer prevents activation of
PPARγ [54,55], and that NSAIDs (non-steroidal anti-inflammatory drugs) may prevent colon
cancer by inhibiting the increased expression of PPARβ/δ reported in colon cancer [56] (Figure
3A). Subsequent findings from other laboratories using both in vitro and in vivo models have
provided results in support of these models, whereas others have not. Indeed, there is an
alternative hypothesis that ligand activation of PPARβ/δ can attenuate colon cancer (Figure
3B). This mechanism is supported by the observations that colon carcinogenesis is exacerbated
in both a genetic APCmin mouse model and a chemically induced azoxymethane treatment
model in the absence of PPARβ/δ expression [57,58], that silencing PPARβ/δ expression in
human colon cancer cells promotes cell proliferation [59], that PPARβ/δ has potent anti-
inflammatory activities [3–23], that PPARβ/δ mediates terminal differentiation in a number of
models (reviewed later) and that inhibition of azoxymethane-induced colon cancer by ligand
activation of PPARβ/δ requires a functional PPARβ/δ [31]. As noted above, some findings in
the literature support this model whereas others do not. The following sections will address
the most central regulatory mechanisms of these pathways with an emphasis on the expression
of PPARβ/δ in colon cancer and the influence of ligand administration in colon cancer models.

Is PPARβ/δ an APC/β-catenin/Tcf4 Target Gene that is Up-regulated during
Colon Cancer?

A fundamental question that has remained unanswered in the PPAR literature is whether
PPARβ/δ is a downstream target of the APC/β-catenin/Tcf4 pathway. It is important to stress
that constitutive expression of PPARβ/δ is relatively high in the gastrointestinal tract and that
this high expression probably facilitates terminal differentiation. Recent evidence also suggests
that PPARβ/δ may be constitutively active in the presence of endogenous fatty acids, as fatty
acids are tightly bound to the ligand-binding domain [60]. Despite the relatively high
constitutive expression, there are a number of studies suggesting that PPARβ/δ is up-regulated
in colon tumours in both human and rodent models (Table 3a). These findings are consistent
with the idea that PPARβ/δ is a downstream target of the APC/β-catenin/Tcf4 pathway. This
hypothesis is based on the original study showing that PPARβ/δ expression is diminished with
overexpression of APC in a human colon cancer cell line, coupled with additional studies,
including the demonstration that PPARβ/δ mRNA is higher in colon tumours from human
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cancer patients [50]. Six independent studies from other laboratories support these findings,
some with greater experimental and statistical strength than others. For example, two studies
show that expression of PPARβ/δ mRNA is higher in colon tumours compared with normal
mucosa in human patients [52,61], whereas findings from two other laboratories report
relatively higher expression of PPARβ/δ mRNA in only a small cohort of the examined colon
tumour samples [62,63]. One study also showed relatively high expression of PPARβ/δ in one
patient with FAP (familial adenomatous polyposis) using immunohistochemistry [64], but
follow-up Western blot analyses indicate that the immunohistochemical analysis was
influenced by non-specific immunoreactivity, a point alluded to above. There is also evidence
from animal studies showing relatively higher expression of PPARβ/δ in colon tumours from
rats treated with the colon-specific carcinogen azoxymethane, intestinal adenomas from
APCmin mice treated with azoxymethane and polyps from APCmin mice [52,64,65]. However,
as noted above, Western blot analysis with the same antibody used in the immunohistochemical
analysis revealed no change in PPARβ/δ, even though expression of β-catenin and cyclin D1
were elevated [64,65]. This indicates that the results from immunohistochemical analysis
suggesting increased expression of PPARβ/δ could be an incorrect interpretation resulting from
non-specific immunoreactivity, as the same antibody was used for both studies [64,65]. In
contrast with these studies, there are publications from 18 independent laboratories that do not
support the view that PPARβ/δ is up-regulated in colon carcinogenesis by the APC/β-catenin/
Tcf4 pathway (Table 3b). Expression of mRNA encoding PPARβ/δ is lower in colon adenomas
and adenocarcinomas compared with normal tissue in human cancer patients [66]. In patients
with a family history of sporadic colon cancer, expression of PPARβ/δ is decreased in normal
mucosa compared with mucosa from controls with no family history of colon cancer [67]. In
two other independent studies, expression of mRNA was lower in more than half of the colon
tumours examined from patients [63] or was unchanged in more than half of the colon tumours
examined from another cohort of cancer patients [62]. Similarly, expression of PPARβ/δ
mRNA is lower in colon mucosa from cancer patients compared with mucosa from non-cancer
patients [68]. In yet another study examining human colon tumours, mRNA encoding
PPARβ/δ was high in some patients, but, in general, the expression was not different between
tumours and normal mucosa [69]. Studies in human cancer cell lines show that the relative
expression of PPARβ/δ is either similar or lower in SW480 cells that have a mutant APC gene
and a wild-type β-catenin gene compared with HCA7 cells that have a wild-type APC gene
and a β-catenin gene [52,70]. Knocking down the expression of PPARβ/δ in HT29 human
colon cancer cells has no effect on cell growth or apoptosis [71], but silencing PPARβ/δ
expression in HCT116 human colon cancer cells promotes cell growth [59]. Studies in animal
models provide another body of evidence indicating that PPARβ/δ is not increased during colon
carcinogenesis and that PPARβ/δ is not up-regulated by the APC/β-catenin/Tcf4 pathway.
Expression of mRNA encoding PPARβ/δ is lower in polyps from APC mutant mice and in
polyps from azoxymethane-treated mice compared with normal mucosa [31,58,68]. However,
the relative expression of PPARβ/δ protein is reportedly unchanged in polyps compared with
mucosa in APCmin mice [72], and expression of the PPARβ/δ protein is not different in the
wild-type colon compared with the colon from APCmin mice [57]. This is consistent with
another study showing increased expression of β-catenin and cyclin D1 in intestinal adenomas
from azoxymethane-treated APCmin mice, but no change in PPARβ/δ expression [64]. This
suggests that some of the reported differences in mRNA expression of PPARβ/δ may not cause
functional changes in protein levels. Some of the most convincing evidence to date indicating
that PPARβ/δ is not up-regulated by the APC/β-catenin/Tcf4 pathway is provided from
transgenic mouse models. Complete deletion of the APC gene in mouse intestine causes
increased expression of the well-characterized oncogene c-myc, but down-regulation of mRNA
encoding PPARβ/δ [58,73]. Similarly, targeted deletion of β-catenin in mouse intestine causes
the down-regulation of c-myc mRNA but no change in the expression of PPARβ/δ mRNA
[74]. Gene expression analysis of a human colon cancer cell line expressing a dominant-
negative form of Tcf4 also showed a significant decrease in the expression of c-myc mRNA
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but no change in the expression of mRNA encoding PPARβ/δ [75]. Taken together, there are
some studies demonstrating that PPARβ/δ is up-regulated in colon cancer, but many other
studies that are inconsistent with this result. Regardless of whether the expression of PPARβ/
δ is increased, decreased or unchanged during colon carcinogenesis, it is important to note that
the biological role of this receptor in colon carcinogenesis is still unknown. To better
understand the function of PPARβ/δ in this disease, the effect of ligand activation and/or
targeted disruption of PPARβ/δ has provided some clues towards this goal.

