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ABSTRACT

Motivation: A limitation of current methods used to declare
significance in genome-wide association studies (GWAS) is that they
do not provide clear information about the probability that GWAS
findings are true of false. This lack of information increases the
chance of false discoveries and may result in real effects being
missed.
Results: We propose a method to estimate the posterior probability
that a marker has (no) effect given its test statistic value, also called
the local false discovery rate (FDR), in the GWAS. A critical step
involves the estimation the parameters of the distribution of the
true alternative tests. For this, we derived and implemented the
real maximum likelihood function, which turned out to provide us
with significantly more accurate estimates than the widely used
mixture model likelihood. Actual GWAS data are used to illustrate
properties of the posterior probability estimates empirically. In
addition to evaluating individual markers, a variety of applications
are conceivable. For instance, posterior probability estimates can be
used to control the FDR more precisely than Benjamini–Hochberg
procedure.
Availability: The codes are freely downloadable from the web site
http://www.people.vcu.edu/~jbukszar.
Contact: jbukszar@vcu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In genome-wide association studies (GWAS) it is important to assess
as accurately as possible whether findings are likely to be true or
false. Erroneous conclusions would result in either false discoveries
or false non-discoveries. Avoiding false discoveries is important to
prevent the waste of time and resources spent on GWAS leads that
will eventually prove irrelevant for the outcome of interest. False
non-discoveries are undesirable because of the missed opportunity
to detect genetic variants that do affect disease susceptibility
and eventually could, for example, improve the management and
treatment of the disease.

Although only a comprehensive set of follow up studies (e.g.
replication, functional and animal studies) can establish decisively
whether or not individual marker disease associations are real
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findings, GWAS are potentially very informative. A problem is
that current statistical methods are limited in their ability to use
this information to provide the critical initial assessment about the
probability that GWAS findings are true or false. For example,
setting a genome-wide significance threshold that accounts for the
number of tests that are performed does not provide any assurance
that the associations found to be significant are genuine (Zaykin
and Zhivotovsky, 2005). This is because the probability that the
significant marker is real does not only depend on the chance of
being a false discovery, but also on the statistical power to detect
true associations. More precisely, if the statistical power is higher
then significant markers are more likely to be true. This is the reason
why significant findings obtained from a large GWAS study, or
meta analysis of several large studies, are more likely to be true.
The problem is that this information is not available from standard
methods testing for genome-wide significance. Conversely, it may
also be the case that markers not reaching genome-wide significance
have real effects. If statistical power is modest, markers with real
effects may not even be among the top findings. In these scenarios,
following up just the top findings is problematic as the markers with
real effects would be excluded from further consideration. Clearly,
regardless of whether or not they reach genome-wide significance,
knowledge about the probability that individual markers have real
effects would be of considerable value to better evaluate GWAS
findings and inform follow up studies.

For assessing the probability that GWAS findings are true or
false, false discovery rate (FDR)-based methods (Benjamini and
Hochberg, 1995, 2000; Storey and Tibshirani, 2003; Storey et al.,
2004; Storey, 2002, 2003) offer some advantages over the commonly
used multiple testing methods that correct for multiple testing to
control false discoveries (e.g. Bonferroni correction). For example,
controlling the FDR at the 0.1 level would ensure that on average
10% of all significant findings can be expected to be false or 90% of
all significant findings are expected to be true. At least for the group
of significant markers as a whole, FDR methods do provide insight
into the expected proportion of false/true discoveries. However, the
FDR essentially averages the probabilities that individual markers
are false discoveries across the whole group of significant markers.
Therefore, it does not provide marker-specific information (Finner
and Roters, 2001; Glonek and Soloman, 2003). One consequence of
this averaging is that a marker with very high probability of being a
false discovery may still be significant with a low-FDR level because
it is tested simultaneously with unrelated markers that do have very
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low probabilities of being a false positive. Glonek et al. (Glonek
and Soloman, 2003), for example, give a numerical example where
a marker has a 90% chance of being a false discovery, but is still
significant at an FDR level of 0.1.

