
QUANTITATIVE CELL MOTILITY FOR IN VITRO WOUND HEALING
USING LEVEL SET-BASED ACTIVE CONTOUR TRACKING

Filiz Bunyak1, Kannappan Palaniappan1, Sumit K. Nath1, Tobias I. Baskin2, and Gang
Dong2
1Department of Computer Science University of Missouri-Columbia MO 65211-2060 USA
2Biology Department University of Massachusetts Amherst MA, 01003 USA

Abstract
Quantifying the behavior of cells individually, and in clusters as part of a population, under a range
of experimental conditions, is a challenging computational task with many biological applications.
We propose a versatile algorithm for segmentation and tracking of multiple motile epithelial cells
during wound healing using time-lapse video. The segmentation part of the proposed method relies
on a level set-based active contour algorithm that robustly handles a large number of cells. The
tracking part relies on a detection-based multiple-object tracking method with delayed decision
enabled by multi-hypothesis testing. The combined method is robust to complex cell behavior
including division and apoptosis, and to imaging artifacts such as illumination changes.

1. INTRODUCTION
Characterizing cell motility, cell deformation, and cell population dynamics are important
parameters of interest in understanding basic biological processes such as growth [1], tissue
repair [2], differentiation, metastatic potential [3], chemotaxis [4], or improving drug
discovery. We focus on analyzing the behavior of single cells and the collective motion of the
cell population, during in vitro wound healing after a scratch. Epithelial cells typically move
together as a continuous sheet due to strong cell-to-cell adhesion. So wound closure is often
quantified in terms of the change in wound gap area over time. However, this large scale
measure of wound closure does not capture the cell layer reorganization that can occur hundreds
of microns behind the wound edge [2,3]. We investigate a combined approach of using level
set-based active contour segmentation followed by multi-hypothesis tracking to accurately
track individual epithelial cells from which cell-level and population-level statistics can be
computed. The proposed algorithm is robust enough, that the epithelial cells imaged in phase
contrast do not need to be marked or labeled in any way. Other advantages include the ability
to track many cases of cell division and some cases of occlusions due to rounding on top of
adjacent neighbors.

2. CELL SEGMENTATION USING ACTIVE CONTOURS
A level set-based active contour algorithm based on the Chan and Vese model [5] was used to
automatically segment all of the cells in each frame of the image sequence. This algorithm
does not require initialization or training and is robust to illumination shifts. A piecewise
constant segmentation of a 2D gray scale image u(y) into two phases is obtained by minimizing
the Mumford-Shah functional in Eq. 1 with respect to the scalar variables c1, c2 and φ; with φ
(y) being the 2D level set function and u(y) being the intensity image.
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(1)

In Eq. 1, c1 and c2 model the gray values of the two phases used to define the segmentation,
with the boundary for the phases described by regularized Heaviside function H(φ) [5]. φ
models the interface separating these two phases. The first two terms in the functional aim at
maximizing the gray value homogeneity of the two phases, while the last term aims at
minimizing the length of the boundary separating these two phases; μ1,μ2 and ν are adjustable

constants associated with this functional. The Euler-Lagrange equation , to evolve the level
set curve is:

(2)

The scalars c1 and c2 are updated at each level set iteration step using Eq. 3 for φ(y) > 0 and φ
(y) < 0, respectively.

(3)

A regularized Heaviside function H2,∈ (φ(y)) is used to obtain a numerically stable Dirac delta
function δ(φ) in Eq. 2 [5]. A suitable stopping criterion (such as a small change in energy, |
φi+1 — φi| < kthresh where φi+1,φi are the level set functions at successive iterations) is used to
terminate the evolving equation.

3. MULTIPLE CELL MOTION ANALYSIS USING GRAPHS
Motion analysis is used; to track cells over time, to compute kinematic parameters (e.g.,
velocity, acceleration etc.,) from trajectories, and to detect events such as cell division and cell
apoptosis. The motion analysis module receives a cell mask from the segmentation module.
Morphological operations (e.g., opening, closing) are applied to this mask to remove small
noisy regions and to refine object boundaries. Connected component analysis is applied to the
refined mask to identify distinct connected foreground regions. For each connected region,
features such as bounding box, centroid, area, and support map are extracted. This information
is arranged as a graph structure. Nodes of this graph represent the objects (cells) and their
features. The correspondence analysis stage searches for potential object matches in frame(t)
to objects in frame(t — 1). The graph is updated by linking nodes corresponding to objects in
frame(t) with nodes of potential corresponding objects in frame(t — 1). The confidence value
for each match is stored with each link. The segment generation module traces links on this
graph to generate cell trajectories.