Effect of Ligand Activation of PPARβ/δ in Colon Cancer Models
Some of the earliest studies examining the effect of a PPARβ/δ ligand in cancer were performed
before the link between the ligand and the receptor was described. Prior to the suggestion that
prostacyclin may be an endogenous ligand for PPARβ/δ [52], a number of studies had been
performed examining the effect of this COX-derived metabolite in cancer models, but did not
focus on intestinal carcinogenesis. For example, in 1981 it was shown that prostacyclin inhibits
cell growth of the B16 melanoma cell line [76]. This is some of the first evidence suggesting
that a potential PPARβ/δ ligand can inhibit cell growth, although this was not specifically
examined in this study as there was no reason at the time to link prostacyclin with activation
of PPARβ/δ. The same investigators also demonstrated that prostacyclin is a potent
antimetastatic agent [77], an observation that has been examined extensively since that time
(reviewed in [78]). Indeed, prostacyclin can significantly inhibit cell adhesion molecule
adherence of COLO 205 colon carcinoma cells to endothelial cells [79]. Whether the inhibitory
effect or the antimetastatic effect of prostacyclin is mediated by PPARβ/δ is uncertain, but it
is worth noting that, in a lung cancer cell line, inhibition of cell proliferation by
carbaprostacyclin is mediated by PPARβ/δ as shown by siRNA (short interfering RNA)
experiments [80]. There is some indication that inhibition of cell growth by prostacyclin could
be influenced by increased apoptosis, as this has been shown in vascular smooth muscle cells
[81]; however, as with many of the studies investigating the role of PPARβ/δ in cancer, this
idea is inconsistent with other findings. Although there is good evidence that prostacyclin can
inhibit cell growth and have antimetastatic activity in a variety of tumour models, there is also
a study suggesting that prostacyclin produced in colonic fibroblasts can promote cell survival
of colonocytes via the activation of PPARβ/δ [82]; however, this hypothesis was not examined
extensively. Prostacyclin has also been shown to be chemoprotective for lung cancer [83,84]
and, interestingly, the mechanism of this chemoprevention may involve the up-regulation of
PPARγ [84]. It is also worth noting that there are high-affinity prostacyclin receptors (e.g.
affinity in the nanomolar range [85,86]) on the cell surface. This suggests that any potential
effect of prostacyclin that could be mediated by PPARβ/δ, which is localized in the cytosol
and/or nucleus, would result in having bypassed binding to the cell-surface receptor.
Collectively, the role of PPARβ/δ, if any, in modulating any effects of prostacyclin in colon
cancer models remains to be determined.

The studies using prostacyclin are more suggestive of possible roles for PPARβ/δ, as it has not
been conclusively demonstrated with any degree of certainty that prostacyclin is a true
endogenous ligand of PPARβ/δ [87] and, in many cases, this possibility was not examined
specifically. There are a number of studies that have more directly examined the effect of
PPARβ/δ in intestinal carcinogenesis using low- and high-affinity ligands of PPARβ/δ and, in
some cases, also controlling for PPARβ/δ expression. Unfortunately, these studies have also
provided conflicting results that require discussion. Linoleic acid can activate PPARβ/δ (Table
1), and there is some evidence associating increased dietary intake of linoleic acid with
increased colon cancer in experimental animal models [88–91]. Increased dietary intake of
linoleic acid is also associated with increased risk of colon cancer in patients with a mutation
in v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue [92]. However, linoleic acid is a
relatively low-affinity activator of PPARβ/δ and other variables other than linoleic acid may
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have influenced these findings, including dietary fibre. The first study describing the effect of
a potent PPARβ/δ ligand on intestinal carcinogenesis showed that GW501516 increased the
average number (approx. 30 polyps in control compared with approx. 56 polyps in the
GW501516-treated) and average size of small intestinal polyps in APCmin mice, which was
due in part to modulation of apoptosis [93]. The number of colon polyps in response to
administration of GW501516 to APCmin mice was not different in this study [93]. The same
group went on to show that administration of GW501516 to APCmin mice increased the average
number of polyps in the small intestine (approx. 60 polyps in control compared with approx.
120 polyps in GW501516-treated) and colon (approx. one polyp in control compared with
approx. three polyps in GW501516-treated) through a PPARβ/δ-dependent mechanism, as this
was not found in APCmin mice that lacked expression of PPARβ/δ [94]. It was hypothesized
that the observed increase in intestinal polyps resulting from administration of the highly potent
PPARβ/δ ligand was mediated, in part, by PPARβ/δ-dependent modulation of VEGF (vascular
endothelial growth factor) expression, which presumably caused increased phosphorylation of
Akt and inhibition of apoptosis [94].