So-called q-values are FDRs calculated by using the p-value of the
markers as the threshold for declaring significance (Black, 2004).
At first sight, q-values do seem to provide some marker-specific
evidence of being a false discovery. This is because each marker has
a specific q-value. However, q-values are also subject to limitations
arising from averaging probabilities of being a false discovery
across the entire region, and can therefore not be interpreted as the
probability of that marker being a false discovery. For example, the
smallest q-value estimates the average probability of all hypothetical
markers in the entire rejection region, which is the region where
test statistic values are larger than the one of the marker with the
smallest q-value. Having the smallest test statistic of all hypothetical
markers in the entire rejection region, the marker with the smallest
q-value itself has the highest probability of being a false discovery
in the whole rejection region. Thus, the probability of the most
significant marker being a false discovery will always be higher than
the q-value, rendering a marker-specific interpretation problematic.

To more accurately assess whether GWAS markers have true
effects and to improve marker selection for follow up studies under a
wide variety of possible strategies, we need to estimate the posterior
probability that a particular marker has a certain effect given its
test statistic value in a GWAS. In contrast to conventional multiple
testing methods that determine significance or non-significance
without having a clear sense of significant markers having a real
effect and non-significant markers not having real effects, posterior
probabilities provide a more subtle picture and allow more informed
decisions about which markers to follow up. Furthermore, because
posterior probabilities condition on the observed test statistic value
rather than on a whole rejection region, they do not suffer from the
above discussed ‘averaging’ effect of the FDR and q-values.

The specific posterior probability that the effect is zero is also
known as the local FDR (�FDR) (Efron et al., 2001). The �FDR
is a fairly commonly applied tool in expression array research,
where they are usually estimated using non-parametric techniques
(Aubert et al., 2004; Dalmasso et al., 2005, 2007; Liao et al., 2004;
Ploner et al., 2006; Scheid and Spang, 2004). However, these non-
parametric �FDR estimates tend to have large standard errors and
be imprecise (Aubert et al., 2004; Dalmasso et al., 2007; Liao et al.,
2004). The reason is that we need to estimate the mixture of the two
densities, i.e. the null ( f0) and alternative ( fε) densities, which is
typically done by creating discrete bins across the possible values of
the test statistic in the non-parametric case. To remedy the precision
problem, some parametric �FDR estimators have been designed
for analyzing expression array data (Allison et al., 2002; Pounds
and Morris, 2003). However, these parametric approaches use an
approximation of the test statistic distribution under the alternative
that, to the best of our knowledge, is never used in the context of
GWAS (e.g. a special case of the beta distribution). More typically,
one would use Pearson’s statistic or (logistic) regression analyses
in GWAS, where the test statistic distribution is approximated by
(non-central) chi-square, F or normal distributions. Furthermore, in
GWAS, we typically have a large number (>=500 000) of markers
and only few of them have real effects.

In this article, we develop a precise method for estimating the
�FDR. Our estimator takes advantage of the facts that in GWAS, we

often have good parametric approximations of the density functions
for most tests performed and that the number of markers with
effects is likely to be small. Furthermore, a first and critical step
of our method is to estimate the (non-centrality) parameters of the
densities under the alternative. Instead of the widely used mixture
model likelihood function that is a rough approximation, we used the
real maximum likelihood function to avoid a loss of precision. Our
approach is tested through simulations and illustrated with empirical
GWAS data.

2 METHODS

2.1 The concept of effect size and detectability
First, we need to clarify what we mean by effect. We mean a marker has a
real effect in a statistical sense that is we say that a marker has real effect if
the probability of the occurrence of the alleles at the marker locus is different
for affected and unaffected individuals. Note that this is not exactly the same
as ‘causal’ in a biological sense. That is not only the causal markers, but also
the markers in strong LD with a causal marker may/will have real effects.
For instance, a marker that tags a true association due to close proximity
to a causal marker will have a real effect. Further examples of statistical
effects may be due to technical errors or population stratification. Note that
no statistical method can distinguish between the different type of effects.

In what follows we will deal with test statistics whose distribution
or approximating distribution under the alternative depends on a single
parameter only, which we call effect size. Note that the alternative
distribution also depends on the sample size, which is, however, a known
parameter, therefore we do not need to estimate it. For instance, for
case–control allele-based studies, Pearson’s statistic under the alternative
hypothesis is frequently approximated by the non-central distribution with
non-centrality parameter nθ2, where n is the sample size and θ is the effect
size. In practice, we actually estimate this non-centrality parameter, from
which the effect size can be readily calculated. Therefore, we shall refer to
the square root of non-centrality parameter under the alternative hypothesis
as detectability. The rationale of taking the square root is that the detectability
is linearly proportional to the effect size (twice as big effect size has twice as
big detectability, in the same study). In general, the detectability is defined
as the product of the root of the sample size and the (suitably chosen) single
parameter of the alternative distribution.

