
[15:03 29/6/2009 Bioinformatics-btp285.tex] Page: 1833 1833–1835

BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 14 2009, pages 1833–1835
doi:10.1093/bioinformatics/btp285

Genome analysis

baobabLUNA: the solution space of sorting by reversals
Marília D. V. Braga†

Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS UMR5558; Inria Grenoble Rhône-Alpes, Lyon, France

Received on February 19, 2009; revised on April 21, 2009; accepted on April 22, 2009

Advance Access publication April 28, 2009

Associate Editor: Alex Bateman

ABSTRACT

Summary: Computing the reversal distance and searching for
an optimal sequence of reversals to transform a unichromosomal
genome into another are useful algorithmic tools to analyse real
evolutionary scenarios. Currently, these problems can be solved by
at least two available softwares, the prominent of which are GRAPPA

and GRIMM. However, the number of different optimal sequences is
usually huge and taking only the distance and/or one example is
often insufficient to do a proper analysis. Here, we offer an alternative
and present baobabLUNA, a framework that contains an algorithm
to give a compact representation of the whole space of solutions for
the sorting by reversals problem.
Availability and Implementation: Compiled code implemented
in Java is freely available for download at http://pbil.univ-
lyon1.fr/software/luna/. Documentation with methodological
background, technical aspects, download and setup
instructions, interface description and tutorial are available at
http://pbil.univ-lyon1.fr/software/luna/doc/luna-doc.pdf.
Contact: mdvbraga@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Computing the reversal distance between two unichromosomal
genomes without duplications, insertions and deletions and finding
one optimal sequence of reversals (that is, a sequence with a
minimum number of reversals) that transforms one genome into
the other can be solved in polynomial time, thanks to Hannenhalli
and Pevzner (1999). These two problems have been the topic of
several works, such as Tannier et al. (2007), and their solutions are
valuable tools to analyse evolutionary scenarios. Currently, there are
at least two available softwares to solve these problems. One is the
package GRAPPA and the other is the software GRIMM, described
respectively, in Moret et al. (2001) and Tesler (2002).

Nevertheless, there are many different solutions, with each
solution representing an optimal sequence of reversals that sort
one genome into another, and finding only one is often insufficient.
Exploring the whole set of solutions is thus an interesting strategy
to do a more realistic analysis. The first step in this direction was
the enumeration of all solutions, thanks to an algorithm proposed
by Siepel (2003). However, since the number of solutions is usually
huge, the whole set is very hard to handle and this could be as useless

†Present address: Universität Bielefeld, Technische Fakultät, AG
Genominformatik, Postfach 10 01 31, 33501 Bielefeld, Germany

as finding one of them. Bergeron et al. (2002) then proposed a model
to represent the solutions in a compact way, grouping them into
classes of equivalence. This allows to reduce the set to be handled
and an algorithm to directly enumerate the classes was given by
Braga et al. (2008). The number of non-equivalent solutions can
be still too large, therefore, a method was proposed for filtering
solutions using constraints (Braga, 2009).

In this work, we describe baobabLUNA, a framework that
contains the implementation of the algorithm developed by Braga
et al. (2008) to directly enumerate all the classes of equivalent
solutions and also the further use of biological constraints to filter
the classes.

2 DESCRIPTION

2.1 Permutations, reversals and sorting sequences
Genomes are represented by the list of homologous markers between
them. These markers correspond to the integers 1,2,...,n, with a
plus or minus sign to indicate the strand they lie on. The order and
orientation of the markers of one genome in relation to the other
is represented by a signed permutation π = (π1,π2,...,πn−1,πn) of
size n over {−n,...,−1,1,...,n}, such that, for each value i from
1 to n, either i or −i is mandatorily represented, but not both. The
identity permutation (1,2,3,...,n) is denoted by In.

A subset of numbers ρ ⊆{1,2,...,n−1,n} is said to be an interval
of a permutation π if there exist i,j∈{1,...,n}, 1≤ i≤ j≤n, such
that ρ ={|πi|,|πi+1|,...,|πj−1|,|πj|}. Given a permutation π and
an interval ρ of π , we can apply a reversal on the interval ρ

of π , that is, the operation which reverses the order and flips
the signs of the elements of ρ, that results in the permutation
(π1,...,πi−1,−πj,...,−πi,πj+1,...,πn).

If s=ρ1ρ2 ...ρi is a sequence of reversals for a permutation
π , we say that s sorts π into πT if the result of the consecutive
application of the reversals ρ1, ρ2, …ρi on π is πT . The length
of a shortest sequence sorting π into πT is called the reversal
distance of π and πT , denoted by d(π,πT). Let s=ρ1ρ2 ...ρi be
a sequence of reversals sorting π into πT . If d(π,πT)= i, then s is
said to be an optimal sorting sequence. As an example, the sequence
{1}{2}{4}{1,2,3} sorts (−3,2,1,−4) into I4 and is optimal.