In contrast with these studies suggesting that ligand activation of PPARβ/δ will potentiate colon
carcinogenesis, a number of findings from independent laboratories using low- and high-
affinity activators of PPARβ/δ do not support this view. Although some studies suggest that
increased dietary linoleic acid, which can activate PPARβ/δ (Table 1), may be associated with
increased risk of colon cancer [88–92], a careful review of multiple human studies indicates
that high dietary intake of linoleic acid does not increase the risk of colon cancer [95]. Notably,
there is a lack of an increased risk of colon cancer by high dietary intake of linoleic acid in
patients with colon cancer with an APC mutation [92]. Other studies suggest that fatty acids,
including linoleic acid, oleic acid and others, can inhibit colon cancer. For example, linoleic
acid and oleic acid can inhibit cell proliferation and induce apoptosis in HT29 cells [96].
Consumption of olive oil, which is high in oleic acid that can activate PPARβ/δ (Table 1), has
also been associated with a decreased risk of colon cancer [97,98]. However, other components
of olive oil, such as phenolic compounds, may contribute to this chemopreventive association
[98]. Chemopreventive associations between a high intake of eicosapentaenoic acid or
docosahexaenoic acid and colon cancer are well documented [99], and both of these fatty acids
can also activate PPARβ/δ (Table 1). Culturing human colonocytes with the high-affinity
PPARβ/δ ligand GW501516 does not change cell viability but inhibits cell proliferation
[100]. However, this finding was viewed with some uncertainty as the expression of PPARβ/
δ mRNA was below the level of detection in these cells. It is difficult to reconcile this finding
as others have clearly demonstrated relatively high expression of PPARβ/δ in human colon
(Table 3a), so it remains a possibility that PPARβ/δ protein was present in their model or that
technical problems prevented the detection of the mRNA. Relative cell proliferation of three
human colon cancer cell lines (HT29, SW480 and HCA7) is unchanged in response to cell
culture in the presence of a high-affinity PPARβ/δ ligand, although only one concentration was
examined in that study [101]. As SW480 cells have a mutant APC and functional β-catenin, if
PPARβ/δ was a target of the APC/β-catenin/Tcf4 pathway it might be expected that these cells
would have higher PPARβ/δ expression and perhaps be more responsive than HCA7 cells, but
this was not observed [101]. Administration of GW0742 to APCmin mice caused no change in
the number of polyps in the small intestine (approx. 20 polyps in control compared with approx.
25 polyps in GW0742-treated) or colon (approx. three polyps in control compared with approx.
two polyps in GW0742-treated), nor in the size of the polyps [31]. However, administration
of GW0742 to mice treated with the colon-specific carcinogen azoxymethane did inhibit colon
tumour multiplicity, and this effect required PPARβ/δ as this was not seen in similarly treated
PPARβ/δ-null mice [31]. Results from that study also suggested that the observed inhibition
of colon tumorigenesis is due to PPARβ/δ-dependent modulation of differentiation as terminal
differentiation markers [e.g. ADRP (adipose differentiation-related protein) and FABP (fatty-
acid-binding protein)] were increased by GW0742 treatment in colonocytes [31]. The
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contradiction with the observation that ligand activation of PPARβ/δ inhibits colon cancer
resulting from the colon-specific carcinogen azoxymethane [31] by the studies that ligand
activation potentiates colon cancer in the APCmin mouse model [93,94] may have been due to
differences in the ligand used, as GW0742 was used for one study [31], whereas other studies
used GW501516 [93,94]. This hypothesis was examined in a recent paper [102]. Critical
analysis of both human colon cancer cell lines (HT29, HCT116 and LS-174T) and mice
revealed many inconsistencies with previous studies. For example, inhibition of cell
proliferation of HT29, HCT116 and LS-174T cell was observed in response to either GW0742
or GW501516 (1–10 μmol/l), and this effect was unaffected by the presence or absence of
serum. The presence of serum was evaluated as a possible variable that could contribute to
some of the reported disparities, because inhibition of apoptosis reported by others was found
after serum removal [93,94]. In contrast with a previous study suggesting that VEGF is
regulated by a PPARβ/δ-dependent mechanism leading to inhibition of apoptosis due to
increased phosphorylation of Akt in LS-174T cells [94], no change in VEGF expression,
phosphorylation of Akt or PARP (polyADP-ribose polymerase) cleavage was observed in
either HT29, HCT116 and LS-174T cells, in the presence or absence of serum, in response to
either GW0742 or GW501516 over a broad concentration range known to specifically activate
PPARβ/δ (0.1–10 μmo/l) [102]. Furthermore, expression of VEGF and phosphorylation of Akt
was not different in colon or colon polyps after administration of either GW0742 or
GW501516, or GW0742 respectively [102]. The idea that PPARβ/δ could modulate Akt
signalling stems from previous findings made in keratinocytes suggesting that PPARβ/δ
directly up-regulates PDK1 (phosphoinositide-dependent kinase 1) and ILK (integrin-linked
kinase) and inhibits PTEN (phosphatase and tensin homologue deleted on chromosome 10)
expression, which combined cause increased phosphorylation of Akt and inhibition of
apoptosis [103]. However, this pathway appears to be context-specific as it does not function
in normal mouse or human keratinocytes in the absence of inflammatory signalling [40].
Additionally, this pathway was examined in mouse colon and human cancer cell lines and was
found to be non-functional in response to ligand activation of PPARβ/δ [31,102]. Thus there
is no convincing evidence that PPARβ/δ modulates apoptosis by either VEGF-dependent
regulation of Akt signalling or the PDK/ILK/Akt pathway during colon carcinogenesis.