2.2 The underlying problem
Suppose m hypothesis tests are performed with statistics T1,...,Tm. Exactly
m0 of the m statistics follow the null distribution and the rest of them m1 =
m −m0 follow the alternative distribution whose density function is known,
but depends on only a single unknown parameter, called effect size that may
vary across the alternative hypotheses.

2.3 Parametric estimator of the �FDR
2.3.1 Estimating individual detectabilities For estimating the posterior
probability that a marker has zero detectability, we will utilize our individual
detectability estimates (Supplementary Material), which we outline first. We
initially estimate the average detectability �. To estimate �, for now we
make the crude assumption that all individual detectabilities are identical, and
use the ML method to estimate it. The likelihood function on the test statistic
values t1,...,tm, assuming equal detectabilities � for all true alternative
hypotheses, can be obtained in the following way. Let Hi =0 when null
hypothesis i is true, and Hi =1 otherwise. Note that vector H =(H1,...,Hm

)
has m0 = 0 and m1 = 1 components. We assume that H =(H1,...,Hm

)
is a

random variable whose possible outcomes, the 0−1 vectors of length m

with exactly m1 1’s, are taken with the same probability,
( m

m1

)−1
. Note

that H1,...,Hm are not independent. Denote the distribution function of Ti

by F� (F0) when Hi =1 (Hi =0), where we assume the same �, average
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detectability, for all alternatives. The likelihood function on the test statistic
values t1,...,tm has the form

L
(
m1,�

)= 1( m
m1

)∑
H

fH1·�
(
t1
)
...fHm ·�

(
tm
)

(1)

= 1( m
m1

) ( m∏
i=1

f0
(
ti
)) ∑

{
i1,...,im1

}⊆{1,...,m}

f�(ti1 )

f0(ti1 )
...

f�(tim1
)

f0(tim1
)
,

where the sum in the upper line is on all possible outcomes of random
variable H , f� denotes the alternative density function with detectability �

and f0 denotes the null density function. Due to the enormous number of
terms in the sum in (1), the likelihood function cannot be evaluated directly.
We, therefore, developed a method based on recursive series that computes
L
(
m1,�

)
. To implement the method, we needed to use a series of techniques

to tackle numerical computational issues (Supplementary Material). The R
codes (R Development Core Team, 2008) are freely downloadable from the
web site http://www.people.vcu.edu/∼jbukszar.

The maximum likelihood estimate of � in (1) conditional on m1,
turned out to be a remarkably precise estimator of the average of the
highest m1 detectabilities (Supplementary Material). Intuitively speaking,
the detectability estimator conditioned on m1 does not see the detectabilities
smaller than the highest m1 ones. This enables us to compute individual
detectability estimators by using

ε̂k =k�̂k −(k−1
)
�̂k−1 (2)

recursively for k =1,2,..., where �̂k denotes the value that maximizes the
likelihood function L

(
m1,� | m1 =k

)
in (1) at �.

We also need a stopping rule that provides us with the value of the highest
k where the recursion given in (2) stops. Denote this value of k as K . We
suggest to stop at K = m̂1 +1, where m̂1 is either our conservative estimator
(with fine-tuning parameter 1) (Supplementary Material) or Meinshausen–
Rice estimator (with linear bounding function and fine-tuning parameter 0.5)
of the number of individual detectabilities (Meinshausen and Rice, 2006).
As shown in Section 3.1, our estimator of �FDR will be upward biased
(conservative) when stopping rule K = m̂1 +1 is applied.

It is interesting to remark that if the widely used mixture model log-
likelihood function

�
(
m1,�

)= m∑
i=1

log
{
m0 f0

(
ti
)+m1f�

(
ti
)}

is used instead of the real one (1), then (2) will provide poor individual
detectability estimates, which in addition, worsen when the sample size
is increased. In particular, the ML method based on the mixture model
likelihood function provides almost equal ‘average detectability estimates’
for different values of m1 especially when the sample size is high
(Supplementary Material). In the mixture model, H1,...,Hm are independent
Bernoulli random variables with Pr

(
Hi =0

)=m0/m and Pr
(
Hi =1

)=m1/m.
As a result, in the mixture model, the number of true alternatives is a
random variable that follows binomial distribution b

(
m1/m;m

)
, whereas

in our model the number of true alternatives is a constant. The rationale in
our model is that in an experiment the number of true alternatives is truly a
constant albeit unknown.