2.2 Main functionalities
2.2.1 Computing traces Given two permutations π and πT , the
enumeration of all solutions (sequences) that sort π into πT can be
done by iterating an algorithm given by Siepel (2003). However, the
number of solutions is huge and the complexity of enumerating all of

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://pbil.univlyon1.fr/software/luna/
http://pbil.univ-lyon1.fr/software/luna/doc/luna-doc.pdf
http://creativecommons.org/licenses/

[15:03 29/6/2009 Bioinformatics-btp285.tex] Page: 1834 1833–1835

M.D.V.Braga

them is O(n2n+3) (Braga, 2009). Bergeron et al. (2002) introduced
a more compact representation of the space of solutions, grouping
them into equivalence classes called traces. All equivalent solutions
in a trace are composed by the same reversals but in different orders.
Observe however that this is not the formal definition of a trace,
which can be obtained in Braga (2009). Braga et al. (2008) later
proposed an algorithm to directly give one representative solution
and the number of solutions in each trace. The complexity of this
algorithm is also exponential in a property of the traces called width
(Braga, 2009), but, as the number of traces is usually much smaller
than the number of solutions, enumerating traces runs considerably
faster.

The framework baobabLUNA contains the implementation of
the algorithm developed by Braga et al. (2008). As a simple
example of the gain represented by this algorithm with respect
to the enumeration of all solutions, the 28 solutions that sort
(−3,2,1,−4) into I4, can be grouped in only two traces, one is
represented by {1}{1,2,3}{2}{4} and has 24 solutions, while the other
is {1,2,4}{3}{1,3,4}{2,3,4} and has 4 solutions. More details on
how the algorithm generates directly the traces and also counts the
number of solutions in each trace can be obtained in Braga (2009).

2.2.2 Filtering traces with constraints Biological constraints can
be used to filter the traces of optimal sequences, as described in
Braga (2009). Besides the two signed permutations π and πT , this
approach requires a list C of compatible constraints for selecting
the sequences that sort π into πT and respect the given constraints.
Frequently, only a subset of the sorting sequences of a trace is in
agreement with the constraints in C, and this subset is called C-
induced subtrace. The result of applying this method is the complete
set of non-empty C-induced subtraces of sequences sorting π into
πT . Generally, we have no guarantee that a sorting sequence that
respects all constraints exists, thus this approach can lead to an empty
result.

One of the considered constraints is the list of common intervals
detected between the two initial permutations, that may correspond
to the clusters of co-localized genes between the considered
genomes—an optimal sequence of reversals that does not break
the common intervals may be more realistic than one that does
break. This approach was previously used in several studies [see for
instance, Diekmann et al. (2007)]. We used the common intervals
initially detected and also a variation of this approach, described
in Braga (2009), that is the list of common intervals progressively
detected when sorting one permutation into another by reversals.

Another constraint implemented in baobabLUNA is called strata
and is specific to the evolution of sexual X and Y chromosomes in
mammals and some other organisms. Although X and Y are usually
very different, they still share an identical region (called ‘pseudo-
autosomal’ region) at one of their extremities and are believed to
have evolved from an identical pair of chromosomes. This process
is at the origin of sexual differentiation: the female XX and the male
XY pairs. Current theories suggest that the pseudo-autosomal region,
which originally covered the whole chromosomes, was successively
pruned by a few big reversals on the Y chromosome (Lahn and Page,
1999). The successive limits of the pseudo-autosomal region on the
X chromosome represent the limits of what have been called the
‘evolutionary strata’ of X chromosome and a sequence of reversals
that could have created the strata on human X chromosome is given
by Ross et al. (2005). The use of the strata as a constraint to filter the

Table 1. Computation results for each pair of permutations (the number of
elements and reversal distance of each pair is given in the first column).

PERMUT. Algorithm NS NT Execution time

πA,I12 enumSol 8 278 540 − � 13.5 min
n=12,d =10 traces 8 278 540 2151 � 27 sec

perfTrcs 1 698 480 12 � 4 sec
prgSubt 453 600 3 � 2 sec

πB,I16 enumSol 505 634 256 − � 16 h
n=16,d =12 traces 505 634 256 21902 � 7.3 min

perfTrcs 122 862 960 171 � 27 sec
prgSubt 5 963 760 6 � 14 sec

Rfe,R2 enumSol 546 840 − � 42 sec
n=12,d =9 traces 546 840 13 � 3 sec

prgSubt 263 088 6 � 2 sec

X,Y enumSol 31 752 − � 5 sec
n=12,d =8 traces 31 752 6 � 1.3 sec

strSubt 420 1 � 0.5 sec

The columns NS and NT give, respectively, the number of sorting sequences and traces
computed by each algorithm. Experiments were made on a 64 bit personal computer
with two 3 GHz CPUs and 2 GB of RAM.

space of solutions of the sorting by reversals problem is described in
Braga et al. (2008) and is used by Lemaitre et al. (2009) to evaluate
the scenario of reversals given by Ross et al. (2005).