Collectively, these studies have contributed significantly to the current controversy regarding
the effect of ligand activation in colon carcinogenesis. There are a number of possible
explanations for these differences that should be discussed. One difference is the model used:
the APCmin mouse compared with the chemical induction of colon tumours using
azoxymethane. The APCmin mouse, although useful for studying intestinal tumorigenesis, has
the drawback that the majority of tumours are found in the small intestine rather than the colon.
APC genetically mutant mice can also have a large variation in polyp distribution due to simple
differences in housing conditions [104], which might be influenced by differences in gut flora.
The studies examining the effect of GW501516 in APCmin mice also used mice on a mixed
genetic background [94], such that the results could be influenced by the presence of modifiers
of min alleles, which can significantly modulate the incidence of intestinal tumorigenesis in
the APCmin mouse model [105–107]. Additionally, the variation observed in the average
number of intestinal polyps in control and ligand-treated APCmin mice from one laboratory
has a large variation, such that control tumour multiplicity in one study is similar to tumour
multiplicity in the ligand-treated group in a separate study [93,94,108]. Thus the studies using
azoxymethane are clearly more specific for determining the effect of ligand activation of
PPARβ/δ in colon cancer. The hypothesis that ligand activation of PPARβ/δ up-regulates
VEGF expression leading to phosphorylation of Akt and inhibition of apoptosis during colon
carcinogenesis [94] is inconsistent with findings using the same human colon cancer cell line,
as well as comparative in vivo analysis using two different PPARβ/δ ligands demonstrating no
changes in phosphorylation of Akt or VEGF expression [31,102]. The hypothesis that ligand
activation of PPARβ/δ leads to anti-apoptotic signalling, as suggested by some studies [93,
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94,108], is inconsistent with a larger body of evidence showing that PPARβ/δ induces terminal
differentiation and/or is associated with inhibition of cell growth in a variety of models [13,
15,17,18,21,31,38–43,59,80,100,102,109–121]. Despite the controversies, these combined
observations shed light on the complexities of PPARβ/δ signalling and emphasize the need to
critically examine current working hypotheses for the role of this receptor in colon
carcinogenesis.

Modulation of PPARβ/δ Activity by NSAIDS During Colon Carcinogenesis
In addition to the putative differences in PPARβ/δ expression and ligand activation of
PPARβ/δ during colon cancer, a few related alternative pathways involving PPARβ/δ have
also been postulated as possible targets for colon cancer chemoprevention. One recently
hypothesized mechanism suggested that NSAID-mediated inhibition of colon tumorigenesis
is facilitated by down-regulating PPARβ/δ expression and function [54]. The reported
PPARβ/δ-dependent inhibitory activity induced by NSAIDs was due to the increased
expression of LOX1 (lipoxygenase 1)-derived 13-S-HODE [13(S)-hydroxyoctadecadienoic
acid] that surprisingly binds to PPARβ/δ but decreased, rather than increased, transcriptional
activity of PPARβ/δ as well as decreased the expression of PPARβ/δ [54]. This down-
regulation of PPARβ/δ was linked to increased apoptosis, suggesting that PPARβ/δ mediates
anti-apoptotic activity. This is similar to another hypothesis linking NSAID-dependent down-
regulation of both 14-3-3 and PPARβ/δ with increased apoptosis in human cancer cell lines
[56]. It was also suggested that NSAID/LOX1-dependent down-regulation of PPARβ/δ
allowed increased activity of PPARγ [55]. This indicates that NSAID-dependent inhibition of
colon cancer by NSAIDs could be due, in part, to increased activity of PPARγ, which is known
to be a chemopreventive target (reviewed in [122]), in addition to the inhibition of COX2-
dependent pathways. Although the findings from these studies indicate a potential novel
regulatory pathway for NSAIDs, they are also highly inconsistent with other findings. The first
level of inconsistency is the idea that PPARβ/δ is increased during colon cancer, as described
above. Although NSAIDs are reported to decrease PPARβ/δ expression in human cancer cell
lines, there are other findings indicating that NSAIDs increase the expression of PPARβ/δ
(Table 4). If expression of PPARβ/δ is not changed or is decreased as suggested by some
studies, then the former hypotheses are infeasible. It is also unclear, as outlined above, whether
PPARβ/δ modulates apoptosis and, if so, the mechanisms of this modulation are unknown. The
idea that a PPARβ/δ ligand (e.g. 13-S-HODE) can bind to and repress PPARβ/δ activity is
unprecedented and inconsistent with other work showing increased PPARβ/δ-dependent
transcriptional activity by 13-S-HODE [123]. The relevance of the findings made in cancer
cell lines are also not consistent with what is seen in vivo (e.g. PPARβ/δ does not interfere with
PPARγ signalling [31,124] and NSAIDs do not change expression of PPARβ/δ;Table 4b). It
is also worth noting that administration of the NSAID nimesulide does not change the
expression of PPARβ/δ in the mouse colon and effectively inhibits colon cancer in both wild-
type and PPARβ/δ-null mice [112] and that NSAID-induced apoptosis in HCT116 cells does
not require PPARβ/δ [53]. Taken together, the hypothesis that NSAIDs inhibit colon
tumorigenesis through down-regulation of PPARβ/δ is not supported by many observations.