2.3.2 The �FDR estimate By utilizing our individual detectability
estimates ε̂1,...,̂εK , we obtain an estimate of �FDR for a certain hypothesis
(marker) as

̂�FDR= P̂r (H0 |T = t )= p̂0 f0 (t )

p̂0 f0 (t )+ 1
m

K∑
i=1

f̂εi (t )

, (3)

where t is the test statistic value of the hypothesis, p̂0 =1−K/m, and K is
determined by the stopping rule. The exact value of �FDR is obtained by
replacing p̂0 with p0 =1−m1/m and the individual detectability estimates
with the real individual detectabilities in (3).

2.4 FDR
The frequently used approach to estimate q-values is based on the estimate
of Pr

(
T ≥ t

)
, i.e. the denominator in the exact q-value formula, by the

corresponding empirical distribution function and some smoothing (Storey,
2002). In principle, a similar approach could be used to estimate �FDR, i.e.
we could estimate the density function in the denominator in the formula
that calculates the exact �FDR. However, approximating a density function
by its empirical version is known to be inaccurate. Therefore, we use our
individual detectability estimates instead, which provide us with an accurate
estimate.

Note that we can estimate a q-value (Storey, 2002) in a similar fashion.
The q-value of the observed test statistic value t is

q (t )= inf
r≤t

pFDR (r )= p0 (1−F0 (t ) )

p0 (1−F0 (t ) )+ 1
m

m1∑
i=1

(1−Fεi (t ) )
, (4)

where ε1,...,εm1 are the actual detectabilities. The reason why we can
omit ‘inf’ is that the right-hand side in (5) is an increasing function of t
when Gε ( p )/p≥gε ( p ), where Gε ( p ) (gε ( p )) is the distribution (density)
function of p-value with detectability ε. It is reasonable to assume that
Gε ( p )≥p, that is a p-value of an alternative hypothesis is more likely to fall
in [0,p] than that of a null hypothesis. Then the condition Gε ( p )/p≥gε ( p )
typically holds, e.g. when Gε ( p ) is concave [see (Storey, 2002) for further
details]. By plugging our individual detectability estimates ε̂1,freedom,̂εK

and p̂0 =1−K/m into (5), we obtain a full parametric q-value estimate

q̂iesb (t )= p̂0 (1−F0 (t ) )

p̂0 (1−F0 (t ) )+ 1
m

K∑
i=1

(1−F̂εi (t ) )

. (5)

Here, we can omit ‘inf’ for the same reason mentioned above. Note that
the full parametric q-value estimate in (5) does not require smoothing. The
smoothing results in equal q-value estimates that correspond to (sometimes
quite many) consecutive p-values, although the real q-values corresponding
to different p-values (often substantially) differ from each other.

3 RESULTS

3.1 Simulation results
In all simulations, test statistic values of true null hypotheses will
be drawn from a central chi-squared distribution with 1 degree
of freedom (d.f. 1). Alternative test statistic values will be drawn
from a non-central χ2-distribution with d.f. 1 whose non-centrality
parameter is the square of the detectability. For instance, this may
be the approximating distribution for Pearson’s statistic in allele-
based case–control studies. Note that using a χ2-distribution is not
critical here as our estimator would work equally well with other
test statistic distributions.

In each simulation, we calculate the maximum difference (MD)
between the function that assigns the true �FDR and the function
that assigns the estimated �FDR to test statistic values. Note that
the MD of a simulation represents the worst-case scenario as this is
the maximum error that can occur between the real and estimated
�FDR of a test statistic value. To show the direction of deviation
of the estimated �FDR from the real one, we assign a negative sign
to MD if the estimated �FDR is smaller than the real one at the
point where the MD is taken. If the MD is positive, then the �FDR
estimate is typically higher than the real �FDR in the entire region.
Conversely, if the MD is negative then the �FDR estimate is typically
lower than the real �FDR in the entire region.