3.1. Multi-Hypothesis Cell Tracking
Cell tracking is useful to analyze the long term behavior of cells. Tracking is the process of
establishing cell correspondences between consecutive frames. Typically the process involves
a cycle of feature extraction, motion prediction, correspondence (gating, pruning, association),

Bunyak et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2009 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and update. Tracking algorithms typically rely upon feature correspondences or optical flow
fields. However, these are ill-posed problems due to ambiguities arising from multiple matches,
or zero matches. Prediction is used to resolve these ambiguities to some extent by providing a
confidence region within which to search. Commonly used prediction methods include Kalman
filters (and its variants like unscented Kalman filters etc.,) and particle filters [6]. Prediction
is not used in the current version because the trajectories were short, but will be investigated
in a future work. In the proposed system, cell-to-cell matching is done using a three level cell
morphology overlap test. Three distance functions that depend upon size and shape similarity,
and not just proximity, are used.

The proposed matching measures have several advantages over the often used Euclidean
distance measure between object centroids. A particularly important case where the centroid
measure fails is cell division, when epithelial cells often become elongated then split across
the minor axis. This produces a big increase in the centroid distance that may result in
discontinuities in the trajectory. However our overlap distance produces smaller increases and
is more likely to find the right correspondence.

The feature correspondence distance measures developed for cell tracking are defined as:

(4)

(5)

(6)

where,

OA and OB represent distinct connected foreground regions corresponding to cells in two
consecutive frames. Dolp (Eq. 4) measures the degree of overlap between two overlapping cell
masks. Dmsk and Dbbx measure proximity between two non-overlapping masks. Dmsk is a
simplified Hausdorff distance that measures minimum distance between two masks. It is
computed in terms of the minimum number of dilations needed to overlap the two masks. It is
defined in Eq. 5 where δk(msk(objA)) denote foreground mask for objectA dilated k times.
Dbbx (Eq 6) measures the minimum distance between two bounding boxes. It is measured as
the minimum corner to corner distance and is used for computational efficiency. Dmsk is only
computed for cells with overlapping bounding boxes. Dbbx is used to measure proximity only
for those cells with non-overlapping bounding boxes.
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Using these distance measures tracking produces a match matrix Match and a confidence
matrix ConfMatch for each frame(t). Match(i, j) indicates whether the ith object in frame(t)
corresponds to the jth object in frame(t — 1). ConfMatch(i, j) denotes the confidence in Match
(i, j).

The confidence in a match is computed based on both similarity and proximity of the associated
objects, and the availability and quality of other possible matches. Two types of confidence
values are considered: similarity confidence Confsim, and separation confidence Confsep.
Similarity confidence for the matched objects is defined as,

(7)

where MAX_DIST is a user specified parameter. Separation confidence is a measure of how
distinct the match is. It measures the competition between all possible matches for the current
object. Separation confidence is defined as in Eq. 8,

(8)

where

and j* is the closest competitor in terms of distance. This measure favors matches without
competitors, and matches with competitors having higher distances. Total similarity and total
separation confidence values are computed as weighted sums of individual confidence values
for all three distances. Similarity and separation confidence values are further combined into
a single confidence value ConfMatch using a weighted sum.

For the final object to object association, a multi-hypothesis testing approach with delayed
decision is used. Rather than picking a single best match or some subset of these matches with
limited (two frame) information, many possible matches are kept and gradually pruned, as
more information becomes available in the decision process. Besides one-to-one object
matches, this scheme supports many-to-one, one-to-many, many-to-many, one-to-none, or
none-to-one matches that may result from false detections, or false associations, segmentation
errors, occlusion, entering, exiting, or dividing of cells.