Concluding Comments and Data Gaps
In the present review, we have summarized the controversial issues surrounding the role of
PPARβ/δ in intestinal physiology and disease. In particular, there remains considerable
controversy regarding the role of PPARβ/δ during colon cancer. A number of major points of
emphasis should be explored further to more definitively determine how PPARβ/δ modulates
colon cancer, including issues related to expression levels, identification of direct PPARβ/δ
target genes and the potential roles of polymorphisms in the PPARβ/δ gene in human cancer.
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It is clear that there are many inconsistencies in the literature in support of the view that
PPARβ/δ is up-regulated by the APC/β-catenin/Tcf4 pathway [50]. Indeed, there are many
examples indicating that PPARβ/δ expression is not significantly changed in the absence of
APC-dependent signalling, including complete disruption of APC and β-catenin and/or
inhibiting Tcf4 signalling. However, there are also examples in some patients indicating that,
in some cases, expression does appear to be higher than normal. Does this difference in
expression reflect differences or interactions with other transcriptional regulators? Perhaps the
APC/β-catenin/Tcf4 pathway modulates PPARβ/δ in some individuals/models, but not others
due to unidentified mechanisms such as expression of modifier genes? Given the large
differences in expression pattern and lack of change in PPARβ/δ expression in some models,
it is not possible to conclude that PPARβ/δ is up-regulated by the APC/β-catenin/Tcf4 pathway.
Regardless of whether PPARβ/δ is increased or decreased during colon carcinogenesis, one
must also come to terms with the fact that PPARβ/δ expression is already very high in the
intestine. There is good evidence that the high expression of PPARβ/δ is due to the requirement
for maintenance of terminally differentiated cell types, including Paneth cells. Additionally,
recent evidence suggests that PPARβ/δ may be constitutively active in the presence of
endogenous fatty acids, which can be found tightly bound to the ligand-binding domain [60].
Thus it is curious that if PPARβ/δ is increased during colon cancer and is causally related, then
given its relatively high expression in colonic epithelium, why does colon cancer not affect the
majority of humans? One idea that has not been considered to date is that if PPARβ/δ is
increased during colon carcinogenesis the increased expression of PPARβ/δ may serve as a
protective mechanism. For example, the higher expression of PPARβ/δ could inhibit
inflammation and/or mediate the induction of terminal differentiation to prevent proliferation
of cells that would normally be predisposed for tumorigenesis. This view is supported by a
large body of evidence from a number of independent laboratories showing that PPARβ/δ and/
or ligand activation of PPARβ/δ have anti-inflammatory activities [3–23] and is associated or
causally linked to the induction of terminal differentiation and/or inhibition of cell proliferation
[13,15,17,18,21,31,38–43,59,80,100,102,109–121]. The idea that increased expression of
PPARβ/δ may be a protective mechanism is also supported by comparable findings showing
increased expression of PPARγ in colon tumours [125] and that PPARγ ligands inhibit or
prevent colon carcinogenesis by inducing terminal differentiation, inhibiting cell proliferation
and/or increasing apoptosis through both receptor-dependent and receptor-independent
mechanisms [122,126]. Although the induction of terminal differentiation is typically
considered a good approach to prevent or treat cancer, there is evidence that increased Paneth
cell differentiation is associated with increased APC/β-catenin/Tcf4 activity [127]. This could
be viewed as suggesting that increased PPARβ/δ-dependent Paneth cell differentiation may be
causally linked to colon cancer. Alternatively, as noted above, it remains a possibility that the
increased PPARβ/δ-dependent Paneth cell differentiation resulting from enhanced APC/β-
catenin/Tcf4 activity is a protective mechanism. Lastly, although the expression of PPARβ/δ
was decreased during colon cancer progression in some models, the significance of this change
remains uncertain. Further studies are necessary to differentiate between all of these
possibilities.

The notion that the presence of PPARβ/δ could mechanistically explain how COX2 inhibitors
prevent colon cancer was indeed an attractive hypothesis [50,52]. If COX2-derived metabolites
served as ligands for PPARβ/δ that lead to increased signalling for enhanced cell proliferation
and if PPARβ/δ expression were elevated similar to c-myc and cyclin D1 via the APC/β-
catenin/Tcf4 pathway, then inhibiting PPARβ/δ activity might explain how NSAIDs prevent
this disease. Unfortunately, since the original hypothesis was proposed, this idea has been met
with significant inconsistencies. For example, suppression of azoxymethane-induced colon
cancer by the COX2 inhibitor nimesulide occurs in the absence of PPARβ/δ expression
[112]. It was suggested that COX2-derived PGE2 (prostaglandin E2) and Wnt signalling
interact with PPARβ/δ leading to a shift from cell death to cell survival [108], but these findings
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are not supported by the observed PPARβ/δ-independent decrease in colon-specific
carcinogenesis in response to COX2 inhibition [112]. Similarly, there is one study suggesting
a relationship between a polymorphism in the human PPARβ/δ gene and the protective effect
of NSAIDs on colorectal cancer risk [128], whereas another study found no correlation
[129]. Given these inconsistencies, it is not surprising that, since originally hypothesized, other
related but different hypotheses proposing that NSAIDs up-regulate PPARβ/δ expression
leading to chemopreventive effects have also been postulated [54–56]. Similarly, these ideas
are also inconsistent on many levels as outlined above. For example, other models have
increased expression of PPARβ/δ, rather than decreased expression, and, more importantly,
the relevance of increased PPARβ/δ expression in the intestine is very unclear given its
relatively high constitutive expression. Further work is necessary to determine whether
NSAIDs do in fact up-regulate PPARβ/δ expression during colon cancer progression in both
cell culture and in vivo models, and to definitively determine what the specific biological role
of PPARβ/δ is in this tissue. In particular, the identification and characterization of critical
PPARβ/δ target genes and their specific functional roles is of the highest interest.