In Figure 1, we plotted the true �FDRs (continuous line) and
estimated �FDRs (dashed line) versus the −log10 p-values. The log
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Fig. 1. The true �FDR (continuous line) and estimated �FDR (dashed lines)
versus the −log10 p-values are plotted. Each of the nine dashed lines is the
estimated �FDR curve of one of the nine simulations selected from 500. The
selected simulations were those whose MDs are the deciles of the MDs in
the 500 simulations.

scale is used to ‘zoom in’ on the smaller p-values, which are
more likely to represent markers related to the phenotype of
interest. The log scale with basis 10 is also typically used for
GWAS QQ plots. To create Figure 1, we used 500 replicates. For
each replicate, we simulated 100 000 test statistic values, 10 of
which had detectabilities equidistantly chosen from interval [4, 6],
thus the detectabilities were 4.00, 4.22, 4.44, …, 5.78, 6.00. The
estimated �FDRs were from the nine simulations whose MDs are
the 10-quantiles in the 500 MDs. Figure 1 shows that our �FDR
estimator is conservative in this condition, i.e. it overestimates �FDR
suggesting a somewhat higher probability of a false positive, which
is typical when the detectabilities are not high. The upward bias of
our �FDR estimator is also reflected by the fact that the mean of the
500 MDs is positive, in particular it is 0.1. The ninth 10-percentile of
the MDs is 0.199, which is the MD between the upper most dashed
line and the solid line in the figure. Note that the difference between
these two lines is typically <0.199, and even the MD was �0.199 in
90% of the 500 replicates. This means that in 90% of the cases, the
MD between the real and estimated �FDR is <0.199, and typically
much less even in these cases because the MD represents the worst-
case scenario in every simulation. The 10-percentiles of MDs were
0.024 0.047 0.063 0.085 0.099 0.119 0.138 0.162 0.199.

In Table 1, we examine the performance of our �FDR estimator
through MDs for different number, range and distribution of positive
detectabilities. In our baseline condition, the detectabilities are in the
range 4.0–6.0. For instance, if in an allele-based case–control study
we have 1000 cases and 1000 controls, then a marker with minor
allele frequency 0.35 and odds ratio 1.3 (1.48) has detectability 4 (6).
We examine three different type of distribution of detectabilities
within a range. They are either equidistantly distributed (Equid) in
the range when we have five detectabilities in the baseline condition,
or concentrated to the endpoints (Conc Endp) of the range, i.e.
half of them take one endpoint and the other half take the other
endpoint. If we have an odd number of Conc Endp distributed

Table 1. Mean, SD and the estimated radius (Conf) of zero-centered 90%
confidence interval (90% CI) of the MDs between the real and estimated
�FDR curves for different range, number and distribution of detectabilities
(the number of markers was 100 000)

Equid ConcEndp

Range #dets Mean SD Conf Mean SD Conf

3.2–4.8 5 0.207 0.26 0.599 0.149 0.23 0.335
10 0.199 0.11 0.324 0.153 0.12 0.249
20 0.225 0.07 0.314 0.184 0.07 0.267

4.0–6.0 5 0.060 0.11 0.188 0.029 0.09 0.137
10 0.102 0.07 0.200 0.070 0.07 0.159
20 0.126 0.06 0.207 0.123 0.05 0.190

4.8–7.2 5 −0.042 0.10 0.176 −0.022 0.10 0.169
10 −0.008 0.08 0.136 0.055 0.09 0.194
20 0.006 0.06 0.098 0.088 0.06 0.164

#dets = number of positive detectabilities.

positive detectabilities, then one of them equals the mean of the
endpoints. For instance, five detectabilities in the range 4.0–6.0 can
either take (4.0,4.5,5.0,5.5,6.0) or (4.0,4.0,5.0,6.0,6.0), which are
Equid, and Conc Endp, respectively. We also examine scenarios
where the baseline range, 4.0–6.0 is reduced to 80% (3.2–4.8) or
increased to 120% (4.8–7.2). Note that the individual detectabilities
are also reduced or increased by the given amount due to the specific
patterns. In practice, the reduction to 80% of the detectabilities
may mean reduction of the sample size to 64% while keeping the
individual detectabilities the same. Conversely, the increase to 120%
of the detectabilities may mean increase of the sample size to 144%.
Finally, we vary the number of positive detectabilities, which may
take 5, 10 or 20 in each condition. In order to provide better insight
into the accuracy of the estimator, besides the mean and SD of the
MDs, we also indicated the estimated radius of the zero-centered
90% CI of the MDs in the tables. Clearly, the radius of the CI is
affected both by the mean and the SD of the MDs.