2.3 Experiments
In order to evaluate the performance of the algorithm that
computes directly the traces, named traces, we used the
algorithm enumSol that enumerates all solutions. We also tested
the filters perfTrcs, that selects traces whose solutions do
not break common intervals initially detected, prgSubt, which
selects subtraces whose solutions do not break common intervals
progressively detected and strSubt that selects subtraces whose
solutions produce a given strata in the origin permutation.
The analysed permutations are πA = (−12,11,−10,6,13,−5,2,7,8,−9,3,4,1)

and πB = (−12,11,−10,−1,16,−4,−3,15,−14,9,−8,−7,−2,−13,5,−6) (both
fictitious), Rfe= (1,3,−2,−11,5,−9,−10,8,6,−7,−4,12) and R2= I12 [the
bacterium Rickettsia felis and its ancestor R2, reconstructed in Blanc
et al. (2007)], X = I12 and Y = (−12,11,−2,−1,−10,−9,8,−5,7,6,−4,3),
[human X and Y chromosomes, as the scenario proposed in Ross
et al. (2005)]. The results are in Table 1 and show that computing
traces directly indeed runs much faster than computing solutions.
Moreover, the variants that take constraints in consideration usually
run faster than computing all traces. Additional analyses and
experimental results can be found in Braga (2009).

2.4 Download, setup and tutorial
Download and setup instructions, interface description and
tutorial for computing traces (including the versions that take
constraints in consideration) are available in http://pbil.univ-
lyon1.fr/software/luna.

3 FINAL REMARKS
The framework baobabLUNA contains the implementation of a
method proposed by Braga et al. (2008), that gives a compact

1834

http://pbil.univlyon1.fr/software/luna

[15:03 29/6/2009 Bioinformatics-btp285.tex] Page: 1835 1833–1835

baobabLuna

representation of the solution space of the sorting by reversals
problem, grouping solutions into traces. This is an interesting
alternative to most of the previous methods that give either only one
or all solutions, and are provided by tools such as GRIMM (Tesler,
2002) and GRAPPA (Moret et al., 2001). However, although the
number of traces is much smaller than the number of solutions,
it may be still too big to be interpreted, and in some cases, too
big to be computed. Indeed, currently we are unable to compute
traces for permutations with a reversal distance of about 20 or
higher.

Different biological constraints can be used to filter the traces
and reduce the universe to be handled. Nevertheless, there is no
guarantee that a solution that respects the given constraints exists,
thus this approach may lead to empty results.

ACKNOWLEDGEMENTS
The author is grateful to Marie-France Sagot and Christian Gautier
for their constructive comments and to the Pôle Bioinformatique
Lyonnais (PBIL) for hosting baobabLUNA web site.

Funding: Programme Alβan (E05D053131BR); French projects
ANR (REGLIS NT05-3_45205 and MIRI BLAN08-1_335497);
INRIA ArcoIris (associated with the University of São Paulo,
Brazil); Rhône-Alpes Bioinformatics Center (PRABI).

Conflict of Interest: none declared.

REFERENCES
Bergeron,A. et al. (2002) On the properties of sequences of reversals that sort a signed

permutation. In Journées Ouvertes en Biologie, Informatique et Mathématiques
2002, Saint Malo, France, pp. 99–108.

Blanc,G. et al. (2007) Reductive genome evolution from the mother of Rickettsia. PLoS
Genet., 3, 103–114.

Braga,M.D.V. (2009) Exploring the Solution Space of Sorting by Reversals When
Analyzing Genome Rearrangements, PhD Thesis, Université Lyon 1, France.

Braga,M.D.V. et al. (2008) Exploring the solution space of sorting by reversals with
experiments and an application to evolution. Trans. Comput. Biol. Bioinform., 5,
348–356.

Diekmann,Y. et al. (2007) Evolution under reversals: parsimony and conservation of
common intervals. Trans. Comput. Biol. Bioinform., 4, 301–309.

Hannenhalli,S. and Pevzner,P. (1999) Transforming cabbage into turnip (polyn.
algorithm for sorting signed permutations by reversals). J. ACM, 46, 1–27.

Lahn,B.T. and Page,D.C. (1999) Four evolutionary strata on the human X chromosome.
Science, 286, 964–967.

Lemaitre,C. et al. (2009) Footprints of inversions at present and past pseudoautosomal
boundaries in human sex chromosomes. Genome Biol. Evol. [Epub ahead of print,
doi:10.1093/gbe/evp006, April 30, 2009].

Moret,B.M.E et al. (2001) A new implementation and detailed study of breakpoint
analysis. Proceedings of the 6th Pacific Symposium on Biocomputing, Big Island,
Hawaii, pp. 583–594.

Ross,M.T. et al. (2005) The DNA sequence of the human X chromosome. Nature, 434,
325–337.

Siepel,A. (2003) An algorithm to enumerate sorting reversals for signed permutations.
J. Comput. Biol., 10, 575–597.

Tannier,E. et al. (2007) Advances on sorting by reversals. Discrete Appl. Math., 155,
881–888.

Tesler,G. (2002) GRIMM: genome rearrangements web server. Bioinformatics, 18,
492–493.

1835