There are a number of PPARβ/δ-responsive gene targets described in the literature. Some have
been verified and characterized by independent laboratories, whereas others have not. For
example, ADRP was initially shown to be a functional PPARβ/δ target gene in macrophages
[130]. Since this time, this has been confirmed in other cell types, such as keratinocytes and
colonocytes, including the demonstration that this requires PPARβ/δ, as shown by the lack of
induction in PPARβ/δ-null mice [21,31,40,131,132]. Similarly, expression of ANGPTL4
(angiopoietin-like protein 4) is increased by treatment with PPARβ/δ ligands [133], due to
direct PPARβ/δ-dependent modulation of a cluster of PPREs (PPAR-responsive elements) in
an intron [134,135]. Thus it is not surprising that increased expression of ANGPTL4 also occurs
via a PPARβ/δ-dependent mechanism in epithelial cells, including keratinocytes, and the colon
[21,112]. Expression of L-FABP (liver FABP) is also increased by the activation of PPARβ/
δ in the small intestine [136], liver [16] and colon [31] and does not occur in response to ligand
activation in PPARβ/δ-null mouse colon [31]. The precise biological role(s) of ADRP, FABP
and ANGPTL4 in normal intestinal homoeostasis is unclear, although there is evidence that
expression of ADRP and FABP is associated with terminal differentiation of intestinal
epithelium [31,137,138]. As the induction of terminal differentiation is one approach suitable
for chemoprevention and chemotherapy, this suggests that increased expression of ADRP and
L-FABP by ligand activation of PPARβ/δ could be viewed as beneficial. This is consistent
with a number of findings including: (i) L-FABP expression is decreased in human colon
tumours compared with normal tissue [137,139,140], (ii) disruption of β-catenin/Tcf4
signalling in a human colon cancer cell line causes an up-regulation of terminal differentiation
markers including L-FABP [75], (iii) loss of L-FABP expression occurs in colon adenomas,
suggesting that this occurs during early tumour progression [139], (iv) increased expression of
the related I-FABP (intestinal FABP) inhibits cell growth of a human colon cancer cell line
[141], (v) expression of ANGPTL4 is reduced in gastric cancer [142], and (vi) studies in other
models suggesting that ANGPTL4 inhibits cell proliferation, angiogenesis and metastasis
[143–145]. Although these observations suggest that PPARβ/δ-dependent activation of these
proteins would be of benefit for colon cancer chemoprevention, it is important to note that there
is also evidence that increased expression of L-FABP is found in some gastric adenocarcinomas
[146] and can increase cell proliferation in hepatocytes [147]. Additionally, enhanced
expression of ANGPTL4 is found in a prostate cancer cell line [148] and may promote
angiogenesis in renal carcinogenesis [149]. Thus, although there is good reason to suggest that
increased expression of L-FABP, ADRP and ANGPTL4 by ligand activation of PPARβ/δ could
be chemopreventive, there are other observations indicating that this may not be true. Other
putative PPARβ/δ target genes with potential links to cancer have also been described, but
verification from other laboratories has raised some uncertainty. For example, PPARβ/δ can
up-regulate PTEN expression and up-regulate expression of PDK1 and ILK1 leading to
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increased phosphorylation of Akt and inhibition of apoptosis during skin wound healing
[103]. However, this pathway does not function in normal keratinocytes, human colon cancer
cell lines or in colonocytes during colon cancer progression [31,40,102]. Expression of VEGF
has also been postulated to occur in response to ligand activation of PPARβ/δ in colon cancer
cell lines [94], but this effect is not consistently observed [102]. Importantly, there is currently
no convincing evidence to date linking a direct PPARβ/δ target gene with oncogenesis. This
is somewhat surprising given the strong link between PPARβ/δ and colon cancer. This is clearly
a major area of research that is currently needed to strengthen the body of evidence linking
PPARβ/δ with colon cancer. Given the fact that FABP, ADRP and ANGPTL4 can be activated
by ligand activation of PPARα, PPARβ/δ and PPARγ, due to the presence of essentially
redundant response elements in these target genes, it is also of great interest to determine why,
or if, there are differential effects of the different PPAR ligands on colon cancer. This is
especially true as activation of PPARα and PPARγ can both inhibit intestinal tumorigenesis
[150–154]. Alternatively, the consequence of ligand-independent effects of PPARβ/δ (e.g.
interactions with NF-κB etc.) and off-target receptor-independent effect of PPARβ/δ ligands
should also be examined in more detail.