The predominance of the positive mean MDs in Table 1 indicates
the upward (conservative) bias of the �FDR estimator, i.e. it
overestimates the �FDR. In particular, the mean of the MDs is higher
for the lower range of positive detectabilities. Although, in most
cases the mean of the MDs goes up slightly as the number of positive
detectabilities gets larger, the mean of the MDs is mainly dependent
on the range of the positive detectabilities. The mean of the MDs
noticeably differs across the types of distributions of detectabilities
when the range of the detectabilities is low (3.2−4.8). However, this
difference becomes marginal for the higher range of detectabilities.
Table 1 shows that the higher the number and the size of the positive
detectabilities, the less the SD of the MDs. Moreover, the type of
the distribution of the detectabilities has no substantial influence on
the SD.

In Table 2, we increased the number of markers from 100 000
to 400 000, and kept all other conditions the same. Although, the
proportion of positive detectabilities in the total set of markers is
much smaller now, the estimator performed only slightly worse than
for the same conditions in Table 1, indicated by the radius of the
confidence interval. The exceptions are the lower range (3.2–4.8)
and low number (5 or 10) of detectabilities.
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Table 2. Mean, SD and the estimated radius (Conf) of zero-centered 90%
CI of the MDs between the real and estimated �FDR curves for different
range, number and distribution of detectabilities (the number of markers
was 400 000)

Equid ConcEndp

Range #dets Mean SD Conf Mean SD Conf

3.2–4.8 5 0.256 0.33 0.965 0.231 0.32 0.927
10 0.238 0.18 0.402 0.188 0.14 0.324
20 0.246 0.08 0.350 0.210 0.07 0.299

4.0–6.0 5 0.091 0.12 0.211 0.062 0.11 0.182
10 0.131 0.08 0.233 0.092 0.08 0.182
20 0.158 0.06 0.240 0.132 0.06 0.210

4.8–7.2 5 −0.006 0.09 0.149 0.005 0.10 0.158
10 0.032 0.08 0.138 0.072 0.08 0.177
20 0.050 0.06 0.118 0.118 0.07 0.208

#dets = number of positive detectabilities.

In Table 3, we studied the performance of the �FDR estimator
in the context of substantial correlation or linkage disequilibrium
between the markers. The generated test statistic values were in LD
within one block and uncorrelated between two different blocks.
The blocks were equal in size, either 5 or 10. We simply used the
correlation coefficient (square root of the r-squared, a frequently
used measure of LD) with within-block correlation also equal, either
0.5, or 0.75 or 0.9. The other conditions were our (uncorrelated)
baseline, which is also indicated in the first row of the table. The
mean MD slightly changes across the different correlation structures,
meaning that higher correlation results in a marginally higher bias.
As one might expect, the higher the within-block correlation or the
size of the block, the higher the SD. The changes in the mean and
SD of the MDs are also reflected in the greater radius of the CI,
although this change is not dramatic even in the extreme condition
(within-block correlation 0.9, block size 10).

In summary, the accuracy of the �FDR estimator is mainly
dependent on the range and the number of the positive detectabilities.
It only slightly depends on the total number of markers or on how
the positive detectabilities are distributed, except for lower ranges of
positive detectabilities, where the estimator is not precise anyway.
The correlation structure has some but by no means dramatic
influence on the performance of the �FDR estimator. We come to the
same conclusion if median (MeD) rather than MD between the real
and estimated �FDR curve is used (see Section 4 in Supplementary
Material). However, the mean, SD and the estimated radius of zero-
centered 90% CI of MeDs is substantially, often with an order of
magnitude, less than that of the MDs.

The running time of the �FDR estimator ranged 1–4 min and
10–50 s when R code and C++ code was used, respectively, on a
desktop computer with 2.4 GHz dual core processor and 2.00 GB
RAM for numerical examples with 400 000 hypotheses/markers,
where 10 of them were true alternatives. The running time mainly
depends on these two factors.

3.2 Application to GWAS for neuroticism
We will illustrate our method on GWAS data for Neuroticism
which are available from the NIMH Genetics repository.