3.2. Processing Segments and Forming Trajectories
The segment-extraction module analyzes match information by classifying the cells/objects
into nine types; single, source, source-split, sink, inner, split, sink-merge, merge-split, merge,
based on the number of parent and child objects. Trajectory segments (a linked list of inner
objects starting with a source or split type object and ending with a merge or sink type object)
are identified, and organized in a data structure called SegmentList. Extracted segments are
labeled using a method similar to connected component labeling. Each segment without a
parent is given a new label. Segments having parents inherit the labels of their parents. In case
of multiple parents with inconsistent labels , the smaller label (older trajectory) is kept and a
flag is set indicating the inconsistency. After labeling and pruning, trajectories are formed by
linking segments sharing the same label.
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3.3. Cell Trajectory Filtering
Filtering is performed at various levels of processing. At the image level small objects that
may be due to noise, background clutter, or imaging and segmentation artifacts are removed
by using morphological operators. At the correspondence level, gating eliminates unfeasible
matches with distances above a threshold. At the confidence level, two types of pruning,
absolute and relative, are performed. In absolute pruning, matches whose confidence values
are below an absolute confidence threshold are eliminated from the possible match list. In
relative pruning, first the most probable match (i.e., the match with highest confidence value)
is determined. then matches whose confidences values are below a percentage of the highest
confidence value are eliminated from the possible match list. At the segment level, very short
segments that split from another segment and end unexpectedly or that start unexpectedly and
merge to another segment are pruned. These segments are usually the result of temporal
fragmentation in the segmentation stage.

4. EXPERIMENTAL RESULTS
The proposed approach was tested on a wound healing image sequence that consists of 46
frames of size 220 × 179 (29.33μm×23.86μm) cropped and subsampled from a larger sequence.
The wound healing image sequence was obtained using a monolayer of cultured pig epithelial
cells. The cells were handled by Salaycik et al. as described in [7]. Images were sampled
uniformly over a 9:00:48 hour period and acquired using phase contrast microscopy with a
10× objective lens at a resolution of approximately 0.13μm per pixel.

Some experimental results are shown in Figures 1, 2 and Table 1. Figure 1 shows the
segmentation and tracking results for some selected images. Dividing cells (marked with black
rectangles) are of particular interest in this sequence. Tracking correctly associates the cell
trajectories before and after the division process. Figure 2 shows average velocities and
directions per frame, for all the cells on one side of the wound and separately for those cells
just along the wound margins. The cells on the right start moving faster (3.25 pixels/frame)
compared to the cells on the left of the wound margin (1.5 pixels/frame). Table 1 shows some
segmentation and tracking results compared to manual ground truth; most of the incorrect cell
merges are due to incorrect segmentation around a lipid organelle. This also results in a series
of false trajectory splits. The series of false splits caused by this lipid mass is counted as one
false split in Table 1.

5. CONCLUSION AND FUTURE WORK
We presented a level-set based active contour method for segmentation and a multi-hypothesis
approach for robust tracking of cells. Filtering and pruning at different levels of processing
enables the tracker to eliminate spurious objects and trajectories. Segmentation and tracking
modules do not need initialization or training. The proposed confidence measures enable the
system to delay the decisions until further levels of processing. The proposed approach will be
evaluated with more diverse sequences.
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Fig. 1.
First row: Original frames 13-18. Second row: Segmentation and tracking results for frames
13-18. Third and fourth rows: Original frames 24-29 and results. Trajectories shown in rows
2 and 4 start from the first frame. Color key: yellow - post-processed contours, red - spurious
contours, green - cell masks, blue and purple -trajectories, black - bounding box of the cell
nuclei in the process of cell-division.
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Fig. 2.
Components of average velocity. The four average velocity curves in (a) and (b) : average right
motion (+), wound margin right motion (diamond), average left motion (square), wound margin
left motion (*).
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Table 1
Detection and tracking performances for the wound closure dataset, N: Total nuber of cells/trajectories detected, FP:
False positives, FN: False negatives, IM: Incorrect merges, IS: incorrect splits.

N FP FN IM IS

Cells 2106 24 10 25 1

Traj. 64 0 0 0 2
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