The recent finding that PPARβ/δ may be a target of the VDR (vitamin D receptor) also raises
some interesting questions. It is fairly well accepted that activating the VDR can be
chemopreventive for intestinal carcinogenesis and/or that vitamin D deficiency exacerbates
intestinal carcinogenesis [155]. As a VDR ligand can increase the expression of PPARβ/δ in
human breast and prostate cancer cell lines [156], this might suggest that the increase in
PPARβ/δ may participate in the chemopreventive effects of VDR ligands. This idea deserves
further evaluation in colon cancer models. Potential participation of PPARβ/δ in modulating
colon cancer is also suggested by a recently described antithrombotic role for PPARβ/δ
[157]. COX2 can facilitate production of endocannabinoid metabolites that activate PPARβ/
δ, which, in turn, negatively regulates the expression of tissue factor, an essential element
required for blood coagulation [157]. As ligand activation of PPARβ/δ by endocannabinoids
is antithrombotic, this is of interest because antithrombotic agents are being examined for their
potential use in preventing tumour growth and metastasis [158–160]. Determining whether
endogenous or exogenous endocannabinoids via activation of PPARβ/δ could be used for
targeting during colon cancer is another area that deserves investigation.

One of the primary purposes of the present review is to highlight both sides of the controversy
regarding the role of PPARβ/δ in colon cancer given the large disparities in the published
literature. It is clear that there are currently large data gaps in our understanding of what the
role of PPARβ/δ is during intestinal tumorigenesis and how ligand activation of this receptor
influences these diseases. It should be noted that there remains some controversy regarding the
role of a related receptor, PPARγ, in colon cancer. Previous studies have shown that
administration of PPARγ ligands may enhance colon cancer in experimental mouse models
[161–163], which was hypothesized to be due to increased expression of PPARγ and activation
of this receptor by COX-derived metabolites [125]. The hypothesis that COX-derived
metabolites activate PPARγ and potentiate colon cancer [125] turned out to be incorrect;
however, subsequent studies still support this contention that PPARγ ligands promote colon
cancer [163,164]. Nevertheless, there is currently a larger body of evidence indicating that
ligand activation of PPARγ may actually be chemopreventive (reviewed in [122]), which
supports past and present clinical trials examining the efficacy of this approach. Until a larger
body of evidence is obtained delineating the role of PPARβ/δ in normal intestinal homoeostasis
and diseases such as colon cancer, the controversy for this PPAR isoform will remain.
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Abbreviations
ADRP  

adipose differentiation-related protein

ANGPTL4  
angiopoietin-like protein 4

AP1  
activator protein 1

APC  
adenomatous polyposis coli

CLA  
conjugated linoleic acid

COX  
cyclo-oxygenase

FABP  
fatty-acid-binding protein

13-S-HODE  
13(S)-hydroxyoctadecadienoic acid

IL  
interleukin

ILK  
integrin-linked kinase

L-FABP  
liver FABP

LOX1  
lipoxygenase 1

NF-κB  
nuclear factor κB

NSAID  
non-steroidal anti-inflammatory drug
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PDK1  
phosphoinositide-dependent kinase 1

PPAR  
peroxisome-proliferator-activated receptor

PTEN  
phosphatase and tensin homologue deleted on chromosome 10

STAT3  
signal transducer and activator of transcription 3

Tcf4  
T-cell transcription factor 4

TNFα  
tumour necrosis factor α

VDR  
vitamin D receptor

VEGF  
vascular endothelial growth factor
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Figure 1. PPARβ/δ-mediated regulation of transcription
PPARβ/δ can directly up-regulate target genes in response to ligand activation (A), interact
with other transcription factors such as NF-κB and possibly others such as AP1 (B), or repress
gene expression (C). CBP, CREB (cAMP-response-element-binding protein)-binding protein;
HAT, histone acetylase; HDAC, histone deacetylase; NCoR, nuclear receptor co-repressor;
RNA Pol II, RNA polymerase II; RXRα, retinoid X receptor α; SMRT, silencing mediator for
retinoic acid receptor and thyroid-hormone receptor.
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Figure 2. Functional role of PPARβ/δ in the intestine and a working hypothesis of how PPAR β/δ
functions when expression is increased
Constitutive expression of PPARβ/δ is high in the epithelial cells of the small and large
intestine. Activation of PPARβ/δ by endogenous ligands probably serves to maintain a
population of terminally differentiated cells allowing for normal absorption function and/or
modulation of inflammation. Expression of PPARβ/δ can be increased by inflammation (e.g.
in response to TNFα and AP1 signalling). It is a working hypothesis that this increase in
PPARβ/δ-mediated signalling will lead to increased differentiation, inhibition of cell
proliferation and anti-inflammatory activity that will culminate by resolution in the affected
cell(s).
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Figure 3. Hypothetical roles of PPARβ/δ in colon carcinogenesis
(A) Ligand activation of PPARβ/δ potentiates colon cancer. In this model, PPARβ/δ is a
downstream target of the APC/β-catenin/Tcf4 pathway and, through unknown target genes,
leads to enhanced cell proliferation. COX-2-derived prostacyclin (PGI2) may be an endogenous
ligand for PPARβ/δ in this model, and inhibition of COX2 by NSAIDs may prevent activation
of PPARβ/δ and unknown target genes. Alternatively, there is also evidence that NSAIDs may
inhibit PPARβ/δ expression leading to reduced anti-apoptotic activity mediated through ill-
defined mechanisms. ?, pathways of uncertainty. PGIS, prostaglandin I2 synthase. (B) Ligand
activation of PPARβ/δ attenuates colon cancer. In this model, ligand activation of PPARβ/δ
leads to the induction of well-characterized target genes, including FABP and ADRP, that are
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associated with terminal differentiation and probably other unidentified target genes that
participate. PPARβ/δ can also interfere with NF-κB and AP1 signalling, causing anti-
inflammatory activities. The induction of terminal differentiation and anti-inflammatory
activities are associated with inhibition of cell proliferation. RXRα, retinoid X receptor α.
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Table 1
Natural and synthetic activators/ligands of PPARβ/δ