Table 3. Mean, SD and the estimated radius (Conf) of zero-centered 90%
CI of the MDs between the real and estimated �FDR curves for different
correlation structures and number of detectabilities

Five dets 20 dets

bs cor Mean SD Conf Mean SD Conf

0 0 0.060 0.11 0.188 0.126 0.06 0.207

5 0.5 0.080 0.15 0.202 0.130 0.07 0.230
0.75 0.103 0.21 0.247 0.136 0.09 0.260
0.9 0.107 0.24 0.266 0.137 0.10 0.280

10 0.5 0.076 0.14 0.220 0.131 0.08 0.238
0.75 0.099 0.22 0.259 0.137 0.12 0.278
0.9 0.108 0.27 0.320 0.141 0.15 0.329

The number of markers was 100 000, moreover, 5, 10 or 20 of them had real
detectabilities equidistantly chosen from [4.0,6.0] including the limits of the interval.
dets = detectabilities, bs = block size, cor = block correlation.

Neuroticism, a personality trait reflecting a tendency towards
negative mood states (Costa and McCrae, 1980), is a risk factor
for psychiatric conditions such as anxiety and depression (Brandes
and Bienvenu, 2006; Widiger and Trull, 1992). Details of this
study can be found elsewhere (van den Oord et al., 2008). In
short, the GWAS sample consisted of healthy subjects ascertained
from a US national sampling frame. The genotype data were
generated at the Center for Genotyping & Analysis at the Broad
Institute of Harvard and MIT. The Affymetrix 500K ‘A’ chipset
(www.affymetrix.com/support/technical/datasheets/500k_datasheet.
pdf) was used and genotypes were called using the Affymetrix
BRLMM algorithm. Quality control (QC) analyses resulted in the
exclusion of samples (e.g. samples achieving a Single Nucleotide
Polymorphism (SNP) call rate of <95% and individuals with
unusual degrees of relatedness or heterozygosity) and SNPs (e.g.
we excluded SNPs with >10% missing genotypes, minor allele
frequencies <0.005, showing extreme deviations from Hardy–
Weinberg Equilibrium and SNPs on the sex chromosomes). After
QC, a sample of 1227 subjects genotyped for 420 287 SNPs
remained. Regression analyses were used to test whether individual
SNPs were associated with neuroticism, where covariates were
included to regress out the effects of ancestral background.

According to Meinshausen–Rice’s p0 estimator with fine-tuning
parameter α=0.5, the number of positive effects/detectabilities is
6.48. Following our rule K = m̂1 +1, we, therefore, stop estimating
effects at K =7.

Table 4 shows that the �FDR estimate of the marker with the
highest test statistic value is 0.508, meaning that the probability that
this marker has no effect given its test statistic value is ∼0.508.
The q-value estimate that corresponds to this marker is 0.257
according to Storey’s estimator. Note that this q-value estimate is
considerably lower than the �FDR estimate of 0.508. An explanation
is that the smallest q-value is the average probability (=FDR) of
all hypothetical markers in the entire rejection region and that
the probability of being a false positive is always higher for the
marker with the largest test statistic. Also note that Storey’s q-value
estimates are the same for all eight markers. This is the result of
the estimation procedure that forces estimated q-values to be equal
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Table 4. �FDR and q-value estimates of the eight markers with the highest
test statistic value in neuroticism data

CHR ID∗ SNP ID �FDR est. STO FPQ

1 14 rs2416009 0.508 0.257 0.212
2 14 rs12883384 0.536 0.257 0.229
3 14 rs1959813 0.539 0.257 0.231
4 14 rs7151262 0.566 0.257 0.249
5 8 rs2936594 0.600 0.257 0.274
6 8 rs1877332 0.647 0.257 0.311
7 7 rs17773605 0.754 0.257 0.417
8 10 rs7080041 0.805 0.257 0.483

The q-values were calculated by Storey’s method as well as by the full parametric
q-value estimate. STO = Storey’s q-value estimate, FPQ = full parametric q-value
estimate.
∗CHR ID=chromosome ID

or smaller for decreasing p-values. In contrast, the full parametric
q-value estimator in (5) does not have that property.

4 DISCUSSION
A limitation shared by multiple methods used to declare significance
in GWAS is that they do not provide clear information about the
probability that GWAS findings are true or false. This lack of
information increases the chance of false discoveries and may result
in real effects being missed. To better evaluate GWAS findings and
improve the subsequent selection of markers for further studies,
we propose a method to estimate the posterior probability that a
marker has (no) effect given its test statistic value, also called
�FDR, in the GWAS. Such posterior probabilities are notoriously
difficult to estimate precisely. The estimator proposed in this article
remedies this precision problem by taking advantage of the facts
that in GWAS good approximations of the test statistic distribution
often exist and that the number of markers with effects is likely
to be small. At the heart of our method is the estimation of the
(detectability) parameters of the densities under the alternative for
which we use the real maximum likelihood function rather than the
mixture model maximum likelihood function. Simulations show that
our estimator provides accurate �FDR estimates. This accuracy is
mainly dependent on the size, range and the number of detectability
parameters. The LD between the SNPs has some, but much more
modest, influence on the precision of the estimates. GWAS data
are used to illustrate differences of �FDR versus traditional FDR
methods empirically.

A first step in our method is to estimate the individual detectability
parameters of the densities under the alternative distributions. The
detectability parameter equals the square root of the sample size
times the effect size of the marker. The detectability estimates are
then used in the second step to calculate the �FDR estimates. It
is important to stress that our detectability estimates are obtained
using information from the entire set of tested markers and not
just those markers that are declared significant. Therefore, unlike
existing approaches that estimate the effect sizes of only the
significant markers in the same sample that has been used for testing,
our detectability estimator cannot suffer from the upward bias
associated with this approach (Goring et al., 2001; Ioannidis et al.,
2001).Furthermore, no assumptions are made about the distribution
of the individual detectabilities. This is important because it will

be almost impossible to justify parametric assumptions about this
distribution in genetic association studies.

Our proposed method for estimating �FDR can be used in all
scenarios where the distribution under the alternative hypotheses
can be characterized by a single value. This is the case for the
vast majority of tests performed in statistical genetics. For example,
categorical tests, quantitative tests, case–control tests and tests used
in the context of family based designs typically have either a non-
central χ2 or non-central F-distributions under the alternative that
depend on a single parameter only. In addition, statistics used to test
for interactions or more complex models also typically have single
value approximations under the alternative (e.g. Wald test for the
significance of the interaction effect or likelihood ratio tests obtained
by fitting multiple/logistic regression models with and without the
interaction effects). Thus, our approach is very general and can be
used in a wide variety of scenarios.

Several extensions of our method are conceivable. For example,
because markers with very small effects should have somewhat
larger test statistic values than true nulls, they will still get a
somewhat higher estimated �FDR. However, it is unlikely that
markers with effect sizes that would be hard to detect in association
studies, would get noticeably better estimated �FDR. Although, it
will be impossible to estimate the potentially many very small effects
individually, it may be possible to devise a method that estimates
the average of all the undetectable effect sizes simultaneously.
This group estimate could then be used to estimate the posterior
probability that individual markers belong to this group. A second
possible extension will be to calculate posterior probabilities
after imputing missing SNPs. The imputation of SNPs alters the
distribution of the test statistic as a result of the uncertainty in
inferring the unknown variants. By approximations of the adjusted
test statistic distributions, as for instance, proposed by (Lin et al.,
2008), we can calculate posterior probabilities for imputed SNPs.

In this article we illustrated the use of �FDRs for the evaluation
of GWAS results and to improve subsequent marker selection.
Several other applications of the estimated �FDRs are conceivable.
For example, geneticists may be interested in combining markers
in specific biological pathways or genomic (linkage) regions to
test whether an entire pathway or region is more likely to be
associated with the outcome of interest. Marker-specific information
is needed to combine evidence in the pathway or region. Because
FDR-based statistics such as q-values do not provide marker-
specific information, they cannot be used in such scenarios where
markers are selected for reasons other then having p-values below a
certain threshold. The �FDRs do, however, provide marker specific
information, and therefore provide the prospect of testing for
enrichment of biological pathways and regions for disease signals.
A final example of how the estimated posterior probabilities can
be used involves replication studies. Posterior probabilities provide
an estimate for the amount of prior evidence that a specific marker
will replicate. As such more powerful replication studies could be
designed by giving more weight to markers that have higher prior
probabilities of being true. Moreover, current rules for declaring
significance in replication studies tend to be somewhat arbitrary
(e.g. p-values < 0.05 suggest a replication). Using the posterior
probabilities estimated from the GWAS data as prior probabilities
in replication studies could in principle help interpret results of
replication studies and define more statistically motivated decision
rules for declaring significance.
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