Compound Comment Relative affinity
for PPARβ/δ*

Reference

Linoleic acid Essential dietary fatty acid; also activates PPARα Micromolar [165–167]

Oleic acid Dietary fatty acid; also activates PPARα and PPARγ Micromolar [110,167,168]

Arachidonic acid Essential dietary fatty acid; also activates PPARγ Micromolar [165]

Eicosapentaenoic acid Essential dietary fatty acid; also activates PPARα Micromolar [165]

Docosahexaenoic acid Essential dietary fatty acid Micromolar [165]

Prostaglandin A1 Endogenous prostaglandin Micromolar [165,169]

Carbaprostacyclin Synthetic stable PGI2 analogue; also activates
PPARα

Micromolar [165,169]

Iliprost Antihypertensive drug; prostacyclin analogue Micromolar [165]

L165,041 Synthetic high-affinity ligand; can activate PPARα
and PPARγ at high concentration

Nanomolar [170]

GW501516 Synthetic high-affinity ligand; can activate PPARα
and PPARγ at high concentration

Nanomolar [171]

GW0742 Synthetic high-affinity ligand; can activate PPARα
and PPARγ at high concentration

Nanomolar [171]

*
Relative concentration range required to activate the receptor based on the relative ability to transactivate reporter constructs. PGI2, prostacyclin.
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Table 2
Relative expression of PPARβ/δ in the small and large intestine

Species Specimen Relative expression Method Reference

Rat 300 g Sprague–Dawley Relatively high
expression of
mRNA encoding
PPARβ/δ in the
small intestine and
colon

In situ hybridization [172]

Mouse 7-week-old NMRI Modest expression
of mRNA encoding
PPARβ/δ in the
colon, less
expression of
mRNA encoding
PPARβ/δ in the
small intestine

Ribonuclease protection assay [173]

Human 7–22-week fetuses;
adult controls

Expression of
PPARβ/δ protein is
higher in the adult
colon compared with
fetal colon; appears
to move from
cytoplasm to nucleus
with age

Western blotting and immunohistochemistry [34]

Rat 8–9-weeks-old
(approx. 200 g)
Sprague–Dawley

Markedly high
expression of
mRNA encoding
PPARβ/δ compared
with other tissues
and other PPARs

Ribonuclease protection assay [32]

Rat 5 and 25 days
postnatally; Sprague–
Dawley

High expression of
mRNA encoding
PPARβ/δ compared
with other PPARs in
the small intestine;
increased expression
of mRNA encoding
PPARβ/δ by
postnatal day 25.

Northern blotting [174]

Mouse 5–6-weeks-old CD-1 Relatively high
expression of
PPARβ/δ protein in
intestinal epithelial
cells; expressed in
cryptic cells

Tissue microarray-based immunohistochemistry [37]
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Table 4
Expression of PPARβ/δ in response to NSAIDs

(a) Evidence that PPARβ/δ is down-regulated by NSAIDs

NSAID Specimen Relative expression Method Reference

Celecoxib RKO colon cancer
cell line

Decreased
expression of
mRNA encoding
PPARβ/δ

Northern blotting [54]

Sulindac sulfide HT29 colon
cancer cell line

Decreased
expression of
PPARβ/δ

Western blotting [56]

Indomethacin HT29 colon
cancer cell line

Decreased
expression of
PPARβ/δ

Western blotting [56]

NS-398 MKN45 gastric
cancer cell line

Decreased
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [175]

Sulindac sulfide/sulindac sulfone SW480 colon
cancer cell line

Decreased
expression of
PPARβ/δ

Western blotting [70]

(b) Evidence that PPARβ/δ is unchanged or up-regulated by NSAIDs

NSAID Specimen Relative expression Method Reference

Nimesulide HCT116 colon
cancer cell line

Increased
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [112]

Indomethacin HCT116 colon
cancer cell line

Increased
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [112]

Indomethacin SW480 colon
cancer cell line

Increased
expression of
mRNA encoding
PPARβ/δ

Northern blotting [176]

NS-398 Human fibroblasts Increased
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [177]

Indomethacin Renal carcinoma Increased
expression of
PPARβ/δ

Western blotting [178]

Aspirin Jurkat (human T-
cell lymphoblast-
like cell line)

Increased
expression of
mRNA encoding
PPARβ/δ

Northern blotting [179]

Sulindac sulfide/sulindac sulfone LS174 and Caco2
colon cancer cell
lines

No change in the
expression of
PPARβ/δ

Western blotting [70]

NS-398 MKN28 gastric
cancer cell line

No change in the
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [175]

Indomethacin HCT116 colon
cancer cell line

No change in the
expression of

Northern blotting [176]
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(a) Evidence that PPARβ/δ is down-regulated by NSAIDs

NSAID Specimen Relative expression Method Reference

mRNA encoding
PPARβ/δ

Sulindac APCmin mouse
colon and polyps

No change in the
expression of
PPARβ/δ

Western blotting [72]

Nimesulide Mouse colon No change in the
expression of
mRNA encoding
PPARβ/δ

Quantitative real-time PCR [112]

Sulindac sulfide SW480 and
HCT116 colon
cancer cell lines

No change in the
expression of
mRNA encoding
PPARβ/δ

Northern blotting [50]